
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

78 | P a g e

www.ijacsa.thesai.org

A Comparative Study of Relational and Non-

Relational Database Models in a Web- Based

Application

Cornelia Győrödi

Department of Computer Science and

Information Technology, University of

Oradea

Oradea, Romania

Robert Győrödi

Department of Computer Science and

Information Technology, University of

Oradea

Oradea, Romania

Roxana Sotoc

Department of Computer Science and

Information Technology, University of

Oradea

Oradea, Romania

Abstract—The purpose of this paper is to present a

comparative study between relational and non-relational

database models in a web-based application, by executing various

operations on both relational and on non-relational databases

thus highlighting the results obtained during performance

comparison tests. The study was based on the implementation of

a web-based application for population records. For the non-

relational database, we used MongoDB and for the relational

database, we used MSSQL 2014. We will also present the

advantages of using a non-relational database compared to a

relational database integrated in a web-based application, which

needs to manipulate a big amount of data.

Keywords—MongoDB; MSSQL; NoSQL; non-relational

database

I. INTRODUCTION

As technology nowadays is tireless and evolves more and
more every day, the amount of data is increasing and an
application to handle a huge volume of data efficiently it is
important to choose the right model of the database. Relational
database model has a quite rigid schema that means that a
schema must be designed in advance before data had been
loaded and all attributes of the schema are uniform for all
elements, in the case of missing values null values are used
instead [5]. It is difficult to change the schema of databases,
especially when, it is a partitioned relational database that
spreads across multiple servers. If our data capture and
management requirements are constantly evolving, a rigid
schema can quickly become an obstacle to change [6].

Generally a web application must support millions of users
simultaneously and to handle a huge volume of data a
relational database model is still widely in use today, even
though it has serious limitations when to handle a huge volume
of data.

Google, Amazon, Facebook and LinkedIn have been
among the first companies that discovered those limitations of
the relational database model as far as the demands of new
applications. These limitations have led to the development of
non-relational databases, also commonly known as NoSQL
(Not Only SQL) [7].

Non-relational databases do not use the RDBMS principles
(Relational Data Base Management System) and do not store

data in tables, and have schema-less approach to data
management. Non-relational databases do not require schema
definition before inserting data nor changing the schema when
data collection and management need evolve [6] [10]. Instead,
they use identification keys and data can be found based on the
keys assigned [8].

NoSQL could be categorized in 4 types [2]:

1) Key-Value databases – which are the simplest NoSQL

data stores to use, from an API perspective. The most popular

ones are Redis, Riak, etc.

2) Document databases – which store and retrieve

documents as XML, JSON, BSON and so on. The most

popular document database is MongoDB, which provides a

rich query language.

3) Column family stores – these databases store data in

column families as rows that have many columns associated

with a row key. One of the most popular is Cassandra.

4) Graph Databases – allows you to store entities and

relationships between these entities. There are many graph

databases, but between this type of database we can mention

OrientDB, FlockDB. etc. [2]
According to the article was written by Matt Asay,

“NoSQL databases eat into the relational database market” [1]
the NoSQL databases, especially MongoDB, occupy more and
more space on the market, but with all these Oracle and SQL
Server are still constant. In Fig 1. we can see the popularity of
MongoDB and its evolution from 2014 to 2015.

Fig. 1. Database Popularity [1]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

79 | P a g e

www.ijacsa.thesai.org

In Fig. 1. we can see a growth of 3% for MongoDB from
2014 until 2015 and a decrease of 2% for Oracle and 8% for
MySQL. This could mean that the companies are leaning
toward NoSQL databases, so they can manipulate more data at
a lower price [1].

A big advantage of non-relational databases is that they are
more scalable and provide superior performance and their data
model addresses several issues that the relational model is not
designed to address like large volumes of structured, semi-
structured and unstructured data, agile sprints, quick iteration,
frequent code pushes, object-oriented programming, efficiency,
monolithic architecture and so on [3] [9].

In this paper, we focus on one of the non-relational
databases, namely MongoDB, and we make a comparison with
one of the relational databases, namely MSSQL to highlight
advantages and disadvantages of the two models. The study
was based on the implementation of a web-based application
for population records, which needs to manipulate a big
amount of data.

