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Abstract—The Bees Algorithm (BA) is a bee swarm-based 

search algorithm inspired by the foraging behavior of a swarm of 

honeybees. BA can be divided into four parts: the parameter 

tuning part, the initialization part, the local search part, and the 

global search part. Recently, BA based on Patch-Levy-based 

Initialization Algorithm (PLIA-BA) has been proposed. However, 

the initial stage remains an initial step, and its improvement is 

not enough for more challenging problem classes with different 

properties. The local and global search capabilities are also 

required to be enhanced to improve the quality of final solution 

and the convergence speed of PLIA-BA on such problems. 

Consequently, in this paper, a new local search algorithm has 

been adopted based on the Levy looping flights. Moreover, the 

mechanism of the global search has been enhanced to be closer to 

nature and based on the patch-Levy model adopted in the 

initialization algorithm (PLIA). The improvements in local and 

global search parts are incorporated into PLIA-BA to advise a 

new version of BA that is called Patch-Levy-based Bees 

Algorithm (PLBA). We investigate the performance of the 

proposed PLBA on a set of challenging benchmark functions. 

The results of the experiments indicate that PLBA significantly 

outperforms the other BA variants, including PLIA-BA and can 

produce comparable results with other state-of-the-art 

algorithms. 

Keywords—Bees algorithm; Population initialization; Local 

search; Global search; Levy flight; Patch environment 

I. INTRODUCTION 

Most population-based metaheuristic algorithms, especially 
in recent years, are inspired by the collective intelligent 
behaviors of swarms of animals and insects such as fish, birds, 
bacteria, ants, termites, wasps, and fireflies. The biological 
studies showed that a swarm of such animals has impressive 
abilities to achieve fascinating, complex collective behaviors 
despite the simple behavior of each [1, 2]. It was found that the 
explanation of this amazing observation is the feature of self-
organization that social animals have [2]. Self-organization can 
be considered as an organization without organizer in which no 
guidance from external or internal controller is needed [1]. 
Instead, decentralized control mechanisms are required for 
these social beings to update their activities by themselves 
based on some limited and local information [1]. These 
intelligent collective behaviors and the incredible capabilities 
of social animals to solve their daily life problems fascinated 
researchers to model their behaviors to solve real-world 

optimization problems. Then the model can be used as a base 
to develop artificial versions, either by tuning the model 
parameters using values outside the biological range or by 
assuming additional non-biological characteristics in the model 
design [2]. As a result, swarm intelligence in nature has been 
transferred from biological systems to artificial systems. Thus a 
new field called Swarm Intelligence (SI) was emerged under 
the field of Artificial Intelligence (AI), particularly under the 
Computational Intelligence (CI) field. Therefore, algorithms 
such as Ant Colony Optimization (ACO) [3], Particle Swarm 
Optimization (PSO) [4], Bacterial Foraging Optimization 
(BFO) [5], and the Firefly Algorithm (FA) [6] have been 
developed. 

Among the social living beings that present interesting 
behavior and features are honeybees. The honeybees are very 
interesting creatures that exhibit several surprising intelligent 
behaviors when they behave as swarms of honeybees. Over the 
past decade, the collective intelligent behaviors of swarms of 
bees have been attracting the attention of researchers seeking to 
develop intelligent search algorithms. Examples of algorithms 
inspired by the behavior of bees include the Honey Bee Mating 
Optimization (HBMO) [7], the Artificial Bee Colony (ABC) 
algorithm [8], and Bee Colony Optimization (BCO) [9] 
algorithms. 

One of the most recent bee-based algorithms is the Bees 
Algorithm (BA). BA is a population-based search algorithm 
proposed by Pham et al. [10] and inspired by the foraging 
behavior of swarms of honeybees searching for good food 
sources. Fundamentally, the algorithm performs a kind of 
exploitative local or neighborhood search combined with an 
exploratory global search. Both kinds of search modes 
implement uniform random search. In the global search, the 
scout bees are distributed uniformly at random to different 
areas of the search space to scout for potential solutions. In the 
local or neighborhood search, follower bees are recruited for 
patches found by scout bees to be more promising to exploit 
these patches. BA has been successfully applied to problems in 
many fields, such as function (continuous) optimization [10, 
11], training neural networks [12], the job shop scheduling 
problem [11], and solving timetabling problems [13]. 

As a result of this, and also its simplicity and closeness to 
the actual behavior in nature, BA has garnered a significant 
amount of interest from researchers since its invention. We can 
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divide BA into four parts or components: the parameter tuning 
or parameter setting part, the initialization part, the local search 
(exploitation) part, and the global search (exploration) part. 
Several studies have sought to improve BA and to enhance its 
performance by improving some of these parts. Some of these 
studies focused on the parameter tuning and setting part. The 
resulting improvements in these studies were gained by 
reducing the number of tunable parameters [12] or by 
developing tuning methods to tune the parameters of BA [14, 
15]. Other studies focused on developing other concepts and 
strategies for the local (neighborhood) search part [16-18], or 
for both the local and global search parts [15, 19, 20]. 

However, limited attention has been paid to the 
improvement of the initialization part. In the initialization 
component, the foragers or searchers fly at random to initial 
resources. The initial location of foragers relative to the 
optimal resource (target) may affect the degree of optimality of 
other algorithm components. Therefore, recently, the 
initialization part of Basic BA has been paid attention and 
enhanced to improve the final solution quality and the 
convergence speed. Consequently, an initialization algorithm 
called the Patch-Levy-based Initialization Algorithm (PLIA) 
has been proposed and incorporated into Basic BA to adopt a 
BA version denoted by PLIA-BA [21]. However, the initial 
stage remains an initial step, and its improvement is not enough 
for more challenging problem classes with different properties. 
The local and global search capabilities are also required to be 
enhanced to improve the exploitativeness and exploration 
abilities of the algorithm, respectively. Thus, the quality of 
final solution and the convergence speed of PLIA-BA is 
improved on such problems. Hence, in this paper, the local and 
global search parts of PLIA-BA have been improved. 

Most of the improvements achieved on BA were not 
inspired by natural bee behaviors. However, the imitation of 
the best characteristics in nature can lead to efficient 
metaheuristic algorithms [22]. Therefore, it is good to search 
for additional natural bee aspects that can be modeled in BA 
and improve its performance. There are numerous biological 
features in nature associated with honeybee foragers and food 
sources that can be beneficial if they are properly modeled and 
incorporated into Basic BA. Among these features that we can 
model are the distribution of food sources and the distribution 
of honeybees when they fly away from the hive foraging for 
food. In nature, flowers are usually distributed in patches that 
regenerate and are rarely completely depleted [23]. In addition, 
a scout honeybee flies away from the hive and moves 
randomly throughout the space according to Levy flight motion 
[24-26], which has been found to constitute the optimal search 
strategy [23, 24, 27]. During the harvesting season, a portion of 
the colony population is kept as scout bees foraging for new 
food sources on the global scale [10, 28]. Furthermore, in 
nature, it has been found that Levy looping search triggers the 
flight paths that is performed by honeybee foragers conducting 
a local search around a known food source [25]. Consequently, 
in this paper, we enhance PLIA-BA, and propose an improved 
version of BA called Patch-Levy-based Bees Algorithm 
(PLBA). PLBA utilizes the PLIA for initialization stage [21], a 
new local search algorithm that models Levy looping flights, 
and an enhanced global search that is improved based on the 

patch-Levy model adopted in PLIA. The proposed local search 
algorithm is called Greedy-Levy-based Local Search 
Algorithm (GLLSA). 

Levy flights were first proposed as models of random 
walks in optimization algorithms by Gutowski [29], who 
advocated the use of Levy distributions instead of uniform and 
Gaussian distributions as mechanisms to generate the size of 
steps. The justification for this was that the frequent short steps 
generated by Levy distributions enable the optimization 
algorithm to intensify the search in regions around the current 
promising points. In addition, the occasional long jumps 
produced by Levy distributions help the optimization algorithm 
to escape from local optima. Levy flights were subsequently 
utilized as a search mechanism in many optimization 
algorithms, such as Levy Flights Optimization (LFO) 
algorithms [30], Cuckoo Search [31], the FA [32], the Bat 
algorithm [33], the Krill Herd (KH) algorithm [34], the ABC 
algorithm [35], and PLIA-BA [21]. However, to the best of the 
author’s knowledge, this is the first time Levy looping flights 
are being used to conduct the local search as in nature instead 
of freely roaming Levy flights. 

The remainder of this paper is organized as follows. 
Section II reviews the Bees Algorithm based on Patch-Levy-
based Initialization Algorithm (PLIA-BA). Section III 
describes the Levy flight and the proposed algorithm. Section 
IV presents the results of performance evaluations and 
experiments obtained for the proposed BA variant (PLBA) and 
compares these results with those obtained using other BA 
variants, including PLIA-BA and other state-of-the-art 
algorithms. Finally, section V concludes this paper. 

