(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 12, 2015

A Synchronous Stream Cipher Generator Based on
Quadratic Fields (SSCQF)

Younes ASIMI

LabSiv, Equipe SCAM
Faculty of sciences, Ibn Zohr
University B.P 8106, City Dakhla, Agadir, Morocco

Abstract—In this paper, we propose a new synchronous
stream cipher called SSCQF whose secret-key is

KS:(Zl,...ZN) where  Z,

d,,d,,..,d be N positive integers in {0,1,...,2m —l}

such that d; =2, mod 2™ with meN and m>8 . oOur

purpose is to combine a linear feedback shift registers LFSRs,
the arithmetic of quadratic fields: more precisely the unit group
of quadratic fields, and Boolean functions [14]. Encryption and
decryption are done by XRO'ing the output pseudorandom
number generator with the plaintext and ciphertext respectively.
The basic ingredients of this proposal stream generator SSCQF
rely on the three following processes:

In process | , we constructed the initial vectors
IV = {Xl,...,XN } from the secret-key Kg = (Zl,...ZN) by

is a positive integer. Let

using the fundamental unit of Q(,/di ) if di is a square free

integer otherwise by splitting di, and in process Il , we

regenerate, from the vectors Xi,the vectors Yi having the same
length L, that is divisible by 8 (equations (2) and (3)). In

process |l for each Y, , we assign L /8 linear feedback shift

registers, each of length eight. We then obtain N xL/8 linear
feedback shift registers that are initialized by the binary
sequence regenerated by process Il , filtered by primitive
polynomials, and the combine the binary sequence output with

L /8 Boolean functions. The keystream generator, denoted K,
is a concatenation of the output binary sequences of all Boolean
functions.

Keywords—Synchronous stream cipher SSCQF; linear
feedback shift registers LFSRs; arithmetic of quadratic fields;
Boolean functions; pseudorandom number generator and
keystream generator

. INTRODUCTION

The proposed stream cipher SSCQF is a binary addition
stream cipher [14]. In a binary addition stream cipher, the

plaintext is given as a string m,, m,,... of elements of the
finite field k, = {0,1}. The keystream z,,Z,,... is a binary
pseudorandom sequence [13]. The sender encrypts the
plaintext message according to the rule ¢, =m, @ z, for all
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t > 0. The ciphertext C,,C,,... is decrypted by the receiver
by adding bitwise the keystream z,,Z,,... to the received
ciphertext sequence C,,C,,.... Sender and receiver produce
the keystream Z,,Z,,... via identical copies of the stream
generator.

Let Z,,Z,,..,2Zy be N integers,
d,,d,,..,d, be N positive integers in {0,1,...,2m —1}
such that d; = z; mod 2™ with meN and m>8, and &,

be a fundamental unit of a quadratic field Q (,/di ) if d isa
square free integer.

positive

In this paper, we propose a new synchronous stream cipher
called SSCQF whose secret-key is Kq = (Zl,..., Z, ) where
Z, are positive integers, based upon the combination of a
linear feedback shift registers LFSRs [14], the congruence
modulo 2™ with me N and m>8 , the arithmetic of

quadratic fields: more precisely the unit group of quadratic

fields, and the L/8 combining functions. The basic
ingredients of this proposal stream cipher generator SSCQF
rely on the following three processes:

In process | , we construct the initial vectors
v ={X1,...,XN} from the secret-key Kg by using the
fundamental unit of Q(,/di ) if d, is a square free integer
otherwise by splitting d,, and in process Il , we regenerate,

from the vectors X, the vectors Y; having the same length

L, more precisely the length L must be divisible by eight
(Equations (2) and (3)). In process Il , for each Y;, we

assign L/8 linear feedback shift registers of length eight
filtered by primitive polynomials of degree eight. They are

8
40(27_1) — 25 primitive polynomials [12]. We then obtain
8

N x L/8 linear feedback shift registers that are initialized by

the binary sequence regenerated by process Il . And we
combine the output binary sequence of all linear feedback
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shift registers, namely, LFSR; with L/8 Booleans
yRig j
combines the output bits of LFSR ; for all ie {L..., N}.