II. APPLICATION DEVELOPMENT USING MONGODB VS.

MSSQL

We created a comparative study between relational
databases, namely MSSQL, and non-relational databases,
namely MongoDB. The study has based on the implementation
of a website for population records, which needs to manipulate
a big amount of data. To highlight the advantages of using the
non-relational database MongoDB compared to the relational
database MSSQL, various operations were performed on the
two databases. These operations are the four basic operations
that can be performed on any database, namely: SELECT,
INSERT, UPDATE and DELETE. These operations were
made on 1, 100, 500, 1.000, 5.000, 10.000, 25.000 and 50.000
records. The application has been developed, in ASP.NET
MVC 4 with C# programming language and we implemented
the same methods for both MSSQL and MongoDB databases.
For non-relational databases, we used the MongoDB C# Driver
that is the officially supported C# driver for MongoDB. The
version of the driver is 2.0 and the version of MongoDB is 3.0.

To be able to connect to MongoDB we used a
MongoClient. In code, we used two namespaces that are
specific to MongoDB: MongoDB.Driver and MongoDB.Bson.
Finally we added the connection string in web.config file, like
this:

<connectionStrings>

<add name = "MongoDB" connectionString = "

mongodb://localhost:27017/"/>

</connectionStrings>

We used this connection string through this code:

 public static string connString =

System.Configuration.ConfigurationManager.Conn

ectionStrings["MongoDB"].ConnectionString;

After retrieving the correct connection string we used it in
methods for calling the collections that we need like the one
bellow:

public static IMongoCollection<BsonDocument>

ConnectToServer()

{

var client = new MongoClient(connString);

var db = client.GetDatabase("Dizertatie");

IMongoCollection<BsonDocument> collection =

db.GetCollection<BsonDocument>("People");

return collection;

}

In the method above, we call the database called
“Dizertatie” and we get the collection called “People” and the
results that will be returned will be a IMongoCollection of
BsonDocument type which is a specific format for MongoDB.

Next, we created asynchronous methods to work with the
data from MongoDB. For example, for deleting all the
registered people from the collection we created a method like
this:

public static async Task<DeleteResult>

DeleteAllConsumers()

{

var collection = ConnectToServer();

var filter = new BsonDocument("_id",

new BsonDocument("$exists", true));

var result = await

collection.DeleteManyAsync(filter);

return result;

}

The MongoDB method that we call for deleting the
registered people, DeleteManyAsync, will delete multiple
documents inside the collection that we are connected to. The
number of the deleted documents depends on the filter that we
need to create and provide when we want to call the method. In
our case, we will delete all registers from this collection.

In the following section we will mainly focus on the
performance results for both databases, MongoDB and
MSSSQL, that we obtained after we executed operations of
SELECT, INSERT, UPDATE and DELETE.

III. COMPARATIVE STUDY: MONGODB VS MSSQL

Generally, depending on the scope of the application that
we want to develop, when the project is in the planning stage,
each company will establish the resources and the limits for the
project. We also need to choose the database for the application
that will be developed. Here, we should consider the amount of
data that will be manipulated, the rapidity that the project needs
and the budget.

Considering these factors, for an application that will need
to store a large amount of data, if the application have to
handle a huge volume of data, then we should think how we
could achieve this in an efficient way or how many resources
should be allocated for this scope. For example, in the
application that we created, we took in consideration the fact
that we need a huge space for storing the data and the queries
that will be made every day like adding new data, deleting,
updating and so on. All these queries are expensive and we
should also, think about the rapidity at which they are
processed. Another important fact that we need to consider is
the number of users that will access the application, like the
employees from all the country, plus the usual users that will
need different information.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

80 | P a g e

www.ijacsa.thesai.org

Considering all these facts, it is important to analyse the
performance of the application in terms of insertion, update,
deletion and selection operations.

The performance of the database that we have chosen can
be a very important fact because of the storage space, all the
hardware and other components that we need.

We began testing with the creation of databases both
MongoDB and MSSQL after that we executed operations of
INSERT, UPDATE, DELETE and SELECT on both
databases. All these operations have been made on 1, 100, 500,
1.000, 5.000, 10.000, 25.000 and 50.000 records.

