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Abstract—This paper elaborates on the possibility to leverage
the highly parallel nature of GPUs to implement more efficient
stereo matching algorithms. Different algorithms have been
implemented and compared on the CPU and the GPU in order
to show the speedup gained by moving the computation to the
graphics card. The results were evaluated for accuracy using the
test available on the Middlebury website for stereo vision. An
assessment of the runtime performance was done by a script
which examined the runtime behaviour of the individual steps of
the stereo matching algorithm.
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I. INTRODUCTION

Stereo matching is a technique used to generate a depth
map from at least two simple images of the same scene. The
resulting depth map is an image which represents the distances
from the camera to the objects shown in the original image for
every pixel. The information provided by the resulting depth
maps can then be used to analyse the scene and support other
methods like object tracking algorithms. In our case, the maps
will be used in combination with a mobile robot, to support
its visual navigation within a room.

The stereo matching process works similar to how human
eyes would perceive the scene. Due to the difference in the
location of the two eyes, we can see the scene from two
different view points. Objects closer to the eye will appear
shifted by a larger degree than objects within a longer distance.
Based on this shift, the brain can calculate the depth of the
objects we see and produce a three dimensional image. For the
purpose of the stereo matching algorithm, we only calculate
the depth information and skip the three dimensional image.

An integral part of the matching procedure is the correct
setup and calibration of the cameras. Analogous to the example
with the human eyes, the camera setup needs to consist of at
least two cameras. Setups with more than two cameras are
possible as well and can increase the precision of the stereo
matching algorithm by providing more than one pair of sample
images. The cameras have to be positioned in a certain way, so
they both record the same scene but from a slightly different
position. The distance between the cameras is crucial — if
they are too close, the objects are not shifted far enough to
precisely calculate the depth, if they are too far from each
other, the shift is so large that some objects are not contained
in both images. The orientation of the cameras needs to be
adjusted as well, so that they provide the same view of the
scene.

A. GPU Computing

Graphics hardware has become an integral part of modern
computers. It is mainly used to accelerate multidimensional
graphical computations, which are usually needed to display
complex computer games or for graphical animations of the
operating system. A common characteristic of this kind of
computations is their huge amount of smaller, often indepen-
dent calculations, which have to be performed on a regular
basis and within a short time interval, in order to create a
smooth visual presentation.

The reason why a graphics card can handle such a large
amount of computations better than a single CPU is its highly
parallel nature, which is perfectly suited for this problem.
Instead of a single computing unit, a graphics card consists
of several thousands of computing units which can perform
many computations in parallel. Since graphical computations
are often performed independently on a per-pixel or per-vertex
basis, the graphics card can perform a lot of these at the
same time, whereas the CPU would have to calculate them
sequentially, one at a time.

Graphical computations, however, are not the only kind
of computations that could benefit from having such a large
array of computing units as offered by the graphics card. In
fact, graphics cards have more recently become popular for
performing general purpose computations, which is often re-
ferred to as GPU computing. An important area of application
of GPU computing is image processing, where independent
calculations are performed in parallel on every pixel.

For the navigation of our mobile robot, it is crucial to get
a most recent snapshot of the current environment. Otherwise,
decisions, based on the outdated spatial information, will not
take the current position of the objects around the robot
into account and might result in fatal collisions. Since stereo
matching is an image processing technique, an implementation
on the GPU should improve the runtime of the process and
allow for a more accurate navigation.

A drawback worth mentioning is the relatively high ini-
tialisation cost of GPU programs. The data needed for the
following calculations has to be transferred to the memory
of the graphics card before the actual computation can begin.
Depending on the size of the data in relation to the total amount
of calculations, this comparatively slow data transfer can ruin
the runtime benefit of the parallel computing units. However,
the actual impact of the data transfer is hard to estimate, and
the best way to investigate the runtime behaviour of GPU-
based applications is to run and compare them with their CPU-
based counterparts.
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II. MATCHING PROCESS

A. Preprocessing

Once the cameras are set up, they are ready to take a pair of
images for further processing. Before these can be used by the
matching algorithm, they need to be calibrated and rectified.
The calibration is needed to remove distortions that are specific
to a camera due to minimal irregularities in the build process.
These distortions can be removed by applying a transformation
on the image taken by that camera. The parameters for the
transformation need to be determined by analysing the cameras
distortion. This can be done using the Camera Calibration
Toolbox for Matlab [2].

