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Abstract—we investigate codes that map   bits to m bits to 

achieve a set of codewords which contain no consecutive n “0”s.  

Such codes are desirable in the design of line codes which, in the 

absence of clock information in data, provide reasonable clock 

recovery due to sufficient state changes.  Two problems are 

tackled- (i) we derive      for a fixed   and   and (ii) determine 

     for a fixed   and   .  Results benefit telecommunication 

applications where clock synchronization of received data needs 

to be done with minimum overhead. 

Keywords—overhead; mapping; synchronization; consecutive 

“0” 

I. INTRODUCTION AND BACKGROUND 

In serial communications, data is transferred on a medium 
that carries a signal varying with time. For digital signal, each 
bit is represented as a high or low voltage for a fixed amount 
of time. We call this time period a clock cycle. The clock of 
the communication line is very important as it tells the 
transmitter when to transmit a new bit, and it tells the receiver 
when to read. For short distance transfer, such as 
communication within a digital system, we can have a clock 
signal between the transmitter and receiver to synchronize the 
clock; for example, the Serial Peripheral Interface (SPI) uses a 
clock signal for clock synchronization. However when it 
comes to long distance communication, adding signaling only 
for clock synchronization consumes part of the bandwidth.  It 
is impossible to exactly match the clock speed for the 
transmitter and receiver.  On the other hand, employing codes 
that contain explicit clock information (ex. Manchester 
coding) will waste half of the available bandwidth [1].  In 
practice, the clock information is embedded within the data so 
that, at the receiver end, the clock can be extracted and used to 
clock in the received data (using devices such as Phased 
Locked Loop or PLL).  Nonetheless, having a long period of 
flat signal (which may correspond to consecutive ―0‖s) may 
cause the synchronization to be lost. For that purpose, the 
signal that carries the data must also have sufficient transitions 
or state changes to allow a PLL to lock onto the incoming 
data. In the event that a long sequence of ―0‖s is encountered, 
there will be a risk of losing synchronization. 

As one of the scrambling techniques for data encoding, 

transmitter should provide sufficient amount of signal 
transitions for the receiver to maintain clock synchronization 
[2]. Line coding is applied on data before transmission 
especially in High Speed Serial Links to ensure a maximum 
Run Length (RL) to guarantee frequent transitions for Clock 
and Data Recovery (CDR) in asynchronous links [3], for 
example, B8ZS and HDB3, which substitute a long sequence 
with a code violation of the encoding rule. These types of 
techniques either require increase of signal rate for the same 
data rate, or require more than 2 signal levels to represent 
binary data. For Manchester and Differential Manchester, the 
signal rate is twice the data rate (50% overhead). For B8ZS 
and HDB3, having 3 signal levels to represent a single binary 
bit creates a 33% overhead. Though line codes can generate 
adequate timing information for clock recovery and error 
detection [5] [6], it usually comes at the cost of additional bits. 
In this paper, we will discuss how to minimize the overhead 
with the same clock recovery performance. 

Another technique is to eliminate long sequence of zeros 
by encoding the data so that the transmitted data does not 
contain long sequences of “0”'s. The 8b/10b encoding [4] 
which is widely used, adds 2 bits for every 8 bits resulting in 
2/8 = 25% overhead while ensuring a maximum RL of 5. One 
other example would be mapping 4-bit data to 5-bit codes 
such that a sequence of 3 “0”s is avoided (          
3). There are total        possible codes in 4-bit data. 

In 5-bit code space, we have 24 (32 – 8) codes without 
"000" sequence available. So mapping 4-bit all data with 5-bit 

TABLE I.  5-BIT CODES WITH THE ABSENT ―000‖ PATTERNS 

00100 00101 00110 00111 01001 01010 

01011 01100 01101 01110 01111 10010 

10011 10100 10101 10110 10111 11001 

11010 11011 11100 11101 11110 11111 

codes is possible. Table I shows the 5-bit codes with the 
absent “000” patterns. 

