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Abstract—In this paper, we propose a new synchronous 

stream cipher called SSCQF whose secret-key is 

 N1,...zzSK  where iz  is a positive integer. Let 

Nddd ,...,, 21   be N    positive integers in  12,...,1,0 m
 

such that ii zd   mod 
m2  with m  and 8m . Our 

purpose is to combine a linear feedback shift registers LFSRs, 

the arithmetic of quadratic fields: more precisely the unit group 

of quadratic fields, and Boolean functions [14]. Encryption and 

decryption are done by XRO'ing the output pseudorandom 

number generator with the plaintext and ciphertext respectively. 

The basic ingredients of this proposal stream generator SSCQF 

rely on the three following processes: 

In process I , we constructed the initial vectors 

 N1 X,...,XIV  from the secret-key  N1,...zzSK  by 

using the fundamental unit of ℚ  id  if id  is a square free 

integer  otherwise by splitting id , and in process II , we 

regenerate, from the vectors iX , the vectors iY  having the same 

length L, that is divisible by 8 (equations  2  and  3 ). In 

process III , for each iY , we assign 8/L  linear feedback shift 

registers, each of length eight. We then obtain / 8N L  linear 

feedback shift registers that are initialized by the binary 

sequence regenerated by process II , filtered by primitive 

polynomials, and the combine the binary sequence output with 

8/L  Boolean functions. The keystream generator, denoted K , 

is a concatenation of the output binary sequences of all Boolean 

functions. 

Keywords—Synchronous stream cipher SSCQF; linear 

feedback shift registers LFSRs; arithmetic of quadratic fields; 

Boolean functions; pseudorandom number generator and 

keystream generator 

I. INTRODUCTION 

The proposed stream cipher SSCQF is a binary addition 
stream cipher [14]. In a binary addition stream cipher, the 

plaintext is given as a string ,..., 21 mm  of elements of the 

finite field  1,0 2 k . The keystream ,..., 21 zz  is a binary 

pseudorandom sequence [13]. The sender encrypts the 

plaintext message according to the rule tt zmc  1  for all 

0t . The ciphertext ,..., 21 cc  is decrypted by the receiver 

by adding bitwise the keystream ,..., 21 zz  to the received 

ciphertext sequence ,..., 21 cc . Sender and receiver produce 

the keystream ,..., 21 zz  via identical copies of the stream 

generator. 

Let Nzzz ,...,, 21   be N    positive integers, 

Nddd ,...,, 21   be N    positive integers in  12,...,1,0 m
 

such that ii zd   mod 
m2  with m  and 8m ,  and i  

be a fundamental unit of a quadratic field ℚ  id , if id  is a 

square free integer. 

In this paper, we propose a new synchronous stream cipher 

called SSCQF whose secret-key is  NS zzK ,...,1  where 

iz  are positive integers, based upon the combination of a 

linear feedback shift registers LFSRs [14], the congruence 

modulo 
m2  with m ℕ  and 8m , the arithmetic of 

quadratic fields: more precisely the unit group of quadratic 

fields, and the 8/L  combining functions. The basic 

ingredients of this proposal stream cipher generator SSCQF 
rely on the following three processes: 

      In process I , we construct the initial vectors 

 NXXIV ,...,1  from the secret-key SK  by using the 

fundamental unit of ℚ  id  if id  is a square free integer 

otherwise by splitting id , and in process II , we regenerate, 

from the vectors iX , the vectors iY  having the same length 

L , more precisely the length L  must be divisible by eight 

(Equations  2  and  3 ). In process III , for each iY , we 

assign 8/L  linear feedback shift registers of length eight 

filtered by primitive polynomials of degree eight. They are 

 
25

8

128


   primitive polynomials [12]. We then obtain 

8/LN   linear feedback shift registers that are initialized by 

the binary sequence regenerated by process II . And we 
combine the output binary sequence of all linear feedback 
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shift registers, namely, ijLFSR  with 8/L  Booleans 

functions 8/1 R ...,  ,R L . The Boolean function jR  

combines the output bits of ijLFSR  for all  Ni ,...,1 . 