II. THE BEES ALGORITHM BASED ON PATCH-LEVY-BASED 

INITIALIZATION ALGORITHM (PLIA-BA) 

The PLIA-BA is an improved version over Basic BA 
incorporating the Patch-Levy-based initialization algorithm 
(PLIA) proposed by Hussein et al. [21] to enhance the 
initialization stage of Basic BA. The PLIA can be summarized 
as follows: 

1) Divide the search space equally into   patches or 

segments. 

2) Evaluate the vector of areas in the hive from which 

scout bees will fly (          ), represented by the centers of 

the patches (segments). 

3) Divide and assign the (n) scout bees into the hive areas 

and evaluate the number of scout bees (nb) to be assigned in 

each area in the hive using the following equation: 

n
nb Int

P

 
  

 
 (1) 

4) Evaluate the number of remaining scout bees still not 

assigned (nrb) to be assigned in the last area in the hive using 

the following equation: 

%nrb n P  (2) 

5) Set j = 1 
Set Current area =    

While (Current area (  ) is not the last area (  )) 
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Distribute (nb) bees from the current area (  ) inside the 

hive to the patches according to Levy flight distribution to 
constitute (nb) bees in the initial population 

Set j = j + 1 

Set Current area =    

End while 

6) Distribute (nb+ nrb) bees from the last hive area to the 

patches according to Levy flight distribution to constitute (nb 

+ nrb) bees in the initial population. 

7) Return the constructed initial population of (n) scout 

bees. 

III. PROPOSED ALGORITHM 

In this paper, a new local search algorithm (GLLSA) that 
models the Levy lopping flights is developed and the global 
search is improved to be based on the patch-Levy model 
adopted in the initialization algorithm, PLIA. The initialization 
algorithm (PLIA) [21], the proposed local search (GLLSA), 
and the enhanced global search are incorporated into an 
enhanced version of BA called PLBA. In this section, Levy 
flights and the importance of the local and global search 
components are described and the proposed improvements in 
these components are presented. Then, the development of 
PLBA is outlined on the basis of the proposed improvements in 
local search and global search parts. 

A. Levy flight 

The existence of Levy flights as a movement pattern in 
biological organisms was first noted by Shlesinger and Klafter, 
who stated that the characteristics of Levy flights can be 
observed in foraging ants [36]. Levandowsky et al. 
subsequently introduced Levy walks as a swimming behavior 
in microorganisms [36]. Various empirical and theoretical 
studies have subsequently identified the Levy flight patterns 
and characteristics in the foraging of various animals and 
species such as the wandering albatross, reindeer, jackals, 
dinoflagellates, spider monkeys, sharks, bony fish, sea turtles, 
penguins, fruit flies (drosophila), bumblebees, and honeybees 
[36]. Evidence of using Levy flights as search patterns was also 
found in the foraging patterns of humans such as the Dobe 
Ju/’hoansi hunter-gatherers [37]. 

Levy flights are random walks that are named after Paul 
Levy, a French mathematician [29]. Levy flights consist of 
independent, randomly oriented steps with lengths l, drawn at 
random from an inverse power-law distribution with heavy and 

long tail, ( ) where 1< 3p l l





 . Levy flights are scale-

free since they do not have any characteristic scale because of 

the divergent variance of ( )p l , and they present the same 

fractal patterns regardless of the range over which they are 
viewed. The pattern in Levy flights can be described by many 
relatively short steps (corresponding to the detection range of 
the searcher) that are separated by occasional longer jumps. 

Levy flights can be categorized into two categories: freely 
roaming Levy flights and Levy looping flights [25, 27]. The 
freely roaming flights consist of sequences of Levy steps, 

whereas the Levy looping flights comprise loops of the Levy 
steps. The freely roaming Levy flights constitute the optimal 
search strategy for the foragers searching for sparsely and 
randomly distributed patches. On the other hand, Levy looping 
search strategy is adopted by many foragers for exploiting a 
promising patch or area. In the freely roaming flights, the 
forager continues the search from the last location, whereas in 
the looping flights, the foragers restarts the search from the 
original promising location that represents the center of a 
potential patch until the target is found. This strategy aims at 
searching the local area of the potential patch more intensively. 
However, if no progress has been achieved with the time, the 
probability of finding the target in the vicinity of that location 
decreases, thus the original site is abandoned and freely 
roaming flights are adopted. 

It can be easily observed from the definition of Levy flights 
that these flights constitute a series of displacements and 
orientations. Therefore, two steps are required to mimic Levy 
movements in nature and to implement these flights. The first 
step generates a random direction to mimic the random choice 
of direction by drawing it from a uniform random distribution. 
In the proposed algorithm, the direction is drawn from a 
uniform distribution between -1 and 1. The second step 
generates the step length that obeys a Levy distribution. 

B. Local and Global Search Capabilities 

The local search and global search components are two of 
the main components of the metaheuristic algorithms. These 
two components are equivalent to two important 
characteristics, which are the intensification and diversification 
characteristics, respectively [22]. In the intensification, the 
current promising areas are exploited and the best solution is 
selected. Whereas, in diversification, the search space is 
explored on the global scale. Therefore, the enhancement of the 
local and global search mechanisms of PLIA-BA can lead to 
significant improvement in the overall performance of PLIA-
BA in terms of the solution quality, convergence speed, and 
success rate. In addition, as mentioned earlier, the imitation of 
the best characteristics in nature can lead to efficient 
metaheuristic algorithms [22]. Therefore, in this paper, the 
local search part of PLIA-BA is enhanced by proposing a new 
local search algorithm called Greedy Levy-based Local Search 
Algorithm (GLLSA) that models Levy looping search for the 
exploitation of patches. The global search part is also improved 
by employing the patch-Levy model adopted in the 
initialization stage. 

1) Local Search 
In this important stage, the areas (patches) of promising 

resources are exploited by recruiting other bees to these areas 
and conducting local search. Since there is a high chance to 
find the optimal solution near the good solutions, the 
exploitation step is considered an important step. 

In Basic BA and PLIA-BA, the best sites ( m ) are selected 
for the local search. Then, the local search part is performed by 
first determining the size of the patch in which the search will 
be conducted and then the recruit bees are distributed 
uniformly at random to food sources inside the determined 
patch. However, in nature, it has been found that the honeybee 
foragers conducting local search around a known food source 
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adopt Levy looping flights [25]. In the Levy looping search, 
the honeybee flies from the site whose local area is searched. If 
the target is found the foraging stops, otherwise the forager 
returns back to the same original site and randomly chooses a 
direction and length before foraging again. If no progress has 
been achieved with the time, the probability of finding the 
target in the vicinity of that location decreases, thus the original 
site is abandoned and freely roaming flights are adopted. 

As a result of this natural behavior of bees conducting local 
search and since the imitation of the best characteristics in 
nature can lead to efficient algorithms, this paper proposes a 
new local search algorithm that very closely mimics the actual 
behavior of bees in nature. This local search algorithm is called 
the Greedy Levy-based Local Search Algorithm (GLLSA). In 
GLLSA, a recruit bee restarts the search from the current best 
site in a patch based on Levy flight distribution for a 
predetermined time until a better site is found. Once a better 
site is found, it becomes the current best site. The aim of this 
strategy is to search the area where the optimal solution is 
expected to be more intensively. In the proposed GLLSA 
algorithm, each recruit bee of the remaining recruit bees starts 
foraging from the last resource found to be the best source by 
previous recruit bees. This limitation is not found in nature but 
it is assumed to increase the property of being greedy of the 
BA and to increase the possibility of finding the optimal 
solution. 

2) The Proposed Local Search Algorithm: Greedy Levy-

based Local Search Algorithm (GLLSA) 
Based on the concepts above, the Greedy Levy-based Local 

Search Algorithm (GLLSA) is proposed to conduct the local 
(neighborhood) search stage in the PLIA-BA. The pseudo-code 
of the algorithm is presented in Fig. 1. 

Before conducting the local search, as in Basic BA and 
PLIA-BA, the fittest m sites of the fittest m bees are determined 
as the promising resources which require exploitation. Among 
these m sites, e sites need more exploitation by recruiting for 
them more bees than the remaining (m - e) sites. As in Basic 
BA and PLIA-BA, the number of recruited bees for the e sites 
is determined by the parameter nep. For the remaining (m - e) 
sites, the number of recruited bees is identified by the 
parameter nsp. After this selection process of sites for the local 
search, the local search algorithm starts.  