The overhead of this technique is 1/5 = 20%1, which is 

                                                           
1 Calculated by (Total transmitted data size – Actual represented data 

size)/(Total transmitted data size) 
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lower than the 50% of forced transition techniques and the 
33% of substitution techniques. We can try to reduce the 
overhead of code mapping techniques by mapping larger size 
data. Questions of interest might be - Can we do 9-bit to 10-bit 
mapping? If not, how about 9-bit to 11-bit, 61-bit to 64-bit, 
etc. 

This paper proposes an empirical method of calculating the 
minimum overhead to avoid a given number of consecutive 
―0‖s. The rest of this paper is organized as follows: Section 2 
discusses the basic theory of avoid long sequence of ―0‖s. 
Section 3 introduces the methodology to achieve two 
empirical formulas for our concerns. The results and 
conclusion are given in Section 4 and 5 separately. 

II. THEORY 

The research question here is- Given a specific size of a 
code, what is the smallest overhead to avoid a given number 
of consecutive “0”s.? 

Example 1. We are given a 9-bit code and we want to 
avoid the sequence “000”. First we will check if the 10-bit 
code has enough space to hold the 9-bit code and also avoid 
the sequence “000”. If 10-bit is not possible, we will consider 
the 11-bit code and continue checking until we find the 
smallest size of code that can hold the 9-bit code and avoid the 
sequence “000”. 

To check if 10-bit code is enough, first we will enumerate 
the codes in the 10-bit code that has “000” sequence in.  The 
calculations are depicted in Table II. Note that in the patterns 
given in the table, X can be 0 or 1 and each line must exclude 
the cases that had been counted in the previous lines. 

TABLE II.  ENUMERATION OF 10-BIT CODES THAT CONTAIN ―000‖ 

Pattern The number of occurrences 

XXXXX XX000   =128 

XXXXX X0001   =64 

XXXXX 0001X      =64 

XXXX0 001XX      =64 

XXX00 01XXX    (    )=56 

XX000 1XXXX    (   3)=52 

X0001 XXXXX    (    )=48 

0001X XXXXX    (    0)     
Total 520 

Note that for X’s of length 3 or more on the right side, we 
have to exclude any codes that have the ―000‖ sequence, 
because they were already covered in previous lines. 

Subtracting the total number of “000”  patterns- 520 from 
the total code space      0  , we get only 504 codes which 
is not enough for mapping all 9-bit codes to 10-bit codes. 

Generalization 

To answer the general question of if it is possible to map 
all L-bit codes to m-bit codes that avoid sequence of n 
consecutive zeros, we first have to find the number of codes 
without n-zero sequence by subtracting the number of codes 
with n-zero sequence from the total m-bit code space   . 

To answer another question of finding the smallest number 
of consecutive “0”s, we can start with 2 zeros and work 

upward. Say if we cannot avoid 2 zeros, test if we can avoid 3, 
4, 5, etc. Repeat until we can find that smallest number of 
consecutives “0”s we can avoid through  -bit to  -bit 
mapping. 

To find the number of codes with sequence(s) of n “0”s in 
m-bit space, use a similar step from the 9B-10B mapping 
example to obtain the solution (Table III). 

TABLE III.  ENUMERATION OF M-BIT CODES THAT CONTAIN N 

CONSECUTIVE ―0‖S 

Pattern 
The number of 

occurrences 
Distribute the 
multiplication 

k 

XXXXXXXXX…X00
…0 

          k=0 

XXXXXXXX…X00
…01 

          

  (0  )  
             

  (0  ) 
k = 1 

XXXXXXX…X00…
01X 

          

  (   )  
             

  (   ) 
k = 2 

XXXXXX…X00…0
1XX 

          

  (   )  
             

  (   ) 
k = 3 

XXXXX…X00…01
XXX 

          

  (3  )  
             

  (3  ) 
k = 4 

  
 

   

X00…01XX…XXX
XXX 

          

  (       )  
           
   (       ) 

k= m-n-1 

00…01XX…XXXX
XXX 

          

  (       )  
         

  (       ) 
k = m – n 

We can see that calculating  (   )  requires recursive 
calculation of the number of codes with n-zero sequence in the 
code lengths less than m. We must define the basis for the 
recursive function, otherwise we will go to endless loop of 
calculations. We know that there cannot exist n-zero sequence 
in the code if the code length m is shorter than n bits. 
So  (   )  0, for    . 