The keystream generator denoted K , is a concatenation of the 

output binary sequences of all Boolean functions jR . 

The output function of our stream cipher is parameterized 

only by the secret-key SK . As the keystream bits are 

produced independently of the plaintext, the proposed stream 
cipher SSCQF belongs to the category of synchronous stream 
ciphers. 

In this section, we introduce the notations that will be used 
throughout this paper in TABLE 1. 

TABLE I.  NOTATIONS 

sK  :  Input secret-key. 

keystream :  Output secret-key. 

 :  XOR operation. 

|| :  Concatenation. 

ijLFSR  :  Linear feedback shift registers. 

jR  :  Boolean functions. 

F  :  Feedback function. 

2

x    
: Binary sequence of any integer x. 

IV  :  Initial Vector. 

2k  :  Binary finite field of characteristic two. 

2
 m

k  : 2k -vector space of dimension m . 

( , ')Lmc k k  
: Lowest common multiple of positive integers

;  'k k . 

  
: Set of periodic binary functions not necessarily the 

same period. 

 :  Set of natural numbers. 

 :  Square root. 

LBi :  Length of ith binary sequence. 

L1/2Bi :  Half-length of ith binary sequence. 

II. PRELIMINARY 

Stream cipher [14] is a secret-key cryptosystem 
constructed for improve secrecy of transmitted data. It is a 
lightweight and efficient cryptographic primitive for ensure 
confidentiality of transmitted data between two communicated 
pairs. It proves its robustness by its ability to resist against 
attacks [3][4] [7][14]. It has a wide application area especially 
in mobile devices and embedded systems. In this section we 
introduce the notation and terminology that will be used 

throughout the proposal. We use the symbol  1,0 2 k  to 

denote the binary finite field of characteristic two,   to 

denote logical XOR (OR exclusive),  
2
 0,1

mm k  to denote 

the 2k -vector space of dimension m , 
2

n    to denote the 

binary sequence of any integer  
*n  and  ||  denotes 

concatenation of two bits sequences. Bit sequence means a 

sequence built from 0  and 1 . 

Definition 2.1: Let  nxxX ,...,1  and 

 nyyY ,...,1  be two vectors of   
2
 0,1

nn k . 

1) YX   if only if  ii yx   for all  ni ,...,1 . 

2)  nn yxyxYX  ,...,11 . 

Theorem 2.1: Let X , Y  and Z  be three vectors of   

 n
1,0 

n

2 k . 

YX   if and only if ZYZX  . 

Proof :  Let  nxxX ,...,1 ,   nyyY ,...,1   and 

 nzzZ ,...,1  be three vectors of   
2
 0,1

nn k . 

ZYZX   if and only if iiii zyzx   for all 

 ni ,...,1   

(Definition 2.1), if and only if  

    iiiiii zzyzzx   if and only if  

   iiiiii zzyzzx   if and only if  

00  ii yx  if and only if  ii yx   if and only if 

YX  . 

Let m  be a positive integer. A binary feedback shift 

register (FSR) of length m  is uniquely determined by its 

feedback function    1,01,0  :  
m

F . 

Definition 2.2 (see [20]): A feedback function  

   1,01,0  :  
m

F  is nonsingular if and only if the 

algebraic normal form of  F  has the form 

   11010 ,...,,...,   mm xxGxxxF , where 

   1,01,0  :  
1


m
G  is a polynomial in the variables 

11,..., mxx . 