As can be seen from the pseudo-code of the algorithm in 
Fig. 1, for each site (patch) of the m selected sites (patches), a 
number of bees are recruited (RecruitBee). RecruitBee can be 
either nep or nsp as mentioned before. Each site of the m sites 
represents the current best site in its patch. Every recruited bee 
achieves searching and foraging for better solutions or sites for 
some time (t) that can be found empirically by a trial and error 
and is usually simply set to RecruitBee or to one. During this 
time, the first recruit bee restarts searching from the same 
original best site as long as there is no better site has been 
found. If the recruit bee finds a better solution while it is 
searching for the predetermined time, this recruit bee stops 
searching, the site found is considered the current best site, and 
the next recruit bee starts the search. The foraging of the next 
recruit bee is continued by the same way from the last current 
best site. The same process is repeated for the remaining recruit 

bees. Finally, each original exploited site of the m  sites is 
replaced with the last best solution found by the bees recruited 
for that site. 

Each recruit bee conducts searching in a patch according to 
the following equation illustrated in the schematic diagram in 
Fig. 2: 

 

   

 

22 1 ,

1,2, , or 

i bestcurb s r Levy

i nep nsp

   



 

(3)  

where 
i

b is the position of the thi  recruit bee, 
bestcurs  is the 

current best site in the patch,  2 1r   gives the direction of fly 

drawn from a uniform random distribution between -1 and 1, 

i.e. (2 1) uniform( 1,1),r     uniform(0,1)r  and
2( )Levy   

represents the step length generated randomly from a Levy 

flight distribution with a search size or scale parameter 
2 .  

This search size or scale is shrunk at each iteration of the 
algorithm after the local search, thus the step size of the bee 
generated from Levy distribution is decreased from time to 
time while foraging inside the neighborhood of the potential 
solution. The aim is to decrease the length of the long steps 
[30], thus, increasing the intensification and exploitativeness 
capability of the proposed PLBA and searching the region 
around the promising solution comprehensively. Additionally, 
the decrease of the long jumps can prevent the recruit bees 
from going beyond the regions of promising sites that may 
result from the dependency behavior of GLLSA where the 
foraging of each recruit bee depends on the foraging results of 
the previous one. 

C. Global Search 

In nature, during the harvesting season, the bee colony 
keeps a portion of the bee population as scout bees foraging for 
new food sources [10, 28]. These scout bees fly away from the 
hive and move throughout a patchily distributed environment 
at random according to Levy flight pattern [23, 26]. In the 
Basic BA, PLIA-BA and the proposed PLBA, this portion of 
scout bees is represented by n - m scout bees, thus a number (n 
- m) of scout bees is distributed to perform the global search. 

In Basic BA and PLIA-BA, the global search is conducted 
by distributing this proportion of scout bees uniformly at 
random into the search space in the same way as in the 
initialization stage of Basic BA. On the other hand, the global 
search in the proposed PLBA is enhanced by imitating the 
natural behavior, which was the Levy motion in a patchily 
distributed environment. In the global search of the proposed 
PLBA, the scout bees are distributed from the hive areas which 
are chosen to be the same areas of the hive from which they are 
initially distributed. Then, these bees start to scout according to 

the Levy flight with search size or scale (
3
 ) as in the initial 

step. 

D. The Proposed Patch-Levy-based Bees Algorithm (PLBA) 

Having presented the initialization algorithm (PLIA) in 
[21], the proposed local search algorithm (GLLSA) in Section 
2), and the enhancement on global search in Section C, the 
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main steps of the proposed Patch-Levy-based Bees Algorithm 
(PLBA) can be summarized as follows: 

1. Initialize the population using the initialization algorithm 

(PLIA) [21]. 

2. Evaluate the fitness of the population. 

3. While (stopping criterion not met) 
  // Form new population 

4. Select (m) sites for neighborhood search. 

5. Conduct Local (neighborhood search) according to the 

proposed local search algorithm (GLLSA). 

6. Redistribute the remaining bees (n - m) from their 

previous areas inside the hive to the patches according to 

Levy flight distribution to scout again and evaluate their 

fitness. 

7. End while. 
In the proposed PLBA, it is assumed that the number of 

patches in the initialization and global search parts are the same 
and represented by the same centers. However, in the local 
search, each selected site out of the m sites represents a patch 
center as in Basic BA and PLIA-BA. 

IV. EXPERIMENTAL SETUP AND RESULTS 

A. Experimental Setup 

1) Benchmark Functions 
Most of the standard benchmark functions have some 

properties that could be exploited by some general-purpose 
metaheuristic algorithms to achieve good results [38]. Among 
these properties are the symmetric dimensions of the global 
optimum (i.e., the dimensions have the same values), and the 
location of the global optimum at origin, at the center of the 
search range, or on the bounds. For instance, if the 
optimization problem has symmetric dimensions, an 
optimization algorithm with a neighborhood operator that 
copies the value of one dimension to other dimensions can 
converge quickly to the global optimum. Such properties are 
considered problems in the standard test functions that should 
be avoided in order to test a novel global optimization 
algorithm [38]. 

As a result, to evaluate the proposed PLBA and compare it 
with other BA variants and with other state-of-the-art 
population-based algorithms, we employ a set of 25 
challenging scalable benchmark functions with different 
characteristics and complexities provided for CEC’2005 
session on real-parameter optimization [39]. These benchmark 
functions include functions with different properties such as 
unimodal, multimodal, shifted, rotated and unrotated, global 
minimum on the bounds and global minimum not on the 
bounds, with and without noise, separable and non-separable, 
hybrid composition functions, and so on. Experiments were 
carried out on the 10 and 30-dimensional versions of these 
challenging problems. Detailed information about these 
function optimization problems can be found in [39]. 

2) Performance Evaluation 
In the evaluation of the algorithms on a set of test 

problems, especially the multimodal problems, some 
algorithms may have a small probability of success on a test 
function but converge fast. On the other hand, other algorithms 

may have a larger probability of success but converge slower 
[40]. Hence, it is good to evaluate the performance of an 
algorithm in terms of both convergence speed and success rate. 
One way to do this is to use the Success Performance (SP) 
measure [40]. SP is the expected number of function 
evaluations to achieve a certain success level (accuracy level) 
on a specific function. Lower value of SP for an algorithm on a 
problem means the algorithm is faster in solving that problem. 
SP can be defined as follows [39, 40]: 

 
 FES

SP ,
mean

successful

p
success

  (4) 

where SP is the success performance of an algorithm on a 

specific function,  FES
successful

mean  is the mean number of 

function evaluations for the successful runs, and 
success

p  is the 

probability of success of the algorithm on the function, and 

successful

success

All

RN
p

RN
 , where 

successful
RN  is the number of successful 

runs, and 
All

RN  is the total number of runs performed. Each 

run of an algorithm on a function was deemed to be successful 
when the error value of that function is less than or equal to the 
acceptance (accuracy) level specified for that function. 

From (4), it can be seen that  SP = FES
successful

mean  in the 

case of SR = 100% where 
success

p  = 1. Therefore, to compare the 

convergence speed of a set of algorithms with success rate 
(SR) of 100%, the mean number of evaluations can be used. 
However, when the success rates of the algorithms are of 
different values, the success rates should be taken into account 
in addition to the mean number of evaluations only in the 
successful runs in order to evaluate the convergence speed. 
Therefore, we use three performance metrics to evaluate the 
performance of the proposed PLBA algorithm; namely, the 
mean function error value, the success performance (SP), and 
the success rate (SR). 

The mean function error value gives indication of the 
quality of the final solutions obtained by the proposed PLBA 
algorithm, whereas the success performance is employed to 
ascertain the convergence speed of this algorithm. The function 

error value is calculated as follows:    *

bestE f x f x  , 

where bestx  is the best solution and *x  is the global optimum. 

Success rate (SR) is one of the performance criteria used in the 
literature for evaluating the reliability of algorithms. It can be 

calculated as follows: SR = 100
success

p  . In addition, convergence 

graphs for each function, in the case of d = 30, that plot the 
function error value against the number of function evaluations 
are used. These graphs show the median performance of the 
total runs. Further, the extra parameters relevant to the 
proposed PLBA are analyzed. 

In this evaluation of the performance of PLBA, the 25 
functions are employed using dimensions of d = 10, and d = 30 
with maximum number of function evaluations (Max_FES) of 
100,000, and 300,000 evaluations, respectively. The PLBA is 
run 25 times for each problem. Each run of the PLBA is 
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terminated when the number of evaluations reaches the 
Max_FES or if the function error value is 10-8 or less. Each 
run of an algorithm is determined to be a successful when the 
error in the function value (E) is less than or equal to the 

accuracy level prescribed in [39] as follows: 
61 10  for 

functions 
1 5f f , 

21 10  for functions 
6 16f f , and 

11 10  

for functions 
17 25f f . 