For    , continue our generalization. Adding the terms 
and simplifying gives 

     (   )          ∑        

   

   

 (     ) 

    Now that we obtain the piecewise recursive 
function  (   ): 

 (   )  

{
 
 

 
 

0    

     (   )        

  ∑        

   

   

 (     )    

 

The calculation of the function  (   )  seems very 
complicated with the summation. We can make the calculation 
easier and more efficient by observing the following 2 special 
cases of m and n. 

Case (i) if    , we know that there is only one code that 
has the n-zero sequence; that is the n-zero sequence itself. 

     Case (ii) if       , the last addition to the sum is 
    (       ). Let’s look at the last largest     , 
we substitute m with 2n and obtain      (     ) , the 
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recursive call to the function returns 0 because       . 
Similarly, all m value between n and 2n make recursive call to 
function f with first argument less than second argument n, 
which will ultimately give 0 as the result. So for       , 
the summation evaluates to 0. 

By separating the domain of the function, we produce a 
new formula with 4 pieces but is easier to calculate or more 
efficient to compute digitally. 

 (   )  

{
 
 
 

 
 
 

0    
     

     (   )               

     (   )        

  ∑        

   

   

 (     )     

  

We can use the code in Appendix to calculate the function 
f. Let    0   3 , the function returns 520 which match 
our previous calculation for 9-bit to 10-bit mapping example. 
We can also check our result by counting the number of codes 
with ―000‖ pattern by using a brute force checking program, 
created by Edgar Solorio (See Appendix) Our result matches 
the number counted by this checking program (        0). 
Similarly when         3 , the function returns 1121, 
that means there are 927 codes available for mapping. While 
this is not enough to map 10-bit, it is sufficient for 9-bit codes, 
giving 18.2% overhead. 

Generally speaking, for given   and  , 

          *      
   (   ) }   (1) 

Floor is the greatest integer function, mapping a real 
number to the largest previous integer. 

We define the minimum overhead bits 

                                         (2) 
If we try 19-bit to 22-bit mapping, which is possible, there 

is only 13.6% (3 bits) overhead. Similarly 64-bit codes has 
about    .  codes without “000”, while we cannot map 61-bit 
codes to 64-bit codes, there is enough to map 56-bit codes. 
Also 8-bit to 9-bit mapping is possible, 9-bit space has 238 
codes with “000”  leaving 274 codes available to map 8-bit 
(256 possible) codes. The overhead of for 8B9B is 11.1%. 
Since 9B-10B is impossible, code mapping with 1-bit 
overhead stops at with 8-bit to 9-bit mapping. 

III. METHODOLOGY 

The result from the 9B-10B example in the Work section 
shows that mapping from 9-bit codes to 10-bit codes cannot 
avoid all codes with 3 consecutive zeros. If we want to avoid 
3 consecutive zeros, the minimum overhead to map 9-bit code 
is 2 bits. The following 2 questions are our main concerns 
about avoiding consecutive zero level signal transmitted in 
regard to maintain synchronization. 

A. For a given pattern length   and mapping from   bits to 

      bits, what is the minimum number 

of consecutive “0”s we can avoid? (Fixed   and  , 

find     ) 

The code in Appendix shows how to solve this question. 
Table IV shows the minimum avoidable zeros with 1 to 9 bits 
overhead for mapping data of lengths from     to 24 bits. 
The jumps in      are highlighted and bold faced. 