The keystream generator denoted K, is a concatenation of the
output binary sequences of all Boolean functions R i

functions Rl, The Boolean function R

The output function of our stream cipher is parameterized
only by the secret-key K . As the keystream bits are

produced independently of the plaintext, the proposed stream
cipher SSCQF belongs to the category of synchronous stream
ciphers.

In this section, we introduce the notations that will be used
throughout this paper in TABLE 1.

TABLE I. NOTATIONS

KS . Input secret-key.

keystream . Output secret-key.
@ : XOR operation.

II : Concatenation.

LFSR i . Linear feedback shift registers.

Rj : Boolean functions.

F . Feedback function.

—2 o .

X : Binary sequence of any integer x.

AV} : Initial Vector.

k, : Binary finite field of characteristic two.
krzn -k , -vector space of dimension m.

; : Lowest common multiple of positive integers

Lme(k, k" K k',

r : Set of periodic binary functions not necessarily the

same period.

N . Set of natural numbers.

g : Square root.

Lg;i . Length of i" binary sequence.

Li/gi : Half-length of i" binary sequence.

Il.  PRELIMINARY

Stream cipher [14] is a secret-key cryptosystem
constructed for improve secrecy of transmitted data. It is a
lightweight and efficient cryptographic primitive for ensure
confidentiality of transmitted data between two communicated
pairs. It proves its robustness by its ability to resist against
attacks [3][4] [71[14]. It has a wide application area especially
in mobile devices and embedded systems. In this section we
introduce the notation and terminology that will be used

throughout the proposal. We use the symbol Kk, = {0,1} to
denote the binary finite field of characteristic two, @ to

denote logical XOR (OR exclusive), K™ = {O,l}m to denote
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—2
the k, -vector space of dimension m, n
binary sequence of any integer neN and || denotes
concatenation of two bits sequences. Bit sequence means a
sequence built from O and 1.

to denote the

Definition ~ 2.1:  Let X =(x

Lreens X ) and
Y =(Yy,er Y, ) be two vectors of k' =10,1

)
1) X =Y ifonlyif x; =y, forallie{l..,n}.
) X®Y =(X, ®Y,,.. X, DY, ).

Theorem 2.1: Let X , Y and Z be three vectors of
k,"={01}".
X =Y ifandonlyif X®@Z =Y DZ.

Let X =X, X,), Y =(y,,.,y,) and
Z =(z,,..,2,) be three vectors of K’ ={O,l}n :
X@Z=YD®LZ if and only if X, Dz, =Y, Dz, for all
ie {1,...,n}

(Definition 2.1), if and only if
(x, ®z,)®z, =(y,®z,)®z, if and only if
X ®(z,®z)=y,®(z;,®z,) if and only if
X @0=y, @0 if and only if
X=Y.

Let M be a positive integer. A binary feedback shift
register (FSR) of length M is uniquely determined by its

feedback function F : {O,l}m - {0,1}.

Definition 2.2 (see [20]): A feedback function
F :{01" = {01} is nonsingular if and only if the
algebraic normal form of F has the form
F(Xg e X g ) = Xo + G(Xyeres X, ;) , where

G:{01"" {01} is a polynomial in the variables
X, yeeey X g -

Proof :

X; =Y, if and only if

If the feedback function F of an m -stage feedback shift
register is linear, one speaks of a linear feedback shift registers
(LFSR). Otherwise one speaks of a nonlinear feedback shift
register (NLFSR). All feedback shift registers used in this
paper are nonsingular and linear. In this case,

F(Xgyn X, )= X + X, +.c+ @, X, modulo 2
where the ;s are either 0 or 1 for all i € {1 m—1} and

i=m-1
its linear recursion is of the form: X, =X, + Z ax,,
i=1
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modulo 2 for all N >0 [6][11][17]. An alternative way to

describe this recursion is to specify the m™ degree binary
i=m-1

characteristic polynomial [16]: f(X): x™ + Zaixi +1.
i=1

To obtain the maximal period of 2™ —1, a sufficient

condition is that f(X) be a primitive m" degree

polynomial modulo two.