3) Parameter Settings 
We compare the performance of PLBA with that of Basic 

BA, Shrinking-based BA, Standard BA, and PLIA-BA. 
Shrinking-based BA is an improved version of BA that utilizes 
a neighborhood shrinking procedure [41] and Standard BA is 
an improved variant that employs both shrinking and site 
abandonment procedures [42]. In addition, we conduct an 
additional set of experiments to compare the performance of 
PLBA with other population-based metaheuristic algorithms. 
These algorithms include Restart CMA-ES [43], DMS-PSO 
[44], SPC-PNX [45], DE [46], SaDE [47], ABC [48], and 
modified ABC (MABC) [48]. The Restart CMA-ES is the 
covariance matrix adaptation evolution strategy in which the 
population size is increased for each restart. DMS-PSO is a 
dynamic multi-swarm particle swarm optimization algorithm in 
which the swarms are regrouped frequently and the Quasi-
Newton method is employed to improve the local search 
capability. SPC-PNX is a steady-state real parameter genetic 
algorithm with parent centric normal crossover. DE is the 
classical differential evolution algorithm. SaDE is a self-
adaptive version of the differential evolution algorithm where 
the learning strategy and some control parameters are self-
adapted by the previous learning experience. ABC is the 
classical artificial bee colony algorithm. Modified ABC 
(MABC) is a modified version of ABC in which two 
parameters were added. The first parameter was to determine 
the number of parameters to be mutated and perturbed and the 
second one was to specify the magnitude of this perturbation. 
The parameter settings of these algorithms can be found in 
their references. 

In order to perform a fair comparison among the BAs, we 
execute the five versions of BA with the same setting for the 
common parameters: n = 20 for the number of scout bees, m = 
3 for the number of selected sites, e = 1 for the number of elite 
sites, nep = 4 for the number of recruited bees for each site of 
the e sites, and nsp = 1 for the number of bees recruited for 
every site of the remaining (m-e) sites. In addition, the 
parameters relevant to each version are set to different values 
for different problems (See Appendix A: Tables A. 1 and A. 2). 
These parameters are closely related to the problem under 
study. It should be noted that it is good on these benchmarks to 

set small values for the Levy search size of local search (
2

 ) to 

support the exploitation capability of the good regions and 

large values for the Levy search size of the global search (
3

 ) 

to maintain the diversity of the population. 

B. Experimental Results 

The mean function error values achieved by PLBA after 
Max_FES for the 25 10-dimensional and 30-dimensional test 
problems are presented in Tables I and III, respectively. The 
success rate (SR) and success performance (SP) achieved by 

PLBA for the 25 functions in the case of d  = 10 and d  = 30 

are tabulated in Tables II and IV. 

From the results in Tables I and II, it could be observed that 
in the case of 10-dimensional problems, PLBA could find the 

global optimum for problems 
1f , 

2f , 
4f , 

5f , 
9f , 

12f , and 
15f  

with success rate 100%, 100%, 100%, 100%, 100%, 8%, and 
100%, respectively. In the case of 30-dimensional version of 
problems, PLBA could find the global optimum for problems 

1f , 
2f , 

7f , 
9f , and 

15f , with success rate 100%, 96%, 68%, 

100%, and 52%, respectively, as can be seen in Tables III and 
IV. 

However, for problems 
16 25f f , PLBA, as other 

optimization algorithms as can be seen in Section E, could not 
find the global optimum for both 10 and 30-dimensional 
versions in all 25 runs owing to the high multimodality of these 
problems, the randomly located global optima and the huge 
number of randomly located deep local optima [38, 47]. 

C. Analysis of the Results of the Proposed PLBA 

Among the unimodal functions 
1 5f f , PLBA was able to 

solve the shifted sphere function (
1f ), the Schwefel problem 

1.2 with (
2f ) and without (

4f ) noise in fitness, and the 

Schwefel problem 2.6 with global optimum on bounds (
5f ) in 

the case of the 10-dimensional problems in all 25 runs. Only 

the shifted rotated high conditioned elliptic function (
3f ) was 

the problem that PLBA failed to optimize within the 
Max_FES. In the case of the 30-dimensional version, PLBA 

was able to optimize 
1f  over all runs, and to solve 

2f  most the 

time with success rate 96%. However, PLBA failed to solve 

the 30-dimensional version of 
4f . The first three unimodal 

functions were of different number of conditions that make 

them of different complexities where 
3f  is more difficult than 

2f , and 
2f  is more difficult than 

1f . From the results, it could 

be observed that the high number of conditions of 
3f  

deteriorate the performance of the PLBA. On the other hand, 
although the noise disturbs the search in the optimization 
process, the noise had no significant effect on the performance 
of PLBA in the case of 10-dimensional problems. This can be 

confirmed by comparing the results of 
16f  (without noise) and 

17f  (
16f  with noise) where the results of these two functions 

were almost the same. The same case with the best performing 
algorithm (Restart CMA-ES) where the noise affected its 
performance in the 30 dimensions case, whereas the noise had 
no significant effect on its performance in the case of d = 10, as 
can be seen in [43]. 

For the basic functions in the multimodal problem class, 

PLBA could find the global optimal solution of 9f , which was 

the shifted Rastrigin function in all 25 runs for both the 10 and 
30-dimensional versions. It could be concluded from these 
results and from the results of PLIA-BA on the standard 

Rastrigin ( 6f ) [21] that shifting the global optimum of the 

Rastrigin function does not affect the performance of PLBA, 
which is an improved version of PLIA-BA. However, rotation 
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seemed to pose difficulties to PLBA as can be inferred from 

the rotated version (
10f ) of the function 

9f . Additionally, 

PLBA was able to locate the global optimum of the shifted 

rotated Griewank function, 
7f  for 30-dimensional version with 

success rate 68%. On the other hand, PLBA failed to solve this 
problem in the 10-dimensional case. This can be explained by 
that the increase in the maximum allowable number of function 
evaluations by factor of 3 (3.00E+05) gives PLBA the time to 
solve this function most the time despite the increase in the 
number of dimensions. This can also be observed with other 

algorithms on 
7f  and other problems such as DE [46] on 

7f , 

SaDE [47] on 
4f   and 

7f , DMS-PSO [44] on 
7f , SPC-PNX 

[45] on 
6f  and 

7f , Restart CMA-ES [43] on 
3f  and 

15f , 

Shrinking-based BA on 
1f , and Standard BA on 

1f , 
2f , and 

6f  where the results of these algorithms on the stated functions 

in the 30-dimensional versions are better than those in the 10-

dimensional versions. Furthermore, PLBA could optimize 
12f  

with success rate 8% for the 10-dimensional problem. 

However, the two multimodal expanded functions 
13f , and 

14f , and the eleven multimodal composition functions form the 

biggest challenge for the population-based metaheuristic 
algorithms as can be seen from the results. Nevertheless, PLBA 
was able to successfully optimize the hybrid composition 

problem 
15f  in all runs within the Max_FES in the 10-

dimensional case and half the time (success rate 52%) in the 
case of 30-dimensional version. 

An interesting note that all algorithms failed to solve the 
shifted rotated Ackley function with the global optimum on 
bounds, even though most of the algorithms such as the 
improved BAs [21] succeeded to optimize the standard Ackley 

function with success rate of 100%, as can be seen with 
9f  in 

the benchmarks used in [21]. The different scaling employed in 
this advanced version of Ackley can accounted for this bad 
performance of the algorithms on the function [43]. The 
standard Ackley function has a flat area outside the search 

space (  32,32
d

 ) and employing the linear transformation 

with 100 condition numbers to construct the challenging 

version ( 8f ) caused this flat area to be inside the search space 

[43]. Therefore, the search for the global optimum of this 
function looks like looking for a needle in a haystack [43, 44]. 

It should be noted that the different characteristics of the 
problems have a great effect on the performance of an 
optimization algorithm. However, the performance of an 
algorithm is not affected by these characteristics only, but also 
by the parameter tuning process that has a significant effect 
[45]. Therefore, fine-tuning of the parameters of PLBA, 
especially the extra parameters, on a specific problem may 
result in a good performance of the algorithm on that problem. 

D. Comparisons among the BAs 

By comparing the results of BA-based algorithms in Tables 
I - IV, it can be clearly seen that the performance of PLBA is 
much better than the other BA variants. In the case of 10-
dimensional problems, all other BA variants failed to reach the 

success level within the predetermined Max_FES on all the test 
problems. However, in the case of 30-dimensional problems, 
Standard BA and Shrinking-based BA were able to optimize 

1f  with success rate 100%, and 
2f  with success rate 96% and 

64%, respectively. 

The convergence graphs of all BA-based algorithms 

including the proposed PLBA on some tested problems for d  

= 30 were presented in Figs. 3 and 4 to compare PLBA against 
other BA variants in terms of the convergence speed. It can be 
seen from these figures, that PLBA converges faster than other 
BA versions on most of the tested problems. Even though the 
PLBA was stuck in local optima, it could escape from that 
local optima after a number of evaluations. This can be 
accounted for by that the patch concept helps in spreading the 
solutions along the search space and creating diversity, then the 
frequent short steps of Levy flights cause rapid convergence 
and the rarely occurred long jumps help to increase the 
diversity and escape from local optima. 