If the feedback function F  of an m -stage feedback shift 

register is linear, one speaks of a linear feedback shift registers 
(LFSR). Otherwise one speaks of a nonlinear feedback shift 
register (NLFSR). All feedback shift registers used in this 
paper are nonsingular and linear. In this case, 

  1111010 ...,...,   mmm xaxaxxxF  modulo 2  

where the ia ’s are either 0  or 1  for all  1,...,1  mi  and 

its linear recursion is of the form: 

1

1

i m

n m n i n i

i

x x a x
 

 



    
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modulo 2  for all 0n  [6][11][17]. An alternative way to 

describe this recursion is to specify the 
thm  degree binary 

characteristic polynomial [16]:   1
1

1

 




mi

i

i

i

m xaxxf . 

To obtain the maximal period of 12 m
, a sufficient 

condition is that  xf  be a primitive  
thm  degree 

polynomial modulo two. 

Definition 2.3 (see [12]): Let    xxf 2k  be a 

polynomial of degree at least l . Then  xf  is said to be 

irreducible over 2k  if it cannot be written as a product of two 

polynomials in  x2k , each of positive degree. 

Definition 2.4 (see [12]): Let    xxf 2k  be an 

irreducible polynomial of degree N . Then     xfx /2k ; 

the set of polynomials in  x2k  of degree less than N , is a 

field of order 
N2 . Addition and multiplication are performed 

modulo  xf . Therefore     xfxN /22
kk  . In this 

case, N2
k  is called the splitting field of  xf . 

Definition 2.5 (see [12]): A polynomial    xxf 2k  of 

degree N  is called a primitive polynomial over 2k  if it is the 

minimal polynomial over 2k  of a primitive element of N2
k . 

Definition 2.6 : We call a Boolean function upon  N
1,0 , 

all function defined from  N
1,0  into  1,0 . They are 

N22  

Boolean functions upon  N
1,0 . 

III. A BRIEF DESCRIPTION OF SSCQF ALGORITHM 

Stream cipher encrypts the plaintext by using a key stream 

generator. The latter can be a synchronous or an 

asynchronous stream cipher. This property is related to 
regenerate a nature of secret-key. A generator is qualified as a 
synchronous stream cipher if the regeneration of the secret-
keys carries out independently of the plaintext and ciphertext 
messages. By contrast, an asynchronous stream cipher 
products the keystreams as a function of the input secret-key 
and previous ciphertexts [14]. Our synchronous algorithm 
SSCQF can briefly be described as follows: 

It takes a secret-key constructed by a sequence of positive 

integers Nzz ,...,1  and let ii zd   mod 
m2  with m ℕ and 

8m . 

For each id  we assign them only two positive integers in  

and im  as follows: 

 If  iii rsd
2

  where 1ir  or ir  is a square free 

integer, then ii rn   and 
2

iim s . 

 If  id  is a square free integer, then we assign only one 

fundamental unit i  of the quadratic field  

ℚ  id  [2] [5] where  

                                    















4 mod 1 if         

2

4 mod  3or  2 if          

d
dmn

ddmn

iii

iii

i                    (1 ) 

We then construct the initial vectors   NXXIV ,...,1  

where 
2 2 2

|| ||i i i iX n d m  for all  Ni ,...,1 . Since the 

vectors iX  do not have the same length, then we regenerate 

the vectors iY , from the vectors iX , having the same length 

L . The number L  is divisible by eight via equations

2  and  3 . Each binary standard sequence is subdivided into 

8/L  binary sequences of length eight, each of them 

initializes one linear feedback shift register of length eight. 

We then obtain 8/L  LFSRs for each iY , namely, 

iL/81 LFSR ..., ,LFSR i  filtering by primitive polynomials of 

degree eight. And we combine the output binary sequence of 

all ijLFSR  with 8/L  Boolean functions 

   1,0    0,1  : R ...,  ,R 8/1 
N

L  defined as follows: For 

each  8/,...,1 Lj , the Boolean function jR  combines the 

output bits of ijLFSR  for all  Ni ,...,1 . The keystream 

digit is obtained by concatenation of the output binary 

sequences of all Boolean functions jR . 