Definition 2.3 (see [12]): Let f(x)e kz[x] be a
polynomial of degree at least | . Then f(X) is said to be
irreducible over K, if it cannot be written as a product of two
polynomials in K, [x] each of positive degree.

Definition 2.4 (see [12]): Let f(X)ekz[X] be an
irreducible polynomial of degree N . Then k,[x]/(f(x));
the set of polynomials in kz[x] of degree less than N, is a

field of order 2" . Addition and multiplication are performed
modulo f(x) . Therefore K, = K, [x]/(f(x)). In this

case, k2N is called the splitting field of f (X)

Definition 2.5 (see [12]): A polynomial f(x) ek, [x] of
degree N is called a primitive polynomial over K, if it is the

minimal polynomial over K, of a primitive element of k2N .

Definition 2.6 : We call a Boolean function upon {0,1}N \
all function defined from {O,l}N into {0,1}. They are 22"
Boolean functions upon {O,l}N :

I11. A BRIEF DESCRIPTION OF SSCQF ALGORITHM
Stream cipher encrypts the plaintext by using a key stream

generator. The latter can be @ synchronous or an
asynchronous stream cipher. This property is related to
regenerate a nature of secret-key. A generator is qualified as a
synchronous stream cipher if the regeneration of the secret-
keys carries out independently of the plaintext and ciphertext
messages. By contrast, an asynchronous stream cipher
products the keystreams as a function of the input secret-key
and previous ciphertexts [14]. Our synchronous algorithm
SSCQF can briefly be described as follows:

It takes a secret-key constructed by a sequence of positive
integers Z,,...,Zy and let d; = z; mod 2™ with m N and

m=>8.

Vol. 6, No. 12, 2015

For each di we assign them only two positive integers N,

and m; as follows:

o If d, =si2ri where I, =1 or r; is a square free

integer, then N, =1, and M, = s,

o If di is a square free integer, then we assign only one

fundamental unit &; of the quadratic field

Q (\/d_, ) [2] [5] where
ni + mi \/d_l

&E=1n +m./d (1)
% if d =1mod 4

if d=20r3 mod 4

We then construct the initial vectors 1V = {Xl,..., Xy }
—2 =2  —2 . .

where X, =n." ||d,” ||m,~ for all i € {L,...,N}. Since the

vectors X; do not have the same length, then we regenerate

the vectors Y;, from the vectors X, having the same length

L . The number L is divisible by eight via equations
2 and 3. Each binary standard sequence is subdivided into

L/8 binary sequences of length eight, each of them
initializes one linear feedback shift register of length eight.

We then obtain L/8 LFSRs for each Y, , namely,
LFSR,,, ..., LFSR, j filtering by primitive polynomials of
degree eight. And we combine the output binary sequence of
all  LFSR; with L/8 Boolean functions
R,, .R_,:{0,1}" — {01} defined as follows: For
each | € {1 L/8}, the Boolean function F\’j combines the
output bits of LFSR;; for all i e {ZL N}. The keystream

digit is obtained by concatenation of the output binary
sequences of all Boolean functions R i

IV. DETAILED DESCRIPTION OF SSCQF ALGORITHM

The overall structure of the keystream generator SSCQF
is depicted in the following figure.
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Key of length N