The good effect of controlling the combination of patch 
number and Levy search size can also be observed by 
investigating the convergence graphs of PLIA-BA where 
PLIA-BA performed better than Basic BA on almost all 
functions and equally or better than Shrinking-based BA or 
Standard BA on some functions. From Figs. 3 and 4, it can also 
be concluded that dynamic change in the step size of the local 
search was advantageous for BA in the Standard BA and 
Shrinking-based BA. However, the fast decrease in the step 
size might lead to premature convergence on the problems 

other than 
1f , and 

2f . The dynamic change in the search size 

or the scale of the Levy flight in the local search (
2

 ) was also 

beneficial for the PLBA in many cases in controlling the length 
of the long steps [30]. In this case, there are still frequent short 
steps and rare long jumps and only the length of these steps are 
changed and reduced, especially the long ones. Thus, the 
exploitativeness of the PLBA in the local search area is 
increased with the possibility of escaping from local optima 
without making aggressive long jumps that can lead the search 
outside the good area. 

We conducted statistical comparisons between PLBA and 
other BA variants in terms of the solution quality using the 

Friedman test. We conducted two sets of comparisons using d  

= 10 and d  = 30 dimensions to evaluate the results and to 

check the behavior of the BA-based algorithms. Tables V and 
VI show the ranks achieved by Friedman test for both sets of 
comparisons. It can be clearly seen in these tables that PLBA 
ranked first in both sets of comparisons. Therefore, PLBA was 
the best performing algorithm in the 10 and 30 dimensions 
cases, whereas the worst one was Standard BA, followed by 
Basic BA in the case of d = 10, and Basic BA in the case of 30 
dimensions. The p-values calculated using the statistic from the 
Friedman test were 0 and 0.000071 in the 10 and 30-
dimensinal cases, respectively, as shown in Tables V and VI. 
These p-values suggested a highly significant difference among 
the performance of the BA-based algorithms considered. 

Subsequently, we used two post hoc tests (Holm and 
Hochberg tests) [49] to compare PLBA with the rest of the BA-
based algorithms. Tables VII and VIII show the adjusted p-
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values obtained by the post hoc tests considering PLBA as the 
control method in the 10 and 30-dimensional cases, 
respectively. In the case of d = 10, PLBA showed a significant 
improvement over the Basic BA, Standard BA, and PLIA-BA 
at a level of significance   = 0.01, whereas no significant 

difference was found between Shrinking-based BA and PLBA. 
On the other hand, in the 30-dimensional case, PLBA showed a 
significant improvement over all other BA-based algorithms 
with a level of significance   = 0.01. 

Although the Shrinking-based BA did not succeed in 
solving any function out of the 25 functions in the case of 10 
dimensions, its results were generally good and no significant 
difference was detected between it and PLBA. It can also be 
observed that PLIA-BA outperformed Basic BA in both 10 and 
30 dimensions cases and it also outperformed Standard BA in 
the case of d = 10. However, in both cases (d = 10 and d = 30) 
PLBA outperformed PLIA-BA and PLIA-BA could not 
successfully solve any problem. Thus, it can be concluded that 
although the improvement of the initialization algorithm of 
Basic BA can enhance the performance of Basic BA, it is not 
enough to solve more challenging problem classes. 

E. Comparisons with Other State-of-the-art Algorithms 

First, it should be pointed out that no results regarding the 
SR, and SP were tabulated in Tables IX and X for conventional 
ABC and MABC because their results have not been reported 
in [48]. From these tables, it can be observed that, all 
algorithms employed in these comparisons, including PLBA 

could locate the global optimum of 
1f , and 

2f  over all 25 

trials in the 10-dimensional versions. Whereas in the 30-
dimensional version, all algorithms were able to find the global 

optimum of 
1f  in all runs, and of 

7f  with different success 

rates. The most successful algorithm on this function 
7f  was 

Restart CMA-ES with 100% success rate, followed by DMS-
PSO, DE, SaDE, PLBA, and SPC-PNX with success rate 96%, 
88%, 80%, 68%, and 64%, respectively. In addition, all 
algorithms failed to find the global optimal solution of the 

problems 
8f , 

13f , 
14f , and 

16 25f f  because of the high 

multimodality of these problems [47]. 

An interesting finding that only PLBA was able to 

successfully solve the hybrid composition problem 
15f  in all 

25 runs in the 10-dimensional version, as can be seen in Table 
IX. On the other hand, other algorithms either could not solve 
the problem in some runs such as DE, SaDE, and DMS-PSO or 
did not succeed in any run such as SPC-PNX and Restart 
CMA-ES. In addition, only PLBA was the algorithm that could 

find the global optimum for the 30-dimensional version of 
15f  

where it achieved a success rate of 52%, as can be seen in 
Table X. 

In general, it could be concluded from the comparisons that 

the shifted sphere function, 1f  is the simplest function in the 

test suite and the shifted rotated Ackley function ( 8f ), 

expanded functions ( 13f , and 14f ), and the composition 

functions ( 15 25f f ) pose the greatest difficulty for the 

population-based optimization algorithms. In addition, from 
the comparisons between the 10 and 30-dimensional versions, 

it could be inferred that increasing the Max_FES and adjusting 
some parameters can significantly improve the results for an 
optimization algorithm for specific problems. 

Regarding the convergence speed on the functions with 
non-zero success rate achieved by PLBA, the SP was used 
where the algorithm with smaller value is considered faster. It 
can be seen in Table IX that PLBA was faster than some 

algorithms and slower than others on 
1f , 

5f , 
9f , and 

15f  in 

the case of d = 10. In this case, SaDE was the fastest on 
9f  and 

15f , followed by PLBA. On the other hand, PLBA was the 

slowest algorithm on 
2f , 

4f , and 
12f . In the case of d = 30, as 

can be seen in Table X, PLBA was the fastest on 
15f  and after 

SaDE on 
9f . For the other functions (

1f , 
2f , and 

7f ) PLBA 

converged faster than some algorithms and slower than others. 

To statistically analyze the results obtained by PLBA and 
other state-of-the-art metaheuristic algorithms, we also 
employed the Friedman test. The results of all 25 10-
dimensional problems were reported for all algorithms 
considered in the comparisons. On the other hand, in the case 
of the 30-dimensional version, the results of SaDE [47], and 

DMS-PSO [44] for 
16 25f f , and 

20 25f f , respectively, were 

not reported in the literature. This means that some data are 
missing for some algorithms. In addition, there have not been 
results reported for the conventional ABC in the case of using 

d  = 30 [48]. 

Therefore, we performed two sets of statistical 
comparisons. The first set was among all algorithms using the 
10-dimensional version of all 25 benchmarks, whereas the 
second one was among all algorithms excluding ABC on the 
30-dimensional version of the first 15 benchmarks. The ranks 
calculated through the Friedman test for the algorithms 
considered are tabulated in Tables XI and XII for both sets of 
comparisons. It can be clearly seen in these tables that Restart 
CMA-ES was the best performing algorithm in both cases of d 
= 10 and d = 30. Whereas the worst performing algorithm was 
SPC-PNX in the case of employing 10 dimensions, and was 
the MABC in the case of using 30 dimensions. For the 
proposed PLBA algorithm, it ranked sixth in the comparisons 
considering the 10-dimensional versions and ranked fourth in 
the comparisons employing the 30-dimensional versions. The 
p-values calculated using the statistic from the Friedman test 
were 0.010674 and 0.001348 in the 10 and 30-dimensinal 
cases, respectively, as shown in Tables XI and XII. These p-
values suggested a significant difference among the 
performance of the algorithms considered. 

Subsequently, we used Holm and Hochberg tests to test the 
specific difference between Restart CMA-ES and the rest of 
the algorithms. Tables XIII and XIV show the adjusted p-
values obtained by Holm and Hochberg methods in the case of 
employing the 10 and 30–dimensional benchmarks, 
respectively, considering the Restart CMA-ES as the control 
method. The Holm and Hochberg methods suggested a 
significant difference in the performance between the Restart 
CMA-ES in one side and SPC-PNX, ABC, and PLBA in the 
other side in the case of using d = 10. It can be clearly seen in 
Table XIII that Restart CMA-ES demonstrated a highly 
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significant improvement over SPC-PNX with a significance 
level of   = 0.01, and a significant improvement over ABC, 

and PLBA at a significance level of   = 0.1. However, in the 

case of the compression set on the 30-dimensional benchmarks, 
it can be clearly seen in Table XIV that Restart CMA-ES 
showed a significant improvement over SPC-PNX, DE, and 
MABC at a level of significance of   = 0.05. On the other 

hand, no significant difference was suggested by Holm and 
Hochberg between Restart CMA-ES and PLBA in the case of 
30-dimensional benchmark problems. Thus, it can be 
concluded that PLBA perform well even if the number of 
dimensions increases. 