The next step is the rectification of the images. The
matching algorithm will include a step where a certain element
of one image will be searched for in the other image. To
simplify this search, the images are transformed in a way that
all objects that are on a plane, which is spanned by a point in
the room and the coordinates of the two cameras, occur on the
same line in both images taken by the cameras. This step is
crucial for the following algorithms as it simplifies the search
for a given object dramatically. Instead of searching across the
whole image, the given object will now be within the same
line as in the original image.

B. Algorithms

The matching algorithms work by analysing the so-called
disparity, the shift of objects depicted in the images. Images
closer to the cameras will show a larger shift when the two
images are compared, whereas objects with a longer distance
to the cameras will only show little deviation. To designate
a certain disparity to a given pixel, the matching algorithm
has to find the same pixel in the second image. However, the
information contained in a single pixel is very limited, which
makes it difficult to accurately determine the disparity. More
information can be extracted from neighbouring pixels or even
by taking the image as a whole into account. Stereo matching
algorithms are hence divided into local and global methods.

The more information the algorithm uses, the more accu-
rate are the results. Thus, global methods tend to produce much
better depth maps than their local counterparts. This, however,
comes at the cost of runtime, because global methods have to
compute a much larger amount of information. For the purpose
of providing up-to-date depth maps, this paper will focus on
local methods, due to their significantly faster execution.

Local stereo matching algorithms consist of three basic
steps and can include further enhancements to increase the
quality of the generated depth maps. For the assessment of
the runtime behaviour of different algorithms, a simple and
a more sophisticated version of each of the three basic steps
have been implemented on the GPU and also on the CPU.
Additional enhancements have been neglected. A complete
stereo matching algorithm is obtained by combining algorithms
for each step. This modular approach allows for different
setups which can be used to evaluate the impact of certain
parts of the algorithm.

1) Likeliness: The first step is to calculate the likeliness
of pixels at a given disparity in the second image compared
to each pixel in the first image. To find a pixel with a certain

disparity, we simply need to shift the x coordinate by the value
of the disparity. This works because of the rectification step
which was part of the preprocessing. It will assure that a point
in the scene will be mapped to the same line in both images,
regardless of the disparity. The actual likeliness is defined by
a measure which differs depending on the algorithm used.
This has to be performed for every disparity up to a certain
maximum.

The simple version, that has been implemented for this
step, makes use of a sum of squared differences as the mea-
surement for likeliness. As a little enhancement, the maximum
difference is limited by a constant, which keeps the influence
of outliers within sane limits [6]. Given a pair of images I
and J , the likeliness (or also called cost) for a given pixel
p, a disparity of d = (d 0)

T and a limit of cmax can be
calculated as follows:

cssd(p,d) = min

 ∑
i=R,G,B

(Ii(p)− Ji(p− d))2, cmax


For structured surfaces, the results produced by this simple
method are quite good, but it falls short for plain areas with
little colour differences.

A more advanced version of this step actually combines
two different algorithms to exploit their benefits and cancel
out each others drawbacks. One value is determined by using
the absolute differences of the colour channels of the pixels,
which works similar to the simple version:

cad(p,d) =
1

3

∑
i=R,G,B

|Ii(p)− Ji(p− d)|

Then, another value is calculated using the Census transform,
which compares the intensity of a pixel with its neighbours.
The results of the comparison for each image are stored in
a bit string, where each bit encodes whether the intensity of
the neighbour was greater or less the intensity of the pixel
of interest. The final value ccen is then calculated as the
Hamming distance between the two bit strings, which is the
amount of bits that are different. Eventually, these two values
are normalised using a function ρ, which takes the value for
the likeliness c and a parameter λ to adjust the influence of
outliers. The normalised values are then accumulated to yield
the final result:

ρ(c, λ) = 1− exp
(
− c
λ

)
cadc(p,d) = ρ(cad(p,d), λad) + ρ(ccen(p,d), λcen)

By combining two different measures, this version performs
well under most conditions.

2) Grouping: For the second basic step, more information
about the neighbourhood of the given pixel is being incorpo-
rated. Here, the algorithm defines a certain area around the
pixel and uses the average likeliness of this area as the value
for the pixel. The strategy for deciding which pixels should
be included into this area is very important and has a great
influence on the detail of the depth map.