IV. DETAILED DESCRIPTION OF SSCQF ALGORITHM 

The overall structure of the keystream generator SSCQF 

is depicted in the following figure. 
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Fig. 1. Detailed description of ASCGQF algorithm 

The basic ingredients of the keystream generator SSCQF 
rely on the following three processes: 

A. Process I 

The main goal of this process is to generate the initial 

vectors  NXXIV ,...,1  from a secret-key 

 NiS zzK ,...,   where iz  are positive integers for all 

 Ni ,...,1 . We then proceed as follows: 

 We compute the positive integers  id  such that 

ii zd   mod 
m2  with m  and 8m  for all 

 Ni ,...,1 . 

 For each id  we assign only two positive integers in  

and im : 

    Assume that  iii rsd
2

  where 1ir  or ir  is a 

square free integer, we then get  ii rn   and 

2

iim s . 

  Assume that id  is a square free integer, we assign 

only one fundamental unit i  of the quadratic field ℚ

 id  [2] [5] together with 















4 mod 1 if         

2

4 mod  3or  2 if          

d
dmn

ddmn

iii

iii

i  

 For all  Ni ,...,1 ,  
2 2 2

|| ||i i i iX n d m . 
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B. Process II 

The vectors iX  for all  Ni ,...,1  are not necessarily 

of the same length. The goal of this process is to balancing 
those vectors. For that, we then choose a vector of a maximal 

length, for example kX  of length 'kl L , and we proceed as 

follows : 

For each vector  
iilii xxX ,...,1  one assigns the only 

vector  iLii yyY ,...,1  defined as follows: 

If 0L  mod 8 , 'L L ,  we get: 

   









 iktli modt ili

i

l-Lt0  allfor  xx

l0    allfor                          

i t

ijij

y

jxy
       2  

Otherwise, ' (8 '  mod  8)L L L   , we get: 

   

   

i

i

kt ii l i t  mod  l

it ks'
0

                            for  all    0 l

x x   for  all  0 t L'-l

  x x        for  all  0 s 8 L'  mod 8

ij ij

t i

s

i L s
t

y x j

y

y









  



   

     




    3  

C. Process III 

The vectors iY  for all  Ni ,...,1  generated in the 

process II , are of the same length L  divisible by eight. We 

subdivide it into 8/L  binary sequences of length eight; each 

initializes a linear feedback shift register filtered by the 
primitive polynomial of degree eight. We then obtain, for each 

iY ,  8/L  linear feedback shift registers, namely, 

iL/81 LFSR ..., ,LFSR i . And we combine the output binary 

sequence of all ijLFSR  with 8/L  Boolean functions 

   1,0    0,1  : R ...,  ,R 8/1 
N

L  defined as follows: For 

each  8/,...,1 Lj , the Boolean function jR  combines 

the output bits of ijLFSR  for all  Ni ,...,1 , together with  

   
NjjNj xxxxRxxR ,...,,1,,...,,..., 1111   and  

  2   mod    ,...,
11

1 







N

ji

ji

Ni

i

iN xxxxxR . The keystream 

is obtained by concatenation of the output binary sequences of 
all Boolean functions. 

V. BEHAVIORAL STUDY 

After presenting and explaining the principle components 
of our SSCQF algorithm, in this section, we focus a behavioral 
study for all elements constituting our regenerator in order to 
highlight its internal characteristics.  We begin by studying the 
complexity of the output binary sequences of all Boolean 

functions jR  related to their lengths for a given password. 

Effectively, our goal, in this subsection, is to appear the 
cryptographic nature of the internal states of our regenerator of 
binary sequences. Then, we pass to analysis the keystream 
regenerated by our system after the minimal perturbations on 
the initial condition. Finally, we present an analytical study 
simulating the human system. 

A. Correlation and normalized distance of periodic binary 

strings 

For the binary sequences, we must exploit the Hamming 
principle to make sure their nature distribution. It aids in 
estimating the complexity of binary strings that have the same 
period. However, the testing of the keystreams regenerated by 
our regenerator show that not necessarily of the same period. 
Hence, we should use an extension of a Hamming distance as 
we defined in [1] [21]: 

Let S and S’ be two elements of  of periods k and k' 

respectively and ( , ')K Lmc k k . 