Calculate the d;, n; and my

|

Create of Initial Value IV

Balancing of Initial Value IV
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vV : Y, Y, Yo Yx
& 2| & ] 3 - >
& e 7 e o Z || £ -
< 9 R =1
Combining Function Combining Function
R, Ris
Keystream
Plaintext C) Ciphertext
Fig. 1. Detailed description of ASCGQF algorithm

The basic ingredients of the keystream generator SSCQF
rely on the following three processes:

A. Process |
The main goal of this process is to generate the initial

vectors IV = {Xl,..., Xy } from a  secret-key
Ky =(Zi,... ZN) where Z; are positive integers for all
ie {L..., N}. We then proceed as follows:

d. such that

e We compute the positive integers i

d, =z, mod 2" with meN and m>8 for all
iefl.., N}
For each di we assign only two positive integers n;

and m;:

= Assume that d, =S,°r, where T,

rr=lortisa
n, =r, and

square free integer, we then get ,

m, =s’.
= Assume that d, is a square free integer, we assign
only one fundamental unit &, of the quadratic field Q
(\/d_i ) [2] [5] together with
ni+mi\/d—i if d =20r3 mod 4

= +m.Jd.
# if d =1mod 4

e Foralliefl...,N}, X,=n ||d |Im".
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B. Process Il

The vectors X; for all i e {1,..., N} are not necessarily

of the same length. The goal of this process is to balancing
those vectors. For that, we then choose a vector of a maximal

length, for example X, of length |, = L', and we proceed as
follows :

For each vector X, = (Xil,...,XiIi ) one assigns the only
vector Y; = (yil,..., y“_) defined as follows:
If L=0 mod 8, L=L", we get:
Vi =X forall
Yit,+0) = Xigemodn) © X forall 0<t<L -1,
Otherwise, L=L"+(8—L"' mod 8), we get:

0<j<l,

(2)

Vi =X forall 0<j<I;

Yig ) = Xi(t mod 1) D Xia for all 0<t<L*| (3)

Viwg =2 X% ®%,  forall 0<s<8-(L" mod8)
t=0

C. Process Il
The vectors Y, for all ie{l,...,N} generated in the

process Il , are of the same length L divisible by eight. We
subdivide it into L/8 binary sequences of length eight; each

initializes a linear feedback shift register filtered by the
primitive polynomial of degree eight. We then obtain, for each

Y., L/8 linear feedback shift registers, namely,

LFSR;,...,LFSR, . And we combine the output binary
sequence of all LFSR; with L/8 Boolean functions

Ry, R 5:{0,1}" — {01} defined as follows: For
each j e {l,..., L/8}, the Boolean function Rj combines
the output bits of LFSR ; forall i {1 N}, together with

R, (Xyyeee X0 ) = ROX e X 3, X s Xy ) and

i=N N
R(X, vy Xy ):in + inxj mod 2. The keystream
i=1 i<j=L
is obtained by concatenation of the output binary sequences of
all Boolean functions.

V. BEHAVIORAL STUDY

After presenting and explaining the principle components
of our SSCQF algorithm, in this section, we focus a behavioral
study for all elements constituting our regenerator in order to
highlight its internal characteristics. We begin by studying the
complexity of the output binary sequences of all Boolean
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functions R i related to their lengths for a given password.

Effectively, our goal, in this subsection, is to appear the
cryptographic nature of the internal states of our regenerator of
binary sequences. Then, we pass to analysis the keystream
regenerated by our system after the minimal perturbations on
the initial condition. Finally, we present an analytical study
simulating the human system.

A. Correlation and normalized distance of periodic binary

strings

For the binary sequences, we must exploit the Hamming
principle to make sure their nature distribution. It aids in
estimating the complexity of binary strings that have the same
period. However, the testing of the keystreams regenerated by
our regenerator show that not necessarily of the same period.
Hence, we should use an extension of a Hamming distance as
we defined in [1] [21]:

Let S and S’ be two elements of I of periods k and k'
respectively and K =Lmc(k,k").
The function D' : T'xI" — [0,1] defined by:

K-

> ((SG)+S'(0))%2)

D'(S,8")="~ " (4)

LN

is a normalized distance of I".

