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Abstract—The training optimization processes and efficient 

fast classification are vital elements in the development of a 

convolution neural network (CNN). Although stochastic gradient 

descend (SGD) is a Prevalence algorithm used by many 

researchers for the optimization of training CNNs, it has vast 

limitations. In this paper, it is endeavor to diminish and tackle 

drawbacks inherited from SGD by proposing an alternate 

algorithm for CNN training optimization. A hybrid of genetic 

algorithm (GA) and particle swarm optimization (PSO) is 

deployed in this work. In addition to SGD, PSO and genetic 

algorithm (PSO-GA) are also incorporated as a combined and 

efficient mechanism in achieving non trivial solutions. The 

proposed unified method achieves state-of-the-art classification 

results on the different challenge benchmark datasets such as 

MNIST, CIFAR-10, and SVHN.  Experimental results showed 

that the results outperform and achieve superior results to most 

contemporary approaches. 

Keywords—Convolutional Neural Network; Particle Swarm 

optimization; Image Classification 

I. INTRODUCTION 

The Convolutional Neural Network (CNN) algorithm has 
been widely applied in many applications, including face 
recognition [1, 2], image classification and recognition [3-6] 
and object detection [7]. In supervised learning, Back 
Propagation (BP) algorithm is the prevalence and constituent 
method used for CNN training and parameters tuning. All 
researchers used it in CNN training in all their 
implementations.  

However, there are a number of disadvantages of using the 
back propagation algorithm alone. For example, BP algorithm 
deterministically occurs in local optima, making it hard to get 
global optima, especially if a large search space is required for 
optimal solution. The algorithm is also slow and hardly 
benefits of using modern machines such as Graphics 
Processing Unit (GPUs), which runs hundreds to thousands of 
threads simultaneously. The complex computational equations 
emerging in the algorithm demand hard and complicated 
series of steps to find derivative equations for updating weight 
parameters. Finally, the cardinality of back propagation 
algorithm recruits intermediate variables to preserve the 
validity of data. Means, the implication of BP requires 
keeping forward and backward essential parameters used for 
updating equations. 

To tackle limitations mentioned accompanied with BP 
algorithm, in this paper an alternate algorithm is proposed for 
CNN training. In particular, the Particle Swarm Optimization 
(PSO) algorithm is introduced for training; and it is combined 
with the Stochastic Gradient Descent (SGD) to achieve better 
results. The computational algorithm proposed delves to avoid 
occurring in local optimum, is fully parallel, and induces 
simple equations for CNN training. It is completely adaptable 
because it does not require any changes in CNN structure 
when some network layers are added or eliminated. The PSO 
equations used for training weights are completely parallelize 
as described in (1) and (2) and shown in fig. 2.  This suggests 
that the weights of any layer can be updated without the need 
for backward phase as in SGD, thus GPUs can be completely 
utilized using this implementation. The proposed method also 
improves training by overcoming premature saturation and 
sluggishness inspired by SGD. 

The reset of the paper consist of the following: in section 
II, related works are introduced. In section III a brief 
introduction of introducing PSO is presented. Then in section 
IV, the proposed approach is introduced in details. Then in 
section V the model architecture of CNN is illustrated. In both 
second VI and VII, challenge benchmark used for model 
evaluation and conclusion are depicted respectively. 

II. RELATED WORK 

Recently there are vast number of research have been 
proposed for image recognition using different methods and 
several proposed novel methods are proposed. Generally 
image recognition can be obtained using different approaches 
such as Pedro F. Felzenszwalb et al. [8] proposed a method for 
image recognition using Deformable Part Models (DPM). In 
addition further works are devoted using different strategies of 
using DPM as demonstrated in [9, 10, 11]. Varity of other 
methods are used for image classification such as SVM [12, 
13, 14,15], boosting [16], spatial pyramid matching [17]; 
however, on the other hand the most dominant recent works 
achieved using Convolutional Neural Network (CNN). The 
last is used widely variety of applications such as image 
recognition [31, 18, 22, 19, 20], object detection [20, 21, 23, 
24], scene labeling [25], segmentation [26, 27], and variety of 
other tasks [28, 29, 30]. All the mentioned above works use 
Stochastic Gradient Descent (SGD). However, in this work, 
this algorithm is replaced by PSO. In addition, hybrid training 
algorithm of both PSO and SGD is used. 
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III. PARTICLE SWARM OPTIMIZATION (PSO) 