The function 'D  :  0,1 defined by: 

 
  

1

0

( ) '( ) %2

' , '

K

i

S i S i

D S S
K










           (4)  

is a normalized distance of  . 

Also in [21], we defined another interesting property 
allowing to more ensure the nature of binary sequences: 
uncorrelation of the binary strings. Thus, for all  and 'S S  in 

 , we say that two binary strings are weakly correlated if: 

   '( , ') 0.5D S S                                 (5)  

This property allows us to prove the complexity of the 
binary sequences not necessarily of the same period. More 
precisely, the obtained values of a normalized distance are 
used to make sure about the uncorrelation or the correlation of 
the sets of periodic binary strings. 

B. Impact of the lengths on the output binary sequences of all 

Boolean functions 

Firstly, we propose an analysis study of each output binary 

sequences of all Boolean functions jR  related to their lengths 

for a given password. In this case, we change the length of 

output binary sequences of all Boolean functions jR in order 

to ensure the internal nature of our regenerator. For this object, 

we propose a fixed secret-key  NiS zzK ,...,  where iz  

are positive integers and N equal to 50 as follows: 

Ks={12, 3, 6, 77, 80, 81, 90, 95, 44, 54, 56, 47, 2, 8, 10, 15, 18, 

16, 28, 99, 29, 55, 60, 67, 86, 84, 26, 37, 35, 34, 311, 57, 41, 5, 

13, 11, 512, 73, 92, 40, 42, 47, 19, 388, 39, 71, 73, 79, 

188, 115} 
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For each case, for same secret-key sK , we adapt our 

program to regenerate the primitive signals not have the same 
length. Then, we obtain: 

 In first case (Fig.2), the length of a binary sequence is: 
LB1=2005 bits. 

 In second case (Fig. 3), the length of a binary sequence 
is: LB2=4005 bits. 

 In third case (Fig.4), the length of a binary sequence is: 
LB3=6005 bits. 

From [14], we say the binary sequences 1,..., NX X  of 

same lengths are independent if each taking on the values 0 or 

1 with probability 1
2

. Then, we talk about the unpredictable 

and uncorrelated primitive signals if the distribution of 
hamming distance accumulates near to half-length (L1/2Bi) of 
this binary sequence. This means that almost half the bits in 
same position of two set of the binary sequence are different. 

 L1/2B11002 bits. 

 L1/2B22002 bits. 

 L1/2B33002 bits. 

 
Fig. 2. The distribution of hamming distances for LB1=2005 bits 

 
Fig. 3. The distribution of hamming distances for LB2= 4005 bits 

 
Fig. 4. The distribution of hamming distances for LB3= 6005 bits 

From these histograms, we notice, for a same secret-key, 
the distribution of hamming distances in these three cases 
accumulates in the vicinity of half-length of each output binary 
sequences of all Boolean functions. In addition, the obtain 
results are almost identical in all three histograms. In two first 
cases, we have three accumulations regions nearest to half-
length. But, in third case, we have only a peak nearest to half-
length. Accordingly, the cryptographic nature of each 
primitive signal in any internal state is not only related to the 
length of the regenerated a binary sequence. Effectively, these 
results are strongly linked to Boolean Functions and linear 
feedback shift registers filtered by the primitive polynomials 
of degree eight integrated in our system. Hence, our purpose 
has unpredictable internal characteristics [1][21], which is 
recommended in order to resist against attack periodic 
sequences [5][10]. This enables us to ensure the cryptographic 
nature of SSCQF algorithm. Finally, for each internal state, we 
can summarize these features as follows: 

 The length of each block regenerated has a positive 
effect on the cryptographic quality of the regenerated 
primitive signals. 

 The distribution of lengths and periods are random. 

 The primitive signals are unpredictable or 
cryptographically strong. 