Also in [21], we defined another interesting property
allowing to more ensure the nature of binary sequences:
uncorrelation of the binary strings. Thus, for all S and S' in
I', we say that two binary strings are weakly correlated if:

D'(S,S) =05 (5)

This property allows us to prove the complexity of the
binary sequences not necessarily of the same period. More
precisely, the obtained values of a normalized distance are
used to make sure about the uncorrelation or the correlation of
the sets of periodic binary strings.

B. Impact of the lengths on the output binary sequences of all
Boolean functions
Firstly, we propose an analysis study of each output binary
sequences of all Boolean functions Rj related to their lengths
for a given password. In this case, we change the length of
output binary sequences of all Boolean functions R i in order
to ensure the internal nature of our regenerator. For this object,
we propose a fixed secret-key Kg = (Zi,..., ZN) where Z,
are positive integers and N equal to 50 as follows:
K={12, 3, 6, 77, 80, 81, 90, 95, 44, 54, 56, 47, 2, 8, 10, 15, 18,
16, 28, 99, 29, 55, 60, 67, 86, 84, 26, 37, 35, 34, 311, 57, 41, 5,

13, 11, 512, 73, 92, 40, 42, 47, 19, 388, 39, 71, 73, 79,
188, 115}

155|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

For each case, for same secret-key K., we adapt our

program to regenerate the primitive signals not have the same
length. Then, we obtain:

o In first case (Fig.2), the length of a binary sequence is:
I—B].=2005 bits.

¢ In second case (Fig. 3), the length of a binary sequence
is: Lg,=4005 bits.

e In third case (Fig.4), the length of a binary sequence is:
Lg3=6005 bits.

From [14], we say the binary sequences X,,..., X, of
same lengths are independent if each taking on the values 0 or
1 with probability % . Then, we talk about the unpredictable

and uncorrelated primitive signals if the distribution of
hamming distance accumulates near to half-length (Ly.g;) of
this binary sequence. This means that almost half the bits in
same position of two set of the binary sequence are different.

" L1/281~1002 bits.
" L1/28272002 bits.
" L1/283~73002 bits.

The distribution of hamming distances
160 T r

curr

0 | | I |
(] 200 0 0 00 1000 2

Hamming Distances
.

Fig. 2. The distribution of hamming distances for Lg;=2005 bits

The distribution of hamming distances
: :

Occurrences

L L L
o 500 1000 1500 2000 2500
Hamming Distances

H

Fig. 3. The distribution of hamming distances for Lg,= 4005 bits

The distribution of hamming distances

Oceurrences
g P g S

g

= &

o ) 1000 500 200 %0 3000 %00
Hamming Distances

Fig. 4. The distribution of hamming distances for Lgz= 6005 bits
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From these histograms, we notice, for a same secret-key,
the distribution of hamming distances in these three cases
accumulates in the vicinity of half-length of each output binary
sequences of all Boolean functions. In addition, the obtain
results are almost identical in all three histograms. In two first
cases, we have three accumulations regions nearest to half-
length. But, in third case, we have only a peak nearest to half-
length. Accordingly, the cryptographic nature of each
primitive signal in any internal state is not only related to the
length of the regenerated a binary sequence. Effectively, these
results are strongly linked to Boolean Functions and linear
feedback shift registers filtered by the primitive polynomials
of degree eight integrated in our system. Hence, our purpose
has unpredictable internal characteristics [1][21], which is
recommended in order to resist against attack periodic
sequences [5][10]. This enables us to ensure the cryptographic
nature of SSCQF algorithm. Finally, for each internal state, we
can summarize these features as follows:

e The length of each block regenerated has a positive
effect on the cryptographic quality of the regenerated
primitive signals.

e The distribution of lengths and periods are random.

e The primitive signals are
cryptographically strong.

unpredictable  or

e When we increase the period length of the internal
states, their regenerated the primitive signals became
more uncorrelated. Then, long period has a positive
impact on the cryptographic nature of internal primitive
signs. This property is more desirable for an efficient
stream cipher generator.

e The cryptographic quality of each regenerated primitive
signals is strongly related to Boolean Functions and
linear feedback shift registers filtered by the primitive
polynomials of degree eight integrated in our system.