PSO is an evolutionary stochastic optimization 
computational algorithm introduced by Eberhart and Kennedy 
[32,33,34]. Particles are randomly initialized, and periodically 
updated to introduce a new sophisticated population with new 
fitness. Each particle updates its new position contingent on its 
history and the best particle history. Thus the particle 
movement exploits on two values. The first value is the local 
best, which characterizes the best value so far for the particle 
itself, and the second value is the global best, which denotes 
the best value achieved so far by any particle within the 
swarm. At each time step, particles traverses toward its new 
best position by altering another parameter termed velocity. 
The following notions are the formulas used to tune CNN 
parameters. 

  
        

      (         
 )      (        

 )        (1) 

  
      

    
                                                                     (2) 

where,   
  and   

  denote the velocity and position of the 
particle   at moment  , respectively;     and    are 
accelerating factors,     and    are random numbers between 
[0,1],       is the best position for the particle  ,       is the 
best particle in the whole swarm. It is obvious that PSO 
notions are unpretentious and have very rare parameters to be 
adjusted. 

The PSO has remarkable convergence in the initial stages, 
but it quickly traps to local optimum. In addition, PSO has 
difficultly incapacitating to avoid local optimum if the search 
space encompasses only optimal solution [35]. The PSO 
predominantly experiences premature convergence and 
searches in region adjacent to global minimum as training 
progresses chronologically [36, 37] causing PSO permanently 
trapped in local optimum region. Therefore PSO is 
amalgamated by Genetic Algorithm (GA), which is an 
evolutionary algorithm widely used in solving problems in 
various fields [38-41]. It defines an initial generation that 
searches in domain space of the problem and generates a new 
population based mechanisms of reproduction, crossover, and 
mutation, which is frequently applied to produce new 
offspring. Usually, new descendants have higher quality and 

better fitness than ancestors. The GA induces enhancing PSO 
by merging particles in a bright approach to produce new 
generations. Combining GA and PSO crucially leverages the 
proposed hybrid training method by sharing information 
among particles, increasing the diversity of search space, 
countenancing the training vital through computation steps, 
and finally averting PSO to occur in local optimum. To sustain 
a smooth transition for the hybrid training along computation 
steps, Genetic Algorithm is applied to PSO whenever there are 
one of the following factors;  ) premature convergence,   ) no 
progress in the fitness function, or    ) Error changes remains 
steady from two to three consecutive steps. 

IV. PROPOSED OPTIMIZATION ALGORITHM 

Since SGD has slow convergence and it cannot be fully 
parallel to take advantages of GPUs, in this paper, a robust 
hybrid training algorithm is proposed for CNN training.  The 
algorithm is combined both PSO and SGD, and it is called 
PSO-SGD, which is a highly parallel method. In this 
approach, it is expected that the unified PSO and SGD 
algorithm can crucially achieves superior results and surpass 
previous methods because of still preserving gains of using 
SGD and the PSO is recruited as revival constituent. For 
instance, instead of running one particle, which characterizes 
the whole CNN parameters, plurality of particles is used and 
scattered over the scope of search space. Also all particles 
collaborate with each other using delicate method elucidated 
in next sections. The proposed training algorithm is divided 
into dual phase. In the first phase, the CNN parameters are 
initialized and trained using PSO. Then, when PSO progress 
induction decelerates, the SGD algorithm is applied for few 
iterations. After few iterations, the process is switched to PSO 
and so on. In addition, PSO is consolidated by Genetic 
Algorithm (GA), which is exploited to stimulate particles and 
overcomes SGD lethargy. Moreover, unlike standard PSO, 
which requires a long time to reach the potent area, hybrid 
PSO provides fast and enhanced optimization [33, 34]. In this 
algorithm, it is endeavored to preserve the training CNN vital 
for the whole training period. Algorithm 1 shows the CNN 
training using the proposed hybrid training method. Algorithm 
2 describes PSO alone as well. 