V. CONCLUSION 

Despite the importance of the initialization part, the initial 
stage remains an initial step and its improvement is not enough 
for more challenging problem classes with different properties. 
Thus, the local and global search capabilities were also 
enhanced to improve the quality of final solution and the 
convergence speed of PLIA-BA on such problems. In this 
paper, a new local search algorithm, GLLSA, which is based 
on the Levy looping flights, has been adopted. Moreover, the 
mechanism of the global search has been enhanced to be closer 
to nature and based on the patch-Levy model adopted in PLIA. 
Consequently, a new version of BA called PLBA, which 
utilizes the initialization algorithm (PLIA), local search 
algorithm (GLLSA), and the enhanced global search has been 
proposed 

We investigated the performance of the proposed PLBA on 
a set of challenging benchmark functions that are free of the 
properties of the standard functions (e.g., symmetry) that can 
be exploited by the optimization methods. We compared the 
proposed PLBA with other state-of-the-art algorithms available 
in the literature. Additionally, we conducted comparisons 
between the BA variants.  

The comparisons with BA-based algorithms have shown 
that PLBA significantly outperformed the other BA versions: 
Basic BA, Shrinking-based BA, Standard BA and PLIA-BA. 
The results validated what has been stated before that the 
improvement of the initialization stage is not enough for all 
problem types and the improvement of local and global search 
capabilities is required as well. The experiments have also 
indicated that PLBA was able to produce comparable results 
with other state-of-the-art algorithms on the 10 and 30-
dimensional challenging problems employed in the 
comparisons. 

The problems employed in this work were static problems. 
Future work will focus on evaluating and validating the 
performance of the proposed PLBA on a set of recently 
proposed dynamic optimization problems. 
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TABLE I.  MEAN ERROR VALUES ACHIEVED FOR PROBLEMS        (  = 10) BY BAS 

Problem 
PLBA PLIA-BA Standard BA Shrinking-based BA Basic BA 

Mean STD Mean STD Mean STD Mean STD Mean STD 

   0.00E+00 0.00E+00 4.78E-03 1.05E-03 5.40E-02 1.03E-01 1.43E-04 3.30E-05 4.77E-03 9.54E-04 

    3.98E-13 2.83E-13 5.52E-03 1.74E-03 5.28E-03 1.63E-02 1.93E-04 6.66E-05 5.60E-03 1.46E-03 

    8.87E+03 1.74E+04 1.53E+05 1.16E+05 8.63E+04 5.08E+04 1.37E+05 1.30E+05 1.21E+05 1.15E+05 

    2.38E-09 3.23E-09 6.84E-01 1.81E-01 5.63E-02 2.04E-01 7.31E-03 1.77E-03 6.95E-01 1.63E-01 

    6.08E-11 7.48E-11 1.56E+01 4.98E+00 6.65E+01 2.43E+02 6.51E+01 2.38E+02 1.65E+01 3.34E+00 

    1.25E+01 2.19E+01 1.66E+02 4.44E+02 1.44E+03 2.65E+03 1.76E+01 5.01E+01 6.16E+01 1.06E+02 

    2.13E-01 8.42E-02 6.65E-01 1.13E-01 7.94E-01 1.72E-01 7.57E-01 1.28E-01 7.64E-01 1.26E-01 

    2.00E+01 4.80E-02 2.00E+01 2.31E-02 2.04E+01 6.06E-02 2.00E+01 2.41E-02 2.00E+01 3.85E-02 

    0.00E+00 0.00E+00 2.80E+01 7.66E+00 3.08E+01 1.62E+01 2.69E+01 9.19E+00 2.75E+01 9.45E+00 

     2.16E+01 1.04E+01 3.64E+01 7.96E+00 3.48E+01 2.05E+01 1.94E+01 8.72E+00 3.64E+01 4.67E+00 

     4.23E+00 1.38E+00 5.33E+00 1.17E+00 9.19E+00 6.78E-01 1.95E+00 9.19E-01 6.14E+00 7.24E-01 

     1.40E+01 4.21E+01 4.55E+02 1.30E+03 5.27E+03 6.78E+03 6.15E+02 2.14E+03 1.86E+02 4.79E+02 

     1.46E-01 1.05E-01 1.89E+00 7.36E-01 5.81E+00 4.07E+00 1.29E+00 4.13E-01 3.94E+00 9.29E-01 

     3.13E+00 3.88E-01 3.20E+00 2.29E-01 3.62E+00 2.22E-01 3.48E+00 2.27E-01 3.39E+00 2.85E-01 

     7.96E-07 3.26E-07 2.56E+02 7.60E+01 3.36E+02 9.30E+01 2.03E+02 6.61E+01 2.53E+02 7.43E+01 

     1.46E+02 2.25E+01 1.72E+02 1.17E+01 1.62E+02 2.83E+01 1.28E+02 1.32E+01 1.83E+02 1.34E+01 

     1.49E+02 1.90E+01 1.94E+02 3.51E+01 1.90E+02 2.92E+01 1.42E+02 1.64E+01 1.95E+02 3.91E+01 

     4.77E+02 1.45E+02 7.10E+02 1.69E+02 4.34E+02 2.00E+02 5.80E+02 1.42E+02 6.15E+02 1.04E+02 

     4.27E+02 1.69E+02 6.87E+02 1.69E+02 4.91E+02 2.06E+02 5.82E+02 1.41E+02 6.11E+02 1.07E+02 

     4.17E+02 1.33E+02 6.77E+02 1.54E+02 4.24E+02 1.95E+02 5.82E+02 1.41E+02 6.11E+02 1.07E+02 

     5.75E+02 3.13E+01 7.48E+02 1.28E+02 8.71E+02 3.02E+02 8.08E+02 3.51E+02 7.76E+02 1.86E+02 

     7.80E+02 3.91E+01 7.79E+02 6.83E+01 7.82E+02 6.99E+00 7.32E+02 1.31E+02 7.84E+02 4.45E+01 

     6.14E+02 1.51E+02 7.81E+02 1.92E+02 6.40E+02 6.68E+01 7.08E+02 2.16E+02 7.12E+02 1.73E+02 

     2.89E+02 2.32E+02 2.30E+02 1.40E+02 2.43E+02 7.59E+01 2.00E+02 1.64E-02 2.02E+02 4.06E-01 

     4.12E+02 1.67E+00 3.99E+02 2.55E+01 4.11E+02 8.09E-01 3.95E+02 4.34E+01 4.08E+02 9.29E+00 

TABLE II.  SUCCESS RATE (SR%) AND SUCCESS PERFORMANCE (SP) ACHIEVED FOR PROBLEMS        (  = 10) BY BAS (SP NOT CALCULATED WHEN 

SR = 0% AND [-] SIGN WAS PUT INSTEAD) 