C. Impact of Minimal Perturbations

After introducing an analytical study of the internal states
of our system, in this subsection, we concentrate to the
behavioral study of external states Keystream of our system.
The benefit is to interpret the responses of our proposed
system in the minimal conditions. Objectively, for each
iterations, we choose the secret-keys the same length
Ky =(Zi,...,ZN) where Z; are a positive integer in an
interval [2,...,50], N equal to 6, the first secret-key is
Ks=(2,2,2,222) and the last secret-key is

Ks =(50,50,50,50,50,50) . Also, we perform the minimal

perturbations on the input secret-key in order to examine their
impact on the lengths and the nature of primitive signals of the
associated keystreams. We increment, in each iteration, an
integer number Z; of input secret-key in a given position

progressively. The importance is to show if the linearity of
input secret keys has an effect on the cryptographic quality of
output secret-keys.

156 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

o The lengths distribution of primitive signals
4 T

| |
2 100 10 200 =0 300
Iterations

Fig. 5. The lengths distribution of primitive signals

From this histogram (Fig.5), we observe, for the minimal
perturbations, that the lengths distribution of primitive signals
does not admit a probabilistic law. That means, it hard to an
attack to infer the input length according to the lengths of
output secret-keys. Its period represents an important benefit
to distinguish a good stream cipher regenerator. This dynamite
confirms another robustness factor of our regenerator of binary
sequences.

The distribution of normalized distances

1800~ 1 1 1 1 [ 1 7

Occurrences

T . ol |

o1 02 03 04
Normalized distances

I Mﬂ L

06 o7

Fig. 6. The distribution of normalized distances

In this histogram (Fig.6), it appears clearly the
accumulation of normalized distances nearest to 0.5 followed
by small peaks and a large peak exactly in 0.5. This result of
normalized distances reassures another significant property
filled by our proposed system: unpredictable of each binary
sequence. Therefore, we confirm the uncorrelation of
generated primitive signals able to withstand the collision and
correlation attacks [5][8] [9][10][14][18] [19] [21].

D. Simulating a human system

In reality, Man has a chaotic mind. It is hard to control an
user during the choice its input secret-key K. But, we can -

-
i T i s e e ey
T T T

ltll l{l“ | | ‘ fll “H i}

e il
SRR AR A AL LR

2

' 1 | | L
L] 50 100 1= 200 0 300

Iterations
N

Fig. 7. The lengths distribution of primitive signals
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simulate a human system for regenerate the inputs secret-keys
the same length (N=6). For this work, we adapt a Rand

function in order to product the integer numbers Z; in interval

[1,..., 200] randomly. The aim, in this emulation, is to study
the dynamic nature and the cryptographic quality of
regenerated primitive signals in the real situations.

This dynamite (Fig.7) reconfirms the random nature of the
lengths distribution of regenerated primitive signals for the
inputs secret-keys of same length. It is random and
unpredictable over time. This result is highly dependent on

calculated positive integers d; such that d, =z, mod 2"
with meN andm > 8. More specifically, it depends on the

quadratic structure (square-free integer or integer with square
factor) of the calculated positive integers d, . Because, the

binary representations of positive integers di , Nyand M,

have an impact on the balancing results. Wherefore, our
system inspires its robustness.

The distribution of hamming distances
.