Algorithm 1. CNN training using the proposed hybrid method 

 Initialize parameters with different means  

    [  
    

      
 ] and    ,  

    
      

 - 

 Begin  

      Repeat   

         For  
 
← 1 to   do  

             Model evaluation     
 

 
∑ (       (      ))  
    

         End 

                   ( (  ( ))  (  (   ))  (  (   ))  (  (   ))) 

                   (                              ) 

         Update (1) and (2) 

        If (E) saturates for 3-8 iterations,  

                go back to repeat   
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        else   

               Apply GA by choosing random particles from    to    

        End 

       Choosing 10% of the best particles  

       For  
 
← 1 to n do  

            Apply SGD with those particles    (  ) 

      End 

   End 

 Until the condition reached  

Algorithm 2. PSO Algorithm 

                                    

                   

               ( )         

     (      (   ))    (      ( ))     (      (   ))    (      ( )) 

   
 ( )
    

 (   )
    (         

 (   )
)    (        

 (   )
)   

   
 ( )
   

 (   )
   

 (   )
 

                           

V. PROPOSED MODEL ARCHITECTURE 

CNN generally consists of alternatives two main layers 
called convolution and max-pooling layer and end up with 
fully connected layer. All these layers are connected to each 
other with weights. However, there are many different other 
CNN architectures. In this study, the same structure proposed 
by Yann LeCun et al. [42] is used.  

There are is of ambiguous steps, which need to be clarified 
such as how can the CNN parameters be encapsulated into 
particles? How do they cooperate with each other?  How can it 
justify the best particles with the ensembles of swarm? To 
answer these questions, how the parameters of CNN are 
distributed.  It is obvious that the weights and biases are 
constituent parameters of CNN. Therefore, in this work, the 
weights and bias are dismantled and encapsulated into vectors 
as shown below: 

  *                                                                          (3) 

  *          +                                                                   (4) 

   *  
    

      
 +                                                             (5) 

   *  
    

      
 +                                        (6) 

where   is the layer index,   is the total number of layers,   
is the particle  ,   is the total number of particles,   

  is the 

weight parameters of layer  , and    
  is the bias parameters of 

the layer  . Finally the final total parameters of bias and 
weights are given by 

   *   +                                                                               (7) 

Fig. 2 shows the first convolution and max-pooling layers 
of CNN, and there are set of filters and each has 
dimensions      and can be vectored to be      . Thus, 
having   filters for     layer, then the total weight parameters 

are   
     . In addition, the total bias parameters for the 

given     layer are   
     . 

Since there are   particles that will be trained, each one of 
them could be the best one among the swarm and can give an 
optimal solution. In order to justify which the best particle 
among swarm, the following notion is used:     
       ( ) 

where    is the best particle among swarm and   
described below is the measured error between the reference 
and the model output. 

  
 

 
∑ ∑ (         )

  
   

 
                                                     (8) 

Where   is the number of training samples,   is the 
number the output layers,        is the reference,     is the 

output of    . For clarification and showing the difference 
between the updating parameters using BP and PSO, fig. 2 
shows the principle of how BP and PSO work. The figure has 
circles having functions    where       and   is the 
number of layers.  The last layer has a function  . 

It is noticeable that BP requires both forward and 
backward phases. In the forward phase, each activation 
function gives its response with respect to the input. In 
backward phase, the derivative is required with to respect to 
network parameters. PSO does not require any backward 
phase which can save vast expanse of work and time 
consumption because the forward phase is less problematical 
than backward phase. 