TABLE IV.  MINIMUM AVOIDABLE ZEROS WITH 1 TO 9 BITS OVERHEAD 

FOR MAPPING DATA OF LENGTHS FROM     TO    BITS 

  
h=

1 

h=

2 

h=

3 

h=

4 

h=

5 

h=

6 

h=

7 

h=

8 

h=

9 

2 2 
        

3 2 
        

4 3 2 
       

5 3 2 
       

6 3 3 2 
      

7 3 3 2 
      

8 3 3 3 2 
     

9 4 3 3 2 
     

10 4 3 3 3 2 
    

11 4 3 3 3 2 
    

12 4 3 3 3 2 
    

13 4 3 3 3 3 2 
   

14 4 3 3 3 3 2 2 
  

15 4 3 3 3 3 3 2 
  

16 4 3 3 3 3 3 2 
  

17 4 4 3 3 3 3 3 2 
 

18 4 4 3 3 3 3 3 2 
 

19 4 4 3 3 3 3 3 3 2 

20 4 4 3 3 3 3 3 3 2 

21 5 4 3 3 3 3 3 3 2 

22 5 4 3 3 3 3 3 3 3 

23 5 4 3 3 3 3 3 3 3 

24 5 4 4 3 3 3 3 3 3 

If we rearrange and extend the data, we can get the 
following table: 

TABLE V.  MINIMUM L FOR SPECIFIC       AND H 

h n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 2 4 9 21 43 88 177 355 

2 4 6 17 38 82 171 348 702 

3 6 8 24 56 122 254 519 
 

4 8 10 31 74 161 337 690 
 

5 10 13 38 92 201 420 861 
 

6 13 15 46 110 240 503 
  

7 15 17 53 127 279 586 
  

8 17 19 60 145 319 669 
  

9 19 22 68 163 358 753 
  

10 22 24 75 181 397 836 
  

11 24 26 82 199 437 919 
  

12 26 28 89 216 
    

13 28 31 97 234 
    

14 31 33 104 252 
    

15 33 35 111 270 
    

16 35 38 118 288 
    

17 38 40 126 305 
    

18 40 42 133 323 
    

19 42 44 140 
     

20 44 47 148 
     

https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Real_number
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We plot the data both in horizontal (Fig. 1) and vertical 
direction (Fig. 2), 

 
Fig. 1. Plotting using data from Table V (horizontal) 

 

Fig. 2. Plotting using data from Table V (vertical) 

Obviously, we can observe that L is approximating linear 
with h and is relatively exponential with n. This means for a 
fixed n, the overhead bits h should be proportional with L. We 
can assume that 

                 ( (   )    )                    (3) 

a, b, c  in this formula is the coefficient to be determined. 

We can choose any three points in Table V to determine 
the coefficient. For example, we substitute (3, 20, 47), (4, 20, 
148) and (5, 11, 199) [in (n, h, L) order] in (3), we can 
get    .333    .      0.   . Therefore, 

( 
   .   
 .     .   )    

Thus, 

   .333   n (
 

 
  .   )  0.        ( ) 

When     is given, we can determine      via (4) and 
          ( ). 

B. For a given number of consecutive “0”s to avoid, how to 

minimize the overhead?  Solve the problem for a specific 

case of avoiding two “0”s first.  Under what conditions 

can we map " " to "   "? If not, what about " " to 

"   " or " " to "  3"? (Fixed  ,    find     ) 

The code in Appendix shows how to solve question 2. 
Table VI shows the minimum overheads to avoid n zeros with 
    to  0  for mapping data of lengths from     to    
bits. The jumps in overheads are highlighted and bold faced. 