Problem 
PLBA PLIA-BA Standard BA Shrinking-based BA Basic BA 

SR% SP SR% SP SR% SP SR% SP SR% SP 

   100 8.2294E+03 0 - 0 - 0 - 0 - 

    100 4.8090E+04 0 - 0 - 0 - 0 - 

    0 - 0 - 0 - 0 - 0 - 

    100 7.1668E+04 0 - 0 - 0 - 0 - 

    100 7.7768E+04 0 - 0 - 0 - 0 - 

       0 - 0 - 0 - 0 - 0 - 

    100 1.8948E+04 0 - 0 - 0 - 0 - 

         0 - 0 - 0 - 0 - 0 - 

     8 1.0497E+06 0 - 0 - 0 - 0 - 

         0 - 0 - 0 - 0 - 0 - 

     100 4.1000E+04 0 - 0 - 0 - 0 - 

        0 - 0 - 0 - 0 - 0 - 

TABLE III.  MEAN ERROR VALUES ACHIEVED FOR PROBLEMS        (  = 30) BY BAS 

Problem 
PLBA PLIA-BA Standard BA Shrinking-based BA Basic BA 

Mean STD Mean STD Mean STD Mean STD Mean STD 

   8.41E-14 2.90E-14 4.96E-02 5.02E-03 2.48E-10 5.02E-11 5.44E-11 6.01E-12 5.00E-02 5.19E-03 

    1.87E-08 7.56E-08 1.81E-01 5.01E-02 1.98E-07 6.76E-07 4.39E+01 2.18E+02 1.81E-01 3.62E-02 

    2.94E+05 7.68E+04 8.16E+05 3.49E+05 2.38E+06 8.06E+05 1.23E+06 4.08E+05 7.80E+05 3.19E+05 

    2.87E+03 1.53E+03 5.09E+02 3.32E+02 2.54E+04 8.55E+03 2.57E+02 2.29E+02 1.50E+04 6.89E+03 

    7.24E+03 1.70E+03 4.24E+03 8.03E+02 8.76E+03 2.35E+03 1.10E+04 1.92E+03 3.93E+03 9.76E+02 

    7.59E+01 8.26E+01 4.40E+02 3.22E+02 6.84E+02 1.34E+03 2.72E+03 4.31E+03 3.36E+02 4.36E+02 

    1.14E-02 1.03E-02 1.12E+00 1.73E-02 8.63E-01 1.88E-01 9.38E-01 3.35E-02 1.12E+00 1.46E-02 

    2.01E+01 2.97E-02 2.00E+01 1.92E-02 2.10E+01 5.85E-02 2.01E+01 4.45E-02 2.01E+01 2.53E-02 

    9.34E-10 9.99E-10 1.93E+02 2.74E+01 1.54E+02 3.51E+01 2.20E+02 3.57E+01 2.25E+02 3.98E+01 

     1.29E+02 3.08E+01 2.47E+02 1.81E+01 1.69E+02 7.08E+01 1.56E+02 4.20E+01 2.37E+02 1.73E+01 

     2.52E+01 3.21E+00 2.65E+01 2.96E+00 3.90E+01 1.40E+00 1.29E+01 3.49E+00 3.16E+01 1.64E+00 

     1.69E+03 1.16E+03 1.73E+04 1.56E+04 6.60E+04 1.63E+05 2.00E+04 1.80E+04 1.16E+04 1.10E+04 

     5.59E-01 3.02E-01 1.60E+01 1.92E+00 6.35E+02 2.94E+03 5.33E+00 1.46E+00 2.10E+01 2.19E+00 

     1.25E+01 3.35E-01 1.27E+01 2.30E-01 1.30E+01 2.61E-01 1.31E+01 3.80E-01 1.31E+01 2.06E-01 

     1.29E+02 1.64E+02 5.76E+02 6.58E+01 4.09E+02 2.77E+01 4.20E+02 3.90E+01 5.78E+02 5.71E+01 
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     1.80E+02 4.44E+01 2.77E+02 3.24E+01 1.26E+02 3.28E+01 1.91E+02 6.96E+01 2.85E+02 4.10E+01 

     2.15E+02 8.80E+01 4.60E+02 7.44E+01 1.80E+02 5.43E+01 2.41E+02 7.30E+01 4.68E+02 7.17E+01 

     9.11E+02 5.21E+00 9.15E+02 5.63E+00 9.10E+02 2.92E+00 9.12E+02 1.60E+00 9.16E+02 1.36E+00 

     9.09E+02 2.36E+00 9.16E+02 1.36E+00 9.09E+02 2.32E+00 9.12E+02 1.99E+00 9.16E+02 1.73E+00 

     9.09E+02 2.50E+00 9.16E+02 1.36E+00 9.09E+02 2.22E+00 9.12E+02 1.99E+00 9.16E+02 1.73E+00 

     1.02E+03 2.03E+02 7.18E+02 2.05E+01 5.91E+02 2.02E+02 7.66E+02 3.14E+02 7.32E+02 1.38E+01 

     9.09E+02 2.82E+01 9.44E+02 2.38E+01 9.48E+02 1.43E+01 9.86E+02 5.61E+01 9.41E+02 1.68E+01 

     1.11E+03 3.05E+00 7.46E+02 2.58E+01 7.03E+02 2.88E+01 5.57E+02 1.25E+01 7.38E+02 1.71E+01 

     9.36E+02 1.53E+02 1.36E+03 2.16E+01 2.03E+02 1.57E+01 2.00E+02 0.00E+00 1.35E+03 2.52E+01 

     2.13E+02 2.46E+00 2.12E+02 4.93E-01 2.12E+02 8.48E-01 2.11E+02 3.96E-01 2.13E+02 5.42E-01 

TABLE IV.  SUCCESS RATE (SR%) AND SUCCESS PERFORMANCE (SP) ACHIEVED FOR PROBLEMS        (  = 30) BY BAS (SP NOT CALCULATED WHEN 

SR = 0% AND [-] SIGN WAS PUT INSTEAD) 

Problem PLBA PLIA-BA Standard BA Shrinking-based BA Basic BA 
SR% SP SR% SP SR% SP SR% SP SR% SP 

   100 7.7945E+04 0 - 100 2.0265E+05 100 1.8600E+05 0 - 

    96 2.5518E+05 0 - 96 2.5216E+05 64 3.3130E+05 0 - 

       0 - 0 - 0 - 0 - 0 - 

    68 1.9660E+05 0 - 0 - 0 - 0 - 

    0 - 0 - 0 - 0 - 0 - 

    100 1.1871E+05 0 - 0 - 0 - 0 - 

         0 - 0 - 0 - 0 - 0 - 

     52 1.3942E+05 0 - 0 - 0 - 0 - 

        0 - 0 - 0 - 0 - 0 - 

TABLE V.  AVERAGE RANKINGS OF BA VARIANTS (FRIEDMAN) ON 10-DIMENSTIONAL PROBLEMS 
1 25f f  

Algorithm Ranking 

PLBA 1.66 

Shrinking-based BA 2.34 

PLIA-BA 3.52 

Basic BA 3.64 

Standard BA 3.84 

p-value  0 

TABLE VI.  AVERAGE RANKINGS OF BA VARIANTS (FRIEDMAN) ON 30-DIMENSTIONAL PROBLEMS 
1 25f f  

Algorithm Ranking 

PLBA 1.76 

Standard BA 2.94 

Shrinking-based BA 3.04 

PLIA-BA 3.42 

Basic BA 3.84 

p-value  0.000071 

TABLE VII.  ADJUSTED  -VALUES ASSOCIATED WITH BA VARIANTS (FRIEDMAN) ON 10-DIMENSTIONAL PROBLEMS 
1 25f f  

Algorithm Unadjusted p p Holm p Hochberg 

Standard BA 0.000001 0.000004 0.000004 

Basic BA 0.00001 0.000029 0.000029 

PLIA-BA 0.000032 0.000064 0.000064 

Shrinking-based BA 0.128379 0.128379 0.128379 

TABLE VIII.  ADJUSTED  -VALUES ASSOCIATED WITH BA VARIANTS (FRIEDMAN) ON 30-DIMENSTIONAL PROBLEMS 
1 25f f  

Algorithm Unadjusted p p Holm p Hochberg 

Basic BA 0.000003 0.000013 0.000013 

PLIA-BA 0.000206 0.000617 0.000617 

Shrinking-based BA 0.004208 0.008415 0.008326 

Standard BA 0.008326 0.008415 0.008326 
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TABLE IX.  SUCCESS RATE (SR%) AND SUCCESS PERFORMANCE (SP) ACHIEVED FOR PROBLEMS        (  = 10) BY PLBA AND OTHER STATE-OF-
THE-ART ALGORITHMS (SP NOT CALCULATED WHEN SR = 0% AND [-] SIGN WAS PUT INSTEAD) 

Problem 
PLBA DE [46] SaDE [47] DMS-PSO [44] SPC-PNX [45] 

Restart CMA-ES 

[43] 

SR% SP SR% SP SR% SP SR% SP SR% SP SR% SP 

   100 8.2294E+03 100 2.9410E+04 100 1.0126E+04 100 1.1912E+04 100 6.7252E+03 100 1.6100E+03 

   100 4.8090E+04 100 4.6309E+04 100 1.0237E+04 100 1.2052E+04 100 3.1012E+04 100 2.3800E+03 

   0 - 80 1.1502E+05 64 5.2306E+04 100 1.2480E+04 0 - 100 6.5000E+03 

   100 7.1668E+04 100 5.2372E+04 96 4.5601E+04 0 - 100 3.0714E+04 100 2.9000E+03 

   100 7.7768E+04 100 4.0746E+04 0 - 80 1.1336E+05 100 4.0259E+04 100 5.8500E+03 

   0 - 96 4.7398E+04 100 4.8777E+04 100 5.4677E+04 0 - 100 1.0800E+04 

   0 - 8 1.2000E+06 24 1.7197E+05 16 5.8672E+05 4 1.8033E+06 100 4.6700E+03 

   0 - 0 - 0 - 0 - 0 - 0 - 

   100 1.8948E+04 44 1.7681E+05 100 1.7048E+04 100 3.4612E+04 0 - 76 7.5700E+04 

    0 - 0 - 0 - 0 - 0 - 92 6.5000E+04 

    0 - 48 1.8852E+05 0 - 0 - 4 1.0943E+06 24 2.6300E+05 

    8 1.0497E+06 76 7.1904E+04 100 3.1933E+04 76 5.4443E+04 0 - 88 3.2700E+04 

        0 - 0 - 0 - 0 - 0 - 0 - 

    100 4.1000E+04 4 2.4600E+06 92 3.3165E+04 88 5.6563E+04 0 - 0 - 

        0 - 0 - 0 - 0 - 0 - 0 - 

TABLE X.  SUCCESS RATE (SR%) AND SUCCESS PERFORMANCE (SP) ACHIEVED FOR PROBLEMS        (  = 30) BY PLBA AND OTHER STATE-OF-
THE-ART ALGORITHMS (SP NOT CALCULATED WHEN SR = 0% AND [-] SIGN WAS PUT INSTEAD) 