The naive approach does not pay any attention to the
objects in the image. It simply defines a window of size bx×by
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Fig. 1: Calculation of the average likeliness using cross-based
aggregation (Mei et al., 2011 [5]).

over which the average likeliness a of the included pixels with
likeliness c(p,d) is calculated:

abox(p,d) =
1

2bx + 2by + 2

px+bx∑
x=px−bx

py+by∑
y=py−by

c

((
x
y

)
,d

)

Since this algorithm does not recognise objects within the
image, it might average over object boarders and include
elements with a large visual difference. Because of this, details
will be lost and the result is not very accurate.

An improved version of this step is called cross-based
aggregation, as described by Zhang et al. [15]. This approach
defines the area, used for the aggregation, by extending into
all directions from the pixel, for which the value is being
aggregated. This creates arms of pixels to be included in
the area, as depicted in figure 1. The length of these arms
is limited by a maximum length and a threshold for the
intensity difference. A further enhancement can be introduced
by defining a second length and threshold. If an arm passes
this second length, the second and more strict threshold should
be used instead. The values chosen for the maximum length
of the arms during the test are 17 and 34 pixels, combined
with a threshold of 20 and 6 respectively. This algorithm,
particularly with the mentioned enhancement, produces much
cleaner results than the naive version, because it takes object
boarders into account and tries to preserve details in the image.

3) Evaluation: Eventually, the previously computed values
need to be evaluated, in order to estimate the correct disparity
for the given pixel. The possibly correct disparity is the one,
where the two pixels of both images have the least difference,
i.e. the smallest aggregated likeliness value. This step can be
used to apply further optimisations, the simplest approach,
however, does not apply any optimisation and only selects the
disparity which yields the smallest value for the previous step.
This version is called winner-takes-all.

An approach, which performs a further optimisation, is
called scan-line optimisation. This algorithm generates four
new values for each pixel and each disparity and uses their
average as the actual value at the given disparity. These four
values are calculated based on the values of the pixels along
all four directions originating from the given pixel. When all
the averages for all disparities for one pixel are determined,
the final result is again determined using the winner-takes-all
algorithm.

III. IMPLEMENTATION

All of the mentioned algorithms have been implemented
on a regular CPU in C++, as well as on the GPU using
the OpenCL framework. The CPU versions follow a straight
forward implementation, processing the pixels sequentially on
a single core. To make full use of the parallel programming
paradigm of the graphics hardware, a more complicated ap-
proach than for the CPU version is required

Luckily, except for the scan-line optimisation, all employed
algorithms can mostly be executed independently and in par-
allel on a per-pixel basis. For the scan-line optimisation, each
scan-line has to be calculated sequentially, which does not
allow for a per-pixel division. However, for this algorithm,
the disparities for a pixel can be calculated independently.

Another important aspect of GPU programming is the
memory access. The graphics card features memory regions
with different access speeds. The faster local memory regions
are, however, only accessible by computing units of a certain
group. That makes the actual division of computing units an
important factor for the total runtime of the program, because
accessing the main memory region is significantly slower.

The cross-based aggregation, for example, was grouped in
a way, that one group is responsible for calculating one arm.
The data needed for this arm can be loaded into the local
memory, which reduces the access to the main memory to
zero. By grouping the computing units this way, two effects
could be witnessed. As the first improvement, due to the more
organised way of grouping, the amount of lines of source code
could be reduce to a third of the earlier, naive implementation.
Furthermore, the runtime was reduced by ten times. This shows
how important the memory access pattern for computations
that need to read a lot of data is.

IV. RESULTS

A. Accuracy

Before the assessment of the runtime performance, the
quality of the depth maps, produced by the algorithms, will
be tested and compared to other common stereo matching
algorithms. This should guarantee, that the results for the
runtime tests reflect the behaviour of algorithms that can be
used by actual applications, which are not solely designed and
optimised for their speed of execution.

The accuracy is tested using the Middlebury website [8],
which provides an online test for stereo matching algorithms.
A set of sample stereo images, that were used for previous
publications [6] and [7], are provided, and the resulting depth
maps will automatically be compared with laser scans of the
actual environment. Figure 2 shows some of the images used
for the test and their results. For each input image pair, one of
the input images is shown, followed by the laser-scanned depth
map of the scene and the resulting images for the combination
of simple algorithms and for the advanced versions.