The reason of why the second phase of network is not 
compulsory because the PSO algorithm depends on positions 
and velocities of the particles described in fig. 3. For instance, 
if there are   particles and the particle   is the best particle 
which satisfies (8), then the particle   can be updated 
according to (1) and (2). 
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Fig. 1. Convolution and max-pooling layers of CNN network 

 

 
Fig. 2. The principle of working both algorithms (a) BP (b) PSO 

 
Fig. 3. The principle of parameters updating using PSO 

Where    ( ) is the parameters mentioned in (7) at time  ,  
      and       are mentioned in (1),     ( ) is the velocity 
of particle  , and   (   ) is the next position for the CNN 
parameters of part  . 

VI. BENCHMARK EXPERIMENTS 

A. Overview 

The algorithm is evaluated on three benchmark datasets: 

MNIST [18], CIFAR-10 [34], and SVHN [33]. Samples for 

the datasets are shown in Fig 4. The CNN used in this work 
consists of alternative convolutional and max pooling layers. 
Fully connected layer is implemented on the top of the 
network.  The architecture of CNN used for each dataset is 
dissimilar from each other. The number of particles is 25 and 
they are randomly initialized with different means and 
variances. 
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Fig. 4. Samples of (a) MNIST (b) CIFAR-10 (c) SVHN datasets 

B. MNIST dataset 

The MNIST [34] is a hand written digits 0-9. The dataset 

consists of 60000 samples. 50000 samples are used for 
training and the rest used for testing. All samples have the 
same size, which is 28x28 pixels. The pixels are scaled to be 
in [0, 1] before the training. There is no preprocessing or data 
augmentation utilized in this work. The CNN structure is 8C-
8S-24C-24S-89C-90F-10F, where C stands for Convolution 
layer, S is for subsampling layer, and F is for full conned 
layer. In this dataset, the size of mini-batches is 128 images. 
The prosed hybrid PSO and SGD is exploited for training. At 
the beginning, the particles are trained using PSO only and 
Mean Square Error (MSE) mentioned in (3) is used as fitness 
assessment for the particles. The lowest MSE particle is the 
highest fitness is. In these experiments, MSE keeps dropping 
in few iterations and it saturates after that. To circumvent such 
margins, SGD and GA are launched when there is no further 
error dropping seen. SGD-GA is usually applied if error 
saturates between 5-8 iterations. Test accuracy is 0.9957 % for 
MNIST dataset. To best of the knowledge, this is the best 
reported result without preprocessing, augmentation, or 
dropout. A summary of the best published results on MNIST 
dataset is shown in Table I. 

when a large dataset is used such as MNIT, which has 
60000 gray images for training and 10000 for testing or 
CIFAR-10, which has 50000 color images for training and 
10000 for testing with a mini-batch 128 sued, it influences 
PSO performance because it cannot choose the best particle 
which depends on only 128 images so local minimum occurs. 

TABLE I.  RESULTS ON MNIST DATASET 

Method  Ref. # Test Accuracy 

Unsupervised Learning   [34] 0.64 

What is the Best Multi-Stage  [22] 0.53 

2-Layer CNN + 2-Layer NN  [35] 0.53 

Stochastic Pooling   [35] 0.47 

NIN + Dropout   [35] 0.47 

Conv. maxout + Dropout   [36] 0.45 

Hybrid PSO-SGD   ours 0.43 

To tackle this problem, a hybrid training algorithm of PSO 
and SGD is used. Instead of than using single algorithm, by 
collaborating two algorithms with each other, a better 
performance is reached. Table I shows most of the state-of-
the-art results on MNIST. A comparison is performed with 
only results that do not have preprocessing or they have the 
same architecture of CNN. It is clear that this work surpasses 
other works that do not use distortions or any preprocessing. 

C. CIFAR-10 Dataset 

The CIFAR-10 dataset consists of 10 classes of natural 
32x32 RGB images with 50,000 for training and 10,000 for 
testing [19]. The CNN used for this dataset is described as: 
12C-12S-48C-48S-89C-90F-10F, which is denoted to 
convolutional layer with 12 feature maps, subsampling layer, 
and a convolutional layer with 48 feature maps, subsampling 
layer, and a convolutional layer with 89 feature maps, and a 
fully connected output layer with 90 neurons, and a fully 
connected output layer with 10 outputs.  