In MongoDB, for inserting a list of people into the database
we write the following code:

public static async Task<string>

InsertPeople(List<BsonDocument> pplList)

{

 var collection = ConnectToServer();

 var result = await

collection.InsertManyAsync(pplList)

.ContinueWith(x => x.ToJson());

 return result;

}

And in MSSQL we write the following code:

using (SqlConnection sqlConn = new

SqlConnection(connStr))

{

 sqlConn.Open();

 using (SqlCommand sqlCmd = new SqlCommand())

{

sqlCmd.Connection = sqlConn;

sqlCmd.CommandType =

CommandType.StoredProcedure;

sqlCmd.CommandText =[dbo].[Set_people]";

sqlCmd.Parameters.AddWithValue("@peopleTbl",

data); sqlCmd.Parameters.Add("@isInsert",

SqlDbType.Bit).Value = isInsert;

int result = sqlCmd.ExecuteNonQuery();}

sqlConn.Close();}

}

In MongoDB the following method will insert one record:

public static async Task<string> AddUser(User

model) {

 var collection = ConnectToServer();

var result = await

collection.InsertOneAsync(model)

.ContinueWith(x => x.ToJson());

 return result;

}

After we executed these operations, we obtained the
following results that are shown in Table 1.

The graphical representation of the results from Table 1 is

shown in Figure 2. We notice that until 1.000 records, we

obtained a maximum difference of 200 milliseconds, but we
can see that the difference is more significant after 1.000
records and for 50.000 records we obtained a difference of 7
seconds and half.

TABLE I. THE RESULTS OF THE INSERT OPERATION

Insert MongoDB - sec SQL - sec

1 user 00:00:00:003 00:00:00:402

100 users 00:00:00:005 00:00:00:096

500 users 00:00:00:018 00:00:00:183

1.000 users 00:00:00:033 00:00:00:387

5.000 users 00:00:00:162 00:00:00:736

10.000 users 00:00:00:521 00:00:01:085

25.000 users 00:00:00:816 00:00:03:378

50.000 users 00:00:01:835 00:00:08:306

Fig. 2. MSSQL vs MongoDB insert

In MongoDB to select records we write the following code:

List<People> pplList = new List<People>();

var collection = ConnectToServer();

var filter = new BsonDocument("_id", new

BsonDocument("$exists", true));

using (var cursor = await

collection.FindAsync(filter)) {

while (await cursor.MoveNextAsync()){

var batch = cursor.Current;

foreach (var document in batch) {

People ppl = new People();

ppl.ID =

document["_id"].AsObjectId.ToString();

ppl.CNP = document["Cnp"].AsString;

ppl.Nume = document["Nume"].AsString;

ppl.Prenume = document["Prenume"].AsString;

ppl.Varsta =

document["Varsta"].AsInt32.ToString();

ppl.Sex = document["Sex"].AsString;

ppl.Adresa = document["Adresa"].AsString;

ppl.Ocupatie =

document["Ocupatie"].AsString;

ppl.AdresaOcupatie =

document["AdresaOcupatie"].AsString;

ppl.Telefon = document["Telefon"].AsString;

ppl.StareCivila =

document["StareCivila"].AsString;

ppl.OrasLocalitate =

00.000

04.320

08.640

12.960

Insert
MongoDB - sec SQL - sec

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

81 | P a g e

www.ijacsa.thesai.org

document["OrasLocalitate"].AsString;

ppl.Judet = document["Judet"].AsString;

pplList.Add(ppl); } }}

In MSSQL to select records we write the following code:

DataTable dt = new DataTable();

try{

using (SqlConnection sqlConn = new

SqlConnection(connStr)) {

sqlConn.Open();

using (SqlCommand sqlCmd = new

SqlCommand()){

sqlCmd.Connection = sqlConn;

sqlCmd.CommandType =

CommandType.StoredProcedure;

sqlCmd.CommandText = "[dbo].[Get_People]";

SqlDataAdapter da = new

SqlDataAdapter(sqlCmd);

da.Fill(dt); }

sqlConn.Close();}}

catch (Exception) { }

return dt;

After we executed these operations for select we obtained
the following results that are shown in Table 2:

TABLE II. THE RESULTS OF THE SELECT OPERATION

Select MongoDB - sec SQL - sec

1 user 00:00:00:003 00:00:00:083

100 users 00:00:00:004 00:00:00:002

500 users 00:00:00:017 00:00:00:005

1.000 users 00:00:00:031 00:00:00:006

5.000 users 00:00:00:206 00:00:00:028

10.000 users 00:00:00:291 00:00:00:052

25.000 users 00:00:00:830 00:00:00:190

50.000 users 00:00:01:616 00:00:00:327
The graphical representation of the results from Table 2 are

shown in Figure 3.