The evaluation shows the average error and a ranking
position in a table containing other implementations. The error
is calculated according to the paper on the evaluation of stereo
correspondance algorithms [6] and is basically the root-mean-
square error of the calculated depth compared to the laser-
scanned depth for each pixel. Even the combination of the
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Fig. 2: Test images from the Middlebury website and the
resulting depth maps. From left to right: One of the input
images (from top to bottom: Tsukuba, Venus, Cones and
Teddy), laser-scanned depth map, result for the combination
of simple algorithms (sum of squared differences, box-based
aggregation and winner takes all), result for the combination of
advanced algorithms (absolute differences & census transform,
cross-based aggregation and scan-line optimisation).

Image SSD [ms] BOX [ms] WTA [ms] Σ [ms]
Tsukuba 5.97 111.35 2.73 120.05
Venus 15.97 304.36 6.03 326.37
Cones 31.53 617.59 10.86 659.98
Teddy 31.44 617.21 10.85 659.50

Image ADC [ms] CBA [ms] SLO [ms] Σ [ms]
Tsukuba 686.11 255.25 225.60 1166.96
Venus 1905.53 507.04 875.40 3287.97
Cones 3735.04 567.88 2871.59 7174.50
Teddy 3736.18 764.99 2814.76 7315.93

TABLE I: Runtime on an Intel Core i5-2500K CPU for the
combinations SSD (sum of squared differences), BOX (box-
based aggregation) and WTA (winner takes all) as well as ADC
(absolute differences & census transform), CBA (cross-based
aggregation), and SLO (scan-line optimisation).

most simple algorithms is able to compete against some of the
methods with low ranking. However, the quality is far from
what the high ranked methods can produce, at a relatively
high average error of 18.2%. The combination of the more
advanced algorithms shows much better results, reducing the
average error to 9.3%. Thus, the algorithm gains a place in
the middle field of the table. Though these results are much
better, and the resulting depth maps mostly provide clear and
useful information, there is still a huge gap compared to the
best ranked methods.

B. Runtime

Finally, the runtime performance of the CPU implementa-
tion is compared to its GPU counterpart. For this purpose, a
given combination of algorithms were run for 20 times and
their performance, shown in tables I and II, was analysed

Image SSD [ms] BOX [ms] WTA [ms] Σ [ms]
Tsukuba 3.53 11.32 1.64 16.50
Venus 9.48 36.02 3.32 48.82
Cones 18.87 75.72 5.69 100.28
Teddy 18.87 75.67 5.69 100.23

Image ADC [ms] CBA [ms] SLO [ms] Σ [ms]
Tsukuba 9.82 17.15 13.75 40.72
Venus 24.79 62.91 29.46 117.16
Cones 74.42 137.92 54.56 266.91
Teddy 74.41 139.52 54.53 268.46

TABLE II: Runtime on a NVIDIA GeForce GTX 570 GPU
for the combinations SSD (sum of squared differences), BOX
(box-based aggregation) and WTA (winner takes all) as well as
ADC (absolute differences & census transform), CBA (cross-
based aggregation), and SLO (scan-line optimisation).

and averaged by a script. The chosen configurations feature
the simple sub-algorithms, SSD (sum of squared differences),
BOX (box-based aggregation) and WTA (winner takes all), as
well as the more advanced versions, ADC (absolute differences
& census transform), CBA (cross-based aggregation) and SLO
(scan-line optimisation).

The script read the timings, produced by the algorithms
for each step of the stereo matching process, and computed
for each of them, and for the total run of the combination,
the average result and the standard deviation. This allows to
compare the runtime of every part of the algorithm and give
a more detailed analysis of the benefit of implementing these
on the GPU. All tests were performed on a system with an
Intel Core i5-2500K @ 3.30 GHz processor and an NVIDIA
GeForce GTX 570 graphics card.

The results show that the algorithms responded differently
on the implementation choice. While the simpler algorithms,
like SSD and WTA, could only gain a speedup by a factor
of around 2, other algorithms, like the combination of the
absolute differences and the census transform, could profit
from the parallelism a lot, showing a speedup by up to a
factor of 50 to 75 compared to the CPU version. This also
has an impact on the accumulated runtime of the whole stereo
matching methods.

Figure 3 gives an overview of the total runtime of the
stereo matching for different images from the Middlebury
website. The chosen algorithms are the same combinations as
in the tables, using the simpler version SBW (SSD, BOX &
WTA) and the more advanced version ACS (ADC, CBA &
SLO). Note that the axis for the runtime is logarithmic. As
for the comparison of the individual parts, the total runtime of
the advanced version shows a larger speedup than the less
sophisticated implementation. This might be related to the
higher initialisation cost of GPU-based programs.