Problem PLBA DE [46]  SaDE [47] DMS-PSO [44] SPC-PNX [45] Restart CMA-ES [43] 

SR% SP SR% SP SR% SP SR% SP SR% SP SR% SP 

   100 7.7945E+04 100 1.3855E+05 100 2.0234E+04 100 5.0263E+03 100 3.0326E+04 100 4.5000E+03 

   96 2.5518E+05 0 - 96 1.4883E+05 100 1.2552E+05 88 3.1536E+05 100 1.3000E+04 

   0 - 0 - 0 - 84 3.4100E+05 0 - 100 4.2700E+04 

   0 - 0 - 52 5.3816E+05 0 - 76 3.6334E+05 40 5.9000E+04 

   0 - 0 - 0 - 0 - 0 - 100 6.5900E+04 

   0 - 0 - 0 - 98 3.2781E+05 4 5.2053E+06 100 6.0000E+04 

   68 1.9660E+05 88 1.9952E+05 80 1.3477E+05 96 5.9577E+04 64 3.7063E+05 100 6.1100E+03 

   0 - 0 - 0 - 0 - 0 - 0 - 

   100 1.1871E+05 0 - 100 9.8934E+04 0 - 0 - 36 7.9000E+05 

    0 - 0 - 0 - 0 - 0 - 12 2.4200E+06 

    0 - 0 - 0 - 0 - 0 - 4 4.9800E+06 

    0 - 0 - 0 - 16 1.5108E+06 0 - 32 2.2500E+05 

        0 -  - 0 - 0 - 0 - 0 - 

    52 1.3942E+05  - 0 - 0 - 0 - 0 - 

        0 -  - 0 - 0 - 0 - 0 - 

TABLE XI.  AVERAGE RANKINGS OF PLBA AND OTHER ALGORITHMS (FRIEDMAN) ON 10-DIMENSTIONAL PROBLEMS 
1 25f f  

Algorithm Ranking 

Restart CMA-ES 3.4 

MABC 3.56 

DMS-PSO 4.28 

SaDE 4.28 

DE 4.6 

PLBA 5.02 

ABC 5.12 

SPC-PNX 5.74 

p-value  0.010674 

TABLE XII.  AVERAGE RANKINGS OF PLBA AND OTHER ALGORITHMS (FRIEDMAN) ON 30-DIMENSTIONAL PROBLEMS 1 15f f  

Algorithm Ranking 

Restart CMA-ES 2.8 

SaDE 2.9667 

DMS-PSO 3.1667 

PLBA 3.8333 

DE 4.9 

SPC-PNX 5.1333 

MABC 5.2 

p-value  0.001348 
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TABLE XIII.  ADJUSTED  -VALUES ASSOCIATED WITH PLBA AND OTHER ALGORITHMS (FRIEDMAN) ON 10-DIMENSTIONAL PROBLEMS 
1 25f f  

Algorithm Unadjusted p p Holm p Hochberg 

SPC-PNX 0.000731 0.00512 0.00512 

ABC 0.013043 0.078255 0.078255 

PLBA 0.019373 0.096867 0.096867 

DE 0.083265 0.333058 0.333058 

SaDE 0.204024 0.612072 0.408048 

DMS-PSO 0.204024 0.612072 0.408048 

MABC 0.817361 0.817361 0.817361 

TABLE XIV.  ADJUSTED  -VALUES ASSOCIATED WITH PLBA AND OTHER ALGORITHMS (FRIEDMAN) ON 30-DIMENSIONAL PROBLEMS 
1 15f f  

Algorithm Unadjusted p p Holm p Hochberg 

MABC 0.002346 0.014075 0.014075 

SPC-PNX 0.003096 0.01548 0.01548 

DE 0.007762 0.031049 0.031049 

PLBA 0.1902 0.570599 0.570599 

DMS-PSO 0.64205 0.832662 0.832662 

SaDE 0.832662 0.832662 0.832662 
 

For CurSite = 1 : m 

Set CurBestSite = Sites CurSite ; 

While (not all RecruitBee recruited) 

Set Time = t; 
  While(Time != 0) 

Distribute the current recruit bee from the current best site to search the 

neighborhood area of the current site according to Levy flight distribution (3) with search size or scale 2
 . 

If(NewSite is better than CurBestSite) 
 CurBestSite = NewSite ; 

Break; 

End If 
Time = Time – 1; 

End While  

End While 

Sites CurSite  = CurBestSite; 

End For 

Shrink the Levy search size ( 2 ) by a shrinking factor ( sf )  

Fig. 1. Pseudo-code of the proposed Greedy Levy-based Local Search Algorithm (GLLSA) 

 

Fig. 2. A schematic diagram of recruit bees foraging and exploiting a patch in the proposed local search algorithm (  for better site than the current best site and 

 for worse sites) 
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 (a) (b) 

  

(c) (d) 

  

(e) (f) 

  

Fig. 3. Convergence behavior of the BA variants on functions: (a) 1f
, (b) 2f

, (c) 3f
, (d) 5f

, (e) 6f
, and (f) 7f
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(a) (b) 
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(e) (f) 

  

Fig. 4. Convergence behavior of the BA variants on functions: (a) 9f
, (b) 10f

, (c) 12f
, (d) 13f

, (e) 15f
, and (f) 23f
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APPENDIX A 

  

Table A. 1 The parameters used with different values for different problems in Basic BA, Shrinking-based BA, and 

Standard BA 

 
Function Basic BA Shrinking-based BA Standard BA 

ngh  
init

ngh  sf  
init

ngh  sf  stlim 

   0.1 1 0.999 1 0.999 700 

    0.1 1 0.999 1 0.999 700 

    0.1 1 0.9999 1 0.800 700 

    1 5 0.999 5 0.999 700 

    1 1 0.9991 1 0.9991 700 

    0.1 1 0.999 1 0.999 700 

    5 5 0.9999 5 0.9999 700 

    1E-3 0.001 0.999 1E-3 0.999 700 

    0.1 0.1 0.999 1 0.999 700 

     1 1 0.999 1 0.999 700 

     0.1 0.1 0.999 1 0.999 700 

     0.01 0.01 0.9999 1 0.999 700 

     0.1 1 0.999 1 0.999 700 

     0.1 0.1 0.999 1 0.999 700 

     1E-3 3 0.999 3 0.999 700 

     1 1 0.999 3 0.999 700 

     0.01 1 0.999 3 0.999 700 

     1 1 0.99991 3 0.999 700 

     1 1 0.99991 3 0.999 700 

     1 1 0.99991 3 0.999 700 

     1 1 0.990 1 0.990 700 

     1 1 0.999 3 0.999 700 

     1 1 0.9999 3 0.9999 700 

     0.1 1 0.999 3 0.999 700 

     1 1 0.9999 3 0.9999 700 

 

Table A. 2 The parameters used with different values for different problems in PLIA-BA, and PLBA 
Function PLIA-BA PLBA 

ngh  P  1
  P  

1
  2_ init  

3
  t  sf  

   0.1 1 1E-7 19 3 1E-2 1E-2 5 0.985 

    0.1 1 1E-7 1 1 1 1 10 0.990 

    0.1 1 1E-7 1 1 1E-3 1 10 1 

    1 1 1E-7 5 3 2 1 60 0.960 

    1 1 1E-7 1 1 2 1 50 0.950 

    0.1 1 1E-7 1 1 1 1 20 0.990 

    5 20 1E-7 10 1 4 1 30 0.990 

    1E-4 1 1E-7 1 1 1E-5 1 50 1 

    1E-3 1 1E-7 10 4 7E-2 1E-7 45 0.960 

     1 1 1E-7 1 1 1 1 50 0.980 

     0.01 19 1 1 1 1 1 20 0.980 

     0.01 1 1E-7 17 1 1E-4 3 60 1 

     0.1 19 1E-7 12 1E-3 1E-4 1E-3 40 1 

     5 1 1E-7 1 1 1E-2 1 50 1 

     1E-3 1 1E-7 1 1E-7 4E-5 1E-2 30 1 

     1 1 1E-7 1 1 1 1 30 0.990 

     0.01 1 1E-7 1 1 1 1 50 0.990 

     1 1 1 19 1 2 1 20 1 

     1 1 3 19 3 2 3 15 0.990 

     1 1 3 19 1 1 1 20 0.990 

     1 1 1 19 3 1 3 15 1 

     1 19 1 1 1 1 1 15 0.990 

     1 1 1 1 1 1 1 20 0.999 

     0.1 1 1 1 5 1 5 40 0.980 

     1 2 1 1 5 2 5 40 0.980 

 

 