 When we increase the period length of the internal 
states, their regenerated the primitive signals became 
more uncorrelated. Then, long period has a positive 
impact on the cryptographic nature of internal primitive 
signs. This property is more desirable for an efficient 
stream cipher generator. 

 The cryptographic quality of each regenerated primitive 
signals is strongly related to Boolean Functions and 
linear feedback shift registers filtered by the primitive 
polynomials of degree eight integrated in our system. 

C. Impact of Minimal Perturbations 

After introducing an analytical study of the internal states 
of our system, in this subsection, we concentrate to the 
behavioral study of external states Keystream of our system. 
The benefit is to interpret the responses of our proposed 
system in the minimal conditions. Objectively, for each 
iterations, we choose the secret-keys the same length

 NiS zzK ,...,  where iz  are a positive integer in an 

interval [2,…,50], N equal to 6, the first secret-key is 

 2,2,2,2,2,2SK   and the last secret-key is

 50,50,50,50,50,50SK  . Also, we perform the minimal 

perturbations on the input secret-key in order to examine their 
impact on the lengths and the nature of primitive signals of the 
associated keystreams. We increment, in each iteration, an 

integer number iz  of input secret-key in a given position 

progressively. The importance is to show if the linearity of 
input secret keys has an effect on the cryptographic quality of 
output secret-keys. 
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Fig. 5. The lengths distribution of primitive signals 

From this histogram (Fig.5), we observe, for the minimal 
perturbations, that the lengths distribution of primitive signals 
does not admit a probabilistic law. That means, it hard to an 
attack to infer the input length according to the lengths of 
output secret-keys. Its period represents an important benefit 
to distinguish a good stream cipher regenerator. This dynamite 
confirms another robustness factor of our regenerator of binary 
sequences. 

 
Fig. 6. The distribution of normalized distances 

In this histogram (Fig.6), it appears clearly the 
accumulation of normalized distances nearest to 0.5 followed 
by small peaks and a large peak exactly in 0.5. This result of 
normalized distances reassures another significant property 
filled by our proposed system: unpredictable of each binary 
sequence. Therefore, we confirm the uncorrelation of 
generated primitive signals able to withstand the collision and 
correlation attacks [5][8] [9][10][14][18] [19] [21]. 

D. Simulating a human system 

In reality, Man has a chaotic mind. It is hard to control an 

user during the choice its input secret-key sK . But, we can - 

 
Fig. 7. The lengths distribution of primitive signals 

simulate a human system for regenerate the inputs secret-keys 
the same length (N=6). For this work, we adapt a Rand 

function in order to product the integer numbers iz  in interval 

[1,…, 200] randomly. The aim, in this emulation, is to study 
the dynamic nature and the cryptographic quality of 
regenerated primitive signals in the real situations. 

This dynamite (Fig.7) reconfirms the random nature of the 
lengths distribution of regenerated primitive signals for the 
inputs secret-keys of same length. It is random and 
unpredictable over time. This result is highly dependent on 

calculated positive integers id  such that ii zd   mod 
m2  

with m ℕ and 8m . More specifically, it depends on the 

quadratic structure (square-free integer or integer with square 

factor) of the calculated positive integers id . Because, the 

binary representations of positive integers id , in and im , 

have an impact on the balancing results. Wherefore, our 
system inspires its robustness. 

 
Fig. 8. The distribution of normalized distances 

This outcome (Fig.8) is identical to the result obtained in 
figure 6. It proves, in the minimal conditions, the 
cryptographic nature of SSCQF algorithm [21]. In effect, our 
algorithm is efficient and able to resist against attack periodic 
sequences [5][10]. Likewise, the keystreams are 
cryptographically strong. This stream ciphers design generate 
the keystream digits pseudo-randomly from smaller inputs 
secret-keys without lessening security. They are also able to 
withstand against to correlation, collision and exhaustive 
search attacks on stream ciphers 
[3][4][7][8][9][14][15][18][19][21]. We aim, by this work, to 
evolve and improve at the symmetric-key encryption scheme. 