V. CONCLUSION

This paper provides a rough introduction to stereo matching
on the graphics hardware and compares the speedup gained in
comparison to a similar CPU implementation. The evaluation
can be used as a basic guidance for other developers to
decide, whether GPU computing is a suitable option for heavy
computations within their projects, and as a starting point
for further investigations. Especially, time-critical and more
complex operations could benefit a lot from an implementation
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Fig. 3: Comparison of the total runtime of the combinations
SBW (sum of squared differences, box-based aggregation and
winnter takes all) and ACS (absolute differences & census
transform, cross-based aggregation and scan-line optimisation).

on the GPU, given the underlying algorithm can be parallelised
in some way.

The test results for the accuracy of the implemented algo-
rithms show that there is still a large space for improvements.
However, the produced depth maps of the advanced algorithms
are by all means sufficient for most applications, and should
suffice for the purpose of this paper. The runtime comparison
shows that some of the algorithms can benefit significantly
from the highly parallel nature of the graphics hardware. Even
algorithms like the scan-line optimisation, which are hard to
implement efficiently in a parallel manner, given their partly
serial computations, seem to gain a huge performance boost
on the GPU.

These observations, in relation with the relatively low cost
and high availability of graphics hardware and the increasing
interest and popularity of GPU computing, which also pushes
the development of frameworks and development tools, cer-
tainly justify the use of graphics cards for stereo matching
algorithms. Indeed, many recently developed stereo matching
methods make use of GPU computing and show that it is
possible to obtain high quality depth maps within a short
runtime using this technology [5].

For our mobile robot, the presented GPU implementation
provides for a much more accurate navigation based on very
recent depth maps. Another benefit of the short runtime of
this algorithm is that other parts of the whole process, that
is responsible for the robot’s navigation, could be allowed to
consume more time in order to improve their accuracy. This
allows for a more flexible fine-tuning of the whole navigation
process, to find the perfect balance between using most up-to-
date data and using more accurate algorithms.

The only drawback is the higher level of complexity needed
to implement efficient algorithms on the GPU. For more
sophisticated methods, a GPU implemetation, that exploits
the offered level of parallelism to a sane extend, needs to
pay attention to many pitfalls that do not pose any obstacles
for a CPU version. Especially, finding a performant way of
parallelising an algorithm and optimising memory accesses
are an important and sometimes difficult task. However, im-
plementing an efficient CPU-based algorithm also requires for
complex mechanisms. Eventually, the huge runtime speedup
on the graphics hardware makes GPU computing an alternative
that is worth to be explored.

REFERENCES

[1] M. Bleyer and M. Gelautz, “A layered stereo matching
algorithm using image segmentation and global visibil-
ity constraints,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 59, no. 3, pp. 128–150, 2005.

[2] J.-Y. Bouguet, Camera calibration toolbox for matlab.
[Online]. Available: http : / / www. vision . caltech . edu /
bouguetj/calib%5C doc/index.html (visited on Nov. 25,
2012).

[3] S. Chambon and A. Crouzil, “Similarity measures for
image matching despite occlusions in stereo vision,”
Pattern Recognition, vol. 44, no. 9, pp. 2063–2075,
2011.

[4] N. Lazaros, G. C. Sirakoulis, and A. Gasteratos, “Re-
view of stereo vision algorithms: From software to
hardware,” International Journal of Optomechatronics,
vol. 2, no. 4, pp. 435–462, 2008.

[5] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X.
Zhang, “On building an accurate stereo matching system
on graphics hardware,” GPUCV: ICCV Workshop on
GPU in Computer Vision Applications, 2011.

[6] D. Scharstein and R. Szeliski, “A taxonomy and eval-
uation of dense two-frame stereo correspondence algo-
rithms,” International Journal of Computer Vision, vol.
47, no. 1-3, pp. 7–42, 2002.

[7] ——, “High-accuracy stereo depth maps using struc-
tured light,” IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2003),
vol. 1, pp. 195–202, 2003.

[8] ——, Middlebury stereo vision page. [Online]. Avail-
able: http : / /vision .middlebury.edu/stereo/ (visited on
Nov. 25, 2012).
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