TABLE VI.  MINIMUM OVERHEADS TO AVOID N CONSECUTIVE ZEROS 

L 
n=

2 

n=

3 

n=

4 

n=

5 

n=

6 

n=

7 

n=

8 

n=

9 

n= 

10 

4 2 1 1 0 0 0 0 0 0 

5 2 1 1 1 0 0 0 0 0 

6 3 1 1 1 1 0 0 0 0 

7 3 1 1 1 1 1 0 0 0 

8 4 1 1 1 1 1 1 0 0 

9 4 2 1 1 1 1 1 1 0 

10 5 2 1 1 1 1 1 1 1 

11 5 2 1 1 1 1 1 1 1 

12 5 2 1 1 1 1 1 1 1 

13 6 2 1 1 1 1 1 1 1 

14 6 2 1 1 1 1 1 1 1 

15 7 2 1 1 1 1 1 1 1 

16 7 2 1 1 1 1 1 1 1 

17 8 3 1 1 1 1 1 1 1 

18 8 3 1 1 1 1 1 1 1 

19 9 3 1 1 1 1 1 1 1 

20 9 3 1 1 1 1 1 1 1 

21 9 3 2 1 1 1 1 1 1 

22 10 3 2 1 1 1 1 1 1 

23 10 3 2 1 1 1 1 1 1 

24 11 4 2 1 1 1 1 1 1 

 
Fig. 3. Plotting using data from Table VI 

If we rearrange and extend the data of TABLE VI, we can 
get the following table: 

TABLE VII.  MINIMUM L FOR SPECIFIC N AND H 

h n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 2 3 4 5 6 7 8 9 

2 4 9 21 43 88 177 355 710 

3 6 17 38 82 171 348 702 
 

4 8 24 56 122 254 519 
  

5 10 31 74 161 337 690 
  

6 13 38 92 201 420 861 
  

7 15 46 110 240 503 
   

8 17 53 127 279 586 
   

9 19 60 145 319 669 
   

10 22 68 163 358 753 
   

11 24 75 181 397 836 
   

12 26 82 199 437 919 
   

13 28 89 216 
     

14 31 97 234 
     

15 33 104 252 
     

16 35 111 270 
     

17 38 118 288 
     

18 40 126 305 
     

19 42 133 323 
     

0
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This table is slightly different from Table V. We can use 
similar procedure and get 

   
 

 .     .     .   
         (5) 

 
Fig. 4. Minimum overheads versus message length L and number of 

consecutive ―0‖s to be avoided 

IV. RESULDS 

We can check the accuracy of (4) by different check point: 

TABLE VIII.  COMPARISON OF THEORETICAL AND CALCULATION N BY 

FIXED L AND H 

Point(L, h) 
(44, 

19) 

(60, 

8) 

(145,

8) 

(437,

11) 

(918,

11) 

(861,

5) 

(702,

2) 

Actual n 3 4 5 6 7 8 9 

Approximate 

According (4) 
2.99 4.01 5.00 5.97 6.92 7.87 8.81 

deviation 
0.33

% 

0.33

% 

0.04

% 

0.55

% 

1.14

% 

1.65

% 

2.12

% 

From this table, we can see, when n is between 3 and 9, (4) 
is accurate enough to determine the minimum consecutive 
“0”s can be avoided for fixed   and  . 

We can also check the availability of (5) by different check 
points in TABLE IX: 

From this table, we can see, when n is between 3 and 6, 
this formula is accurate enough to determine the minimum 
required overhead bits h to avoid n consecutive ―0‖s for fixed 
message length  . 

TABLE IX.  COMPARISON OF THEORETICAL AND CALCULATION N BY 

FIXED L AND H 

L 88 82 56 74 92 46 

n 6 5 4 4 4 3 

Actual h 2 3 4 5 6 7 

h from 

(5) 

1.9925

97 

3.0131

21 

4.0947

25 

5.0894

58 

6.0841

91 

7.2144

31 

deviation -0.37% 0.44% 2.37% 1.79% 1.40% 3.06% 

V. CONCLUSION 

We have considered the problem of L to m mapping to 
avoid a set of n consecutive ―0‖s.  We derived two formulas to 
calculate (i) the minimum number of consecutive ―0‖s that can 
be avoided for fixed L and m (4) and (ii) the minimum 
overhead required to avoid a given number of consecutive 
―0‖s with fixed L (5).  We found the exact values for small 
values of L, m and n (Table IV and Table VII).  For very long 
messages, we used the empirical results and combination of 
several tables to arrive at a formula that will give the desired 
answer with close approximation. 