PCTR Y | TR W R | B | - | &
o 0s 06 o7 o8
Hamming Distances

Fig. 8. The distribution of normalized distances

This outcome (Fig.8) is identical to the result obtained in
figure 6. It proves, in the minimal conditions, the
cryptographic nature of SSCQF algorithm [21]. In effect, our
algorithm is efficient and able to resist against attack periodic
sequences  [5][10]. Likewise, the keystreams are
cryptographically strong. This stream ciphers design generate
the keystream digits pseudo-randomly from smaller inputs
secret-keys without lessening security. They are also able to
withstand against to correlation, collision and exhaustive
search attacks on stream ciphers
[31[41[71[8]1[9][14][15][18][19][21]. We aim, by this work, to
evolve and improve at the symmetric-key encryption scheme.

VI. IMPLEMENTATION

This SSCQF regenerator of binary sequences can be
executed in different types of symmetric cryptosystem. We
aim, in this work, to evolve the cryptographic quality secret-
keys against various types of attacks [3][4][71[9][10][14][18]
[19]. Thus, according to behavioral study, this property of the
primitive signals regenerated is assured. In this section, we
itemize practically different execution stages of our proposed
system.

A. Implementation of process |
The first aim of this process is to generate the integer
numbers d,, n, and m, for each element Z; of a secret-key

157|Page

www.ijacsa.thesai.org




(IJACSA) International Journal of Advanced Computer Science and Applications,

K, then, their binary representations. In each iteration, the

binary representations of d;,n;and m; will be combined in
order to create an initial vector as follows

X;=n [ld”Im”.

| C:\Users\Student Desktop'teste\ SSCOF bin'Debug! SSCQF .exe
Enter the number of integers N

6

Entrer the 6 numher integers Zi:

68 128 188 48 180 168

dn m
Fig.9. Regenerationofthe ', 'Tand 'for asecret-key

From this figure (Fig.9), we show that the values of N, and

m; don’t depend on the values of di , but, these are strongly

related to its quadratic structure. In reality, it gives more
complexity and dynamite of our proposed system. It suffices
to behold here that any added bit has an impact on the

balancing results of initial binary vectors X;.

1 | C:\Users'Student Desktop teste'\ SSCOF bin' Debug | S8CQF .exe

i for each ni,di and mi

101 pAA1 B0
[110pAA1 AAAO

[11011A8A1 00

101 pARAA1 ABAD
[ 0101 A1 AAA168
[1111APAA1 ABAE

Fig. 10. Binary representation of each initial vector Xi

From this outcome (Fig.10), the binary representations of
each initial vector X, don’t have the same length. But, in our

Vol. 6, No. 12, 2015

proposal, we want to get the binary sequences which have the
same length L divisible by eight. This is the object of the
following process.

B. Implementation of process Il

As we have previously explained, we dedicate this process
to balancing the binary sequences generated in previous

process. The aim is to obtain initial binary vectors X; that

have a length multiple to eight. Because, in these situation, we
use a linear feedback shift register filtered by the primitive
polynomial of degree eight. So, if we change the degree of
primitive polynomial, in this case, we should adapt this
process to regenerate the initial vectors that have a length of its
degree. The results of this process are presented in following
figure (Fig.11).

B | C:\Users\Student Desktop'teste\ SSCQF \bin Debug | SSCQF exe

=8 [ 5
Nfter Balancing

[1310AA1 ABA111111
311APARBRG1 AOABR

71111010101 00008
AARARA1 616111660
AAPe1ARDERA11168
3101 pA1 616111060

Fig. 11. Balancing of each Xi

C. Implementation of process I11

After balancing each initial vectors comes this important
process. We implement this process for create an output

Keystream digit specific to each input secret-key K. In first
time, for each Y;, we construct L/8 linear feedback shift
registers, namely, LFSR,, ..., LFSR; . Then, we exercise

the Boolean functions R; on all LFSR; as defined in

process I11. The output keystream is obtained by concatenation
of the output binary sequences of all Boolean functions. This
following figure presents an embodiment of this process
(Fig.12).
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# | C:'Users'Student Desktop'teste\ SSCQF \bin' Debug | SSCQF. exe