VI. IMPLEMENTATION 

This SSCQF regenerator of binary sequences can be 
executed in different types of symmetric cryptosystem. We 
aim, in this work, to evolve the cryptographic quality secret-
keys against various types of attacks [3][4][7][9][10][14][18] 
[19]. Thus, according to behavioral study, this property of the 
primitive signals regenerated is assured. In this section, we 
itemize practically different execution stages of our proposed 
system. 

A. Implementation of process I 

The first aim of this process is to generate the integer 

numbers id , in and im for each element iz of a secret-key 
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sK , then, their binary representations. In each iteration, the 

binary representations of id , in and im  will be combined in 

order to create an initial vector as follows
2 2 2

|| ||i i i iX n d m . 

 

Fig. 9. Regeneration of the id
, in

and im
for a secret-key 

From this figure (Fig.9), we show that the values of in and 

im don’t depend on the values of id , but, these are strongly 

related to its quadratic structure. In reality, it gives more 
complexity and dynamite of our proposed system. It suffices 
to behold here that any added bit has an impact on the 

balancing results of initial binary vectors iX . 

 

Fig. 10. Binary representation of each initial vector iX  

From this outcome (Fig.10), the binary representations of 

each initial vector iX don’t have the same length. But, in our 

proposal, we want to get the binary sequences which have the 

same length L  divisible by eight. This is the object of the 
following process. 

B. Implementation of process II 

As we have previously explained, we dedicate this process 
to balancing the binary sequences generated in previous 

process. The aim is to obtain initial binary vectors iX  that 

have a length multiple to eight. Because, in these situation, we 
use a linear feedback shift register filtered by the primitive 
polynomial of degree eight. So, if we change the degree of 
primitive polynomial, in this case, we should adapt this 
process to regenerate the initial vectors that have a length of its 
degree. The results of this process are presented in following 
figure (Fig.11). 

 

Fig. 11. Balancing of each iX
 

C. Implementation of process III 

After balancing each initial vectors comes this important 
process. We implement this process for create an output 

Keystream digit specific to each input secret-key sK . In first 

time, for each iY ,  we construct 8/L  linear feedback shift 

registers, namely, iL/81 LFSR ..., ,LFSR i . Then, we exercise 

the Boolean functions jR  on all ijLFSR  as defined in 

process III. The output keystream is obtained by concatenation 
of the output binary sequences of all Boolean functions. This 
following figure presents an embodiment of this process 
(Fig.12).
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Binary sequence (1) Binary sequence (2) 

Binary sequence (3) Binary sequence (4) 

Fig. 12. Binary sequence of Keystream digit 

Note: The Keystream is obtained by concatenation of all 
binary sequences (1, 2, 3, 4). 

In this work, we innovate a quick, dynamic and complex 
generator of the binary sequences. We are combined a large 
theory concept for product a pseudorandom stream cipher. It 
will be used as a symmetric key cipher for avoid the serious 
security problems. This synchronous generator products 
primitive signals uncorrelated, unpredictable and independents 
of the same input secret-keys lengths. Moreover, it ensures the 
cryptographic quality of internals states in order to avoid 
correlation attacks [9][14][18] [19]. 

VII. CONCLUSION 

We introduced, in this paper, a new synchronous stream 
generator cipher named SSCQF. Our proposed symmetric key 
system is founded on quadratic fields. We aim by this work to 

improve the confidentiality of transmitted data between two 
communicated pairs. A behavioral study, in the minimal 
conditions, appears the cryptographic nature of our 
construction. It also confirms the concrete security of the 
internal and external states, more, its ability to conserve the 
unpredictable nature of each regenerated primitive signals. In 
addition, the output secret-key length is not related to the input 
secret-key length, but, is strongly linked to quadratic nature of 
each element constructing an input secret-key. Idem, these 
dynamite and robustness are clearly proved in implementation 
section. 
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