Fig. 3. MSSQL vs MongoDB select

From figure Fig.3 we notice that the select operation is
more fast and efficient in MSSQL than in MongoDB. We also
see that at 1.000 records, it is a difference 26 milliseconds and
this grows up to 1.3 seconds when we select 50.000 records.

To update the records in MongoDB we write the following
code:

var collection = ConnectToServer();

var filter = new BsonDocument("_id", new

BsonDocument("$exists", true));

var update = Builders<BsonDocument>.Update

 .Set("Nume", "Updated")

 .Set("Adresa", "Updated");

var result = await

collection.UpdateManyAsync(filter, update);

The methods that we created for MSSQL to insert a new
record or a list of records will be used for UPDATE operation
too, but the parameter @isInsert will be equal with false in that
case. The results of the update operation are shown in Table 3.

TABLE III. THE RESULTS OF THE UPDATE OPERATION

Update MongoDB - sec SQL - sec

1 user 00:00:00:005 00:00:00:039

100 users 00:00:00:007 00:00:00:048

500 users 00:00:00:059 00:00:00:059

1.000 users 00:00:00:042 00:00:00:159

5.000 users 00:00:00:245 00:00:02:219

10.000 users 00:00:00:463 00:00:04:634

25.000 users 00:00:01:294 00:00:19:946

50.000 users 00:00:02:224 00:00:31:205
The graphical representation of the results from Table 3 is

shown in Figure 4.

Fig. 4. MSSQL vs MongoDB update

For the update operations we can see a bigger difference
from 5.000 records, which is approximatively 2 seconds and
until 50.000 records it grows up to 29 seconds and gives
MongoDB an advantage. We notice that MongoDB spends less
time than MSSQL, for performing update operation as shown
in figure Fig. 4.

To delete the records in MongoDB we write the following
code:

var collection = ConnectToServer();

00.000
00.432
00.864
01.296
01.728

Select
MongoDB - sec SQL - sec

00.000

08.640

17.280

25.920

34.560

Update
MongoDB - sec SQL - sec

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

82 | P a g e

www.ijacsa.thesai.org

var filter = new BsonDocument("_id", new

BsonDocument("$exists", true));

var result = await

collection.DeleteManyAsync(filter);

return result;

And in MSSQL to delete records we write the following
code:

using(SqlConnection sqlConn = new

SqlConnection(connStr)) {

sqlConn.Open();

using(SqlCommand sqlCmd = new SqlCommand()){

sqlCmd.Connection = sqlConn;

sqlCmd.CommandType =

CommandType.StoredProcedure;

sqlCmd.CommandText =

"[dbo].[Del_All_Consumers]";

int result = sqlCmd.ExecuteNonQuery();

success =

!string.IsNullOrEmpty(result.ToString()) ?

true : false; }

sqlConn.Close(); }

The results of the delete operation are shown in Table 4.

TABLE IV. THE RESULTS OF THE DELETE OPERATION

Delete MongoDB - sec SQL - sec

1 user 00:00:00:004 00:00:00:081

100 users 00:00:00:003 00:00:00:019

500 users 00:00:00:007 00:00:00:063

1.000 users 00:00:00:017 00:00:00:082

5.000 users 00:00:00:053 00:00:00:143

10.000 users 00:00:00:106 00:00:00:200

25.000 users 00:00:00:317 00:00:00:350

50.000 users 00:00:01:508 00:00:01:787
The graphical representation of the results from Table 4 is

shown in Figure 5.

Fig. 5. MSSQL vs MongoDB delete

From figure Fig. 5 we notice that MongoDB provided
lower execution times than MySQL in delete operations,
especially when the number of records increases, which is
essential when an application should provide support to
thousands of users simultaneously.

IV. CONCLUSIONS

In this paper, we showed the results of different operations
that had been applied for MongoDB and MSSQL databases.
MongoDB provided lower execution times than MSSQL in
INSERT, UPDATE and DELETE operations, which is
essential when an application should provide support to
thousands of users simultaneously. The only time when the
MSSQL obtained an advantage was with the SELECT
operations, the other ones gave advantages to MongoDB.