Output secret—key keystream

101111 11111 1
11l11013111311l311l30111

A Bli11l1Ellﬂﬂﬂlﬂﬂllﬂlﬂlﬂﬂiiﬂﬂiﬂl 13111
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9110 B
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Ei1Eﬂi1EEEl11EEli115531533151111El1111EiEﬂlﬂi15533511111135133111313135335531531
1l EiElEiEllﬂi151Eli1EliﬂﬂliEﬂﬂi11Eﬂi111EEEiEEEiEli1131111131351311335531111
a1
11

1001 0 11811
Eﬂﬂlﬂﬂﬂlﬂi111Elli1151EﬂiEi1Eﬂﬂﬂﬂi11111EﬂiEﬂi1151ElEEEEEEElEElEEEEliEEiEiEiEilEii
EiEli1EliEEliEﬂﬂi11551111EEEiEEEiEli11Ei1111ElﬂﬂiEi1EEEEEli111133153111315133533
BﬂiEﬂiBﬂﬂﬂl1BB1E1Blﬂi1Ei1Blﬂi11311Eﬂi1EﬂﬂlliBﬂi11135B13BB131111B1111151

1!
Ellﬂﬂlﬂlﬂlﬂ 11513111311!3115351115 llﬂﬂﬂlﬂﬂﬂlﬂllllﬂlllllﬂlﬂ13113553111

Binary sequence (1)

¥ | C:\Users'Student Desktop'teste' SSCQF bin'Debug'SSCQF.exe

111Bilﬂﬂiiﬂﬂﬂiiiﬂﬂiiilﬂﬂﬂiﬂ
iAA1 A1 A6
B111111 5]
1BlBlllBlllélﬂlllllﬂllﬂﬂlllﬂﬂlllﬂ 9910111101111191001811

01 81111 B o
111531331113151333 EﬂﬂlﬂﬂiEEEEi1EﬂiEiElﬂi1EliﬂiElliEi1Eﬂi13351113311113531335131
111511111EiEﬂiEi1EEEEElli111351EEli1ElEiEEEEEEEiEﬂiEEEEi133151313113113131115113

IBBIBBBBIE

18 9 101919191101181011 911098111 180 10111101
1111313313113553511111 A1 AA1110A1 A1 AANAAAA1AA1 ARAA11AA1A1A1A11A11A1A111011

1111301.3111.131
911119111110108101 1)

Binary sequence (3)

Fig. 12. Binary sequence of Keystream digit

Note: The Keystream is obtained by concatenation of all
binary sequences (1, 2, 3, 4).

In this work, we innovate a quick, dynamic and complex
generator of the binary sequences. We are combined a large
theory concept for product a pseudorandom stream cipher. It
will be used as a symmetric key cipher for avoid the serious
security problems. This synchronous generator products
primitive signals uncorrelated, unpredictable and independents
of the same input secret-keys lengths. Moreover, it ensures the
cryptographic quality of internals states in order to avoid
correlation attacks [9][14][18] [19].

VIlI. CONCLUSION

We introduced, in this paper, a new synchronous stream
generator cipher named SSCQF. Our proposed symmetric key
system is founded on quadratic fields. We aim by this work to
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Binaky sequence'(4)

improve the confidentiality of transmitted data between two
communicated pairs. A behavioral study, in the minimal
conditions, appears the cryptographic nature of our
construction. It also confirms the concrete security of the
internal and external states, more, its ability to conserve the
unpredictable nature of each regenerated primitive signals. In
addition, the output secret-key length is not related to the input
secret-key length, but, is strongly linked to quadratic nature of
each element constructing an input secret-key. Idem, these
dynamite and robustness are clearly proved in implementation
section.
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