The subsampling layers have filters over non-overlapping 
region of size 2x2. The same steps are followed as in MNIST 
for training CNN. However, in this dataset, occurring in local 
optimum is faster than previous datasets so the number of 
times applying SGD is higher. It is determined that PSO-GA 
needs to be united by SGD as complicated dataset used such 
as CIFAR-10 because the MNIST dataset is easier for 
classification than CIFAR-10. Nevertheless, the benefit of 
using hybrid POS-SGD is still obtainable. The test accuracy 
gotten on this dataset is 82.41%. 

From table II, it is evident that the proposed method 
surpasses the other state-of-the-art works. It is worth 
mentioning that only comparison with methods that use the 
same structure of CNN is considered. Any other techniques 
that can be very valuable for increasing accuracy such as 
dropout or drop-connect are not used. In this work, the same 

general structure proposed by Yann LeCun et al. [34] is used 

and only the training algorithm is replaced but the same 
configuration of CNN is kept. 

  

(a) (c) (b) 
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TABLE II.  TEST SET ACCURACY RATES ON CIFAR-10 DATASET 

Method  Reference # Accuracy  

Tiled CNN  [37] 73.10 

Improved LCC  [38] 74.50 

KDES-A  [45] 76.00 

PCANet-2 (combined)  [45] 78.67 

PCANet-2  [45] 77.14 

K-means (Triangle, 4000 features)  [44] 79.60 

Cuda-convnet2  [44]   82.00 

Hybrid PSO-SGD   [ours] 82.41 

D. SVHN Dataset 

The last experiment is assessed on the street view house 
numbers (SVHN). The dataset consists of 604,388 samples 
(training and extra set) and 26,032 samples as test images. In 
addition, each the dataset is color images and the size of each 
sample is 23x32 pixels. Following [1, 2], 400 samples per 
class from the training set and 200 images per class from extra 
set are selected to implement validation set. The task in this 
dataset is to classify the digit in the center of each image. 
Preprocessing local contrast normalization is used following 
Goodfellow et al. [6]. In addition, the same CNN assembly 
and parameters setting are used as CIFAR-10.  The test error 
obtained is 2.48%. The result is shown in Table III. 

TABLE III.  TEST ERROR RATES ON SVHN DATASET 

Method 
Reference 
# 

Test Error 
% 

Multi-Stage Conv. Net + 2-layer Classifier  [33] 5.03 

Multi-Stage Conv. Net + 2-layer Classifier + 

padding 
[33] 4.90 

Maxout Networks                          [55] 2.47 

Hybrid PSO-SGD   [ours] 2.48 

Again Maxout Networks is used in very large CNN 
implementations because it is implemented over Krizhevsky et 
al. [31] code. However, a conventional CNN is used instead. 
In addition, a leveraging PSO algorithm is used in this work 
which is faster than SGD 

VII. CONCLUSION 

In this work, a new hybrid training process is proposed and 
demonstrated called Particle Swam Optimization- Stochastic 
Gradient Decent (PSO-SGD) algorithm, for training 
Convolution Neural Network (CNN). It is established that the 
algorithm is well suited for achieving nontrivial results on 
different datasets and surprisingly achieving state-of-the-art on 
these datasets. The proposed algorithm is a proficient method 
for training because it combines both PSO and SGD in an 
innovative fashion. Analysis also shows that the proposed 
method is superior on three different benchmark datasets. The 
hybrid training method avoids occurring in local optimum and 
premature saturation inspired by using single algorithm. 
Additionally, it preserves the training vital for the whole 
training period and restrains the lethargy inherited by a 
monocular algorithm. 

VIII. FUTURE WORK 

In future more influential parameters will be explored. 
There are more parameters that can influent model accuracy 
will be investigated in the future work. Deeper analysis and 
more challenge datasets such as ImageNet also will be as a 

part of the future work. Also reporting time consumption and 
how fast execution time for training and testing will be 
consider endeavoring to reach real time execution. 
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