We can also notice that the difference between the results
of each database was not noticeable until around 1.000 records.
Thus, we can say that relational databases, namely MSSQL is
suitable for small and medium applications. Relational
databases are widely used in most of the applications and they
have good performance when they handle a limited amount of
data.

We need to be carefull when we want to choose a model of
the database for the application that we will want to create. We
should take into consideration main factors as the amount of
data, the flexibility of schema, the budget, the amount of
transactions that would be made and how frequent they are
called. These days, companies, depending on the application
that they want to develop, have the possibility to choose the
most suitable database from a wide range of databases.
Generally, for smaller and medium applications, a relational
database would be chosen and for big applications, that use and
manipulate large quantities of data, a non-relational database
will be chosen. Of course, these are not the only criteria for
choosing a database, but it depends on each company and the
purpose of the application that would need to be developed.

Considering that, in our days, the request for storing a big
volume of data at a low price is bigger every day, we tend to
choose a non-relational database. Also, MSSQL being
commercial at a pretty big price and MongoDB being an open
source solution, it is a big disadvantage for MSSQL.

In the end, for choosing the correct database that can satisfy
all the needs that an application demands in order to have been
developed, all the things presented above should be taken into
consideration before the start of development of the project.
Depending on what each application needs, we can choose the
most suitable database, a non-relational or a relational
database.

REFERENCES

[1] Matt Asay, “NoSQL databases eat into the relational database market”,
Published March 4, 2015, Available:
http://www.techrepublic.com/article/nosql-databases-eat-into-the-
relational-database-market/ , accessed july 2015.

[2] Pramod Sadalage,”NoSQL Databases: An Overview”, Published
Octomber 1, 2014, Available:
http://www.thoughtworks.com/insights/blog/nosql-databases-overview,
accessed july 2015

[3] S. Hoberman, “Data Modeling for MongoDB”, Publisher by Technics
Publications, LLC 2 Lindsley Road Basking Ridge, NJ 07920, USA,
ISBN 978-1-935504-70-2, 2014.

[4] Michael Kennedy, ”MongoDB vs. SQL Server 2008 – Performance
Shutdown”, Published April 29, 2010, Available:
http://blog.michaelckennedy.net/2010/04/29/mongodb-vs-sql-server-
2008-performance-showdown/, accessed july 2015

00.000

00.432

00.864

01.296

01.728

02.160

1 user 100
users

500
users

1.000
users

5.000
users

10.000
users

25.000
users

50.000
users

Delete
MongoDB - sec SQL - sec

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

83 | P a g e

www.ijacsa.thesai.org

[5] R. D. Bulos, J. Bonsol, R. Diaz, A. Lazaro, V. Serra,”Comparative
analysis of relational and non-relational database models for simple
queries in a web-based application”, Research Congress 2013, de la
Salle University Manila, march 7-9, 2013.

[6] C. Bazar, C. Iosif, “The transition from RDBMS to NoSQL. A
comparative analysis of three popular non-relational solutions:
Cassandra, MongoDB and Couchbase”, Database Systems Journal, vol.
V no 2/2014, pp.49-59.

[7] N. Jatana, S. Puri, M. Ahuja, I. Kathuria, D. Gosain, “A survey and
comparison of relational and non-relational databases”, International
Journal of Engineering Research &Technology (IJERT) ISSN: 2278-
0181, vol 1 Issue 6, august 2012, pp. 1-5.

[8] Cornelia Győrödi, Robert Győrödi, George Pecherle, Andrada Olah, “A
comparative study: MongoDB vs. MySQL”, IEEE - 13th International
Conference on Engineering of Modern Electric Systems (EMES), 2015,
Oradea, Romania, 11-12 June 2015, ISBN 978-1-4799-7649-2, pag. 1-
6.

[9] MongoDB, NoSQL Database Explained, Available:
https://www.mongodb.com/nosql-explained , accessed july 2015.

[10] R. P Padhy, M. R. Patra, S. C. Satapathy, “RDBMS to NoSQL:
Reviewing Some Next-Generation Non-Relational Database’s”,
International Journal of Advance Engineering Sciences and
Technologies, Vol. 11, Issue No. 1, 015-030, 2011.