One may think of splitting a long code into smaller codes 
and using the results for small values to obtain the parameters 
for the long code.  For example, the splitting of 56-bit code 
into 8*7-bit codes can simplify the calculation but will not 
work since a potential problem can occur: Even if all 8 7-bit 
codes have no ―000‖, when the frame size is more than 7 bits 
(e.g. 64 bits), there can exist consecutive ―000‖ in the end of a 
7-bit code and the start of another consecutive 7-bit code. 

The results obtained can find applications in coding and 
communication where the synchronization of the transmitter 
and receiver is of primary concern. 
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APPENDIX 

 
C++ Code for function f  (named numOfOccurrences) 

Note: The codes shown in this report emphasize on basic 
idea to implementation. The actual result from the code may 
be incorrect due to limitation in range in of int data type. Also, 
a cached table may be necessary to reduce repeated 
calculations and to improve performance. 

twoToPowerOf is a simple function that returns the power 
of n without importing the C Math library. 

 
Code for function twoToPowerOf(n) 

Programs to check number of codeword with n 
consecutive “0”s 

 
Program outputs for    0 n  3 

 
Program outputs using code provided by Edgar Solorio [8] 

 
Code to solve question 1 

int numOfOccurrences(int m, int n) 
{ 

    if (m < n)          // m < n 
        return 0; 

    else if (m == n)    // m = n 
        return 1; 

    else if (m <= 2*n)  // n < m ≤ 2n 
    { 

        int result; 
        result = twoToPowerOf(m-n) + (m-n) * twoToPowerOf(m-n-1); 

        return result; 
    } 

    else                // m > 2n 
    { 

        int result; 
        int *s = new int[m-n+1]; 

        s[0] = twoToPowerOf(m-n) + (m - n) * twoToPowerOf(m-n-1); 
        result = s[0]; 

        for (int i = 1; i <= m-n; i++) 
        { 

            s[i] = numOfOccurrences(i-1, n) * twoToPowerOf(m-n-i); 
            result -= s[i]; 

        } 
        return result; 

    } 
} 

int twoToPowerOf(int n) 
{ 

    if (n < 0) 
    { 

        std::cout << "Cannot calculate negative or fractional powers" 
        << std::endl; 

        exit(1); 
    } 

    else 
    { 

int result = 1; 
        result = result << n; 

        return result; 
    } 

} 

// this function calculates the minimum number of consecutive zeros 
we can avoid 
// by mapping l-bit codes to m-bit codes. 
int minimumAvoidableConsecutiveZeros(int L, int m) 
{ 
    if (L >= m) 
    { 
        return -1; // you cannot avoid any consecutive zeros 
        // moreover, if m < L, you cannot even map from L-bit to m-bit 
anyway. 
    } 
    int minZeros =L; 
    // starting from 2 zeros "00" 
    for (int i = 2; i < L; i++) 
    { 
        if (twoToPowerOf(m) - numOfOccurrences(m, i) > 
twoToPowerOf(L)) 
        { 
            minZeros = i; 
break; 

        } 
    } 
    return minZeros; 
} 
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Code to solve Question 2

 

#define MAXIMUM_ALLOWED_OVERHEAD 5 
#define MAXIMUM_ALLOWED_PERCENT_OVERHEAD 30 
// this function calculates the minimum overhead by mapping l-
bit code 
int minimumOverheadToAvoid_n_Zeros(int L, int n) 
{ 
    if (n < 2) 
        return -1;  // error, n must be at least 2 
     
    int maximum_m = L + MAXIMUM_ALLOWED_OVERHEAD; 
    int max_MP = (m * 
(100+MAXIMUM_ALLOWED_PERCENT_OVERHEAD) / 100); 
    if (max_MP > maximum_m) 
        maximum_m  = max_MP; 
     
    ULL numOfLBitCodes = twoToPowerOf(L); 
     
    for (int i = L+1; i < maximum_m; i++) 
    { 
        if (twoToPowerOf(i) - numOfOccurrences(i, n) > 
numOfLBitCodes) 
        { 
            return (i-L); 
        } 
    } 
    return -1;  // reached maximum allowed overhead 
} 


