
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

226 | P a g e
www.ijacsa.thesai.org

JPI UML Software Modeling
Aspect-Oriented Modeling for Modular Software

Cristian Vidal Silva

Escuela de Ingeniería Informática, Facultad de Ingeniería y

Administración, Universidad Bernardo O’Higgins

Santiago, Chile

Leopoldo López

Instituto de Investigación y Desarrollo Educacional, IIDE

Universidad de Talca

Talca, Chile

Rodolfo Schmal

Escuela de Ingeniería Informática Empresarial

Facultad de Economía y Negocias

Universidad de Talca

Talca, Chile

Rodolfo Villarroel

Escuela de Ingeniería Informática, Facultad de Ingeniería

Pontifica Universidad Católica de Valparaíso

Valparaíso, Chile

Miguel Bustamante

Escuela de Ingeniería Comercial

Facultad de Economía y Negocios, Universidad de Talca,

Talca, Chile

Víctor Rea Sanchez

Facultad de Ciencias de la Ingeniería

Universidad Estatal de Milagro

Milagro, Ecuador

Abstract—Aspect-Oriented Programming AOP extends

object-oriented programming OOP with aspects to modularize

crosscutting behavior on classes by means of aspects to advise

base code in the occurrence of join points according to pointcut

rules definition. However, join points introduce dependencies

between aspects and base code, a great issue to achieve an

effective independent development of software modules. Join

Point Interfaces JPI represent join points using interfaces

between classes and aspect, thus these modules do not depend of

each other. Nevertheless, since like AOP, JPI is a programming

methodology; thus, for a complete aspect-oriented software

development process, it is necessary to define JPI requirements

and JPI modeling phases.

Towards previous goal, this article proposes JPI UML class

and sequence diagrams for modeling JPI software solutions. A

purpose of these diagrams is to facilitate understanding the

structure and behavior of JPI programs. As an application

example, this article applies the JPI UML diagrams proposal on

a case study and analyzes the associated JPI code to prove their
hegemony.

Keywords—JPI; UML; AOP; JPI UML Class Diagram; JPI

UML Sequence Diagram

I. INTRODUCTION

Aspect-Oriented Programming, AOP [4] [5] [6] [8] is an
extension of Object-Oriented Programming OOP that
introduces aspects, i.e., modules that advise classes’ behavior
or add structural members to base classes. Aspects are
intended to isolate and modularize crosscutting concerns in
classes and methods of software components.

Even though AOP isolates crosscutting concerns, it also
introduces implicit dependencies between advised classes and
aspects. First, aspects define pointcut PC rules, which alter
advised classes’ behavior; base classes are completely

oblivious about changes to their behavior and structure during
program execution. Second, changes in the signature of
advised methods of target classes can produce ineffective or
spurious aspects, i.e., occurrences of the fragile pointcut
problem [1] [3]. Furthermore, [2] [3] [9] observe that
dependencies between classes and aspects compromise
independent development of base modules and aspects code.
In classic AOP, developers of both, base code and aspects,
need some knowledge about of all software modules, i.e., base
classes and aspects that might advise them, rules and
associated advice code.

For isolating crosscutting concerns and getting modular
AOP programs without the mentioned implicit dependencies,
[1] proposed the concept of Join Point Interface JPI as new
AOP programming methodology. Like classic AOP [4] [5]
[6], aspects in JPI isolate crosscutting functionalities; but,
unlike classic AOP, JPI aspects do not provide PC rules.
Instead, aspects in JPI implement defined join point interfaces.
In addition, in JPI, advised classes define like PC rules for the
join point interfaces exhibition.

Looking for a complete JPI software development process,
this article proposes deploying two types of UML diagrams:
class diagrams and sequence diagrams to model JPI programs,
and presents a running example of a JPI program. Thus, the
main goal of this article is to present diagrams to understand
the structure and behavior of JPI programs and apply them to
a case study to analyze their hegemony with the associated JPI
code for a complete JPI software development process.
Clearly, this is basic for the goal of reaching a model-driven
JPI development methodology in the future.

This paper is organized as follows: Section II describes
traditional UML class diagrams along with proposed
extension to support JPI, JPI UML class diagrams. Section II

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

227 | P a g e
www.ijacsa.thesai.org

also describes the running JPI program example, and applies
JPI UML class diagrams on it; Section III presents traditional
UML sequence diagrams and their extension JPI UML
sequence diagrams. Like Section II, Section III applies JPI
sequence diagrams on the running example; Section IV
presents, for the running example, a consistency analysis of
JPI code and JPI UML diagrams; Section V describes related
work; and, Section VI presents the conclusions and future
work.

II. UML CLASS DIAGRAMS

A. Classic UML Class Diaggrams

For object-oriented software modeling, UML class
diagrams model the resources used to build and operate the
system. Class diagrams model each resource in terms of its
structure and relationships to other resources [7].

As an example, taking in account a Shopping Session
System SSS that preserves a record of costumers, items in the
stock, and transactions. The SSS also maintains information
about each shopping session that a costumer initiates; a
shopping session may include any number of transactions.
Figure 1 shows an UML class diagram for the described
structure of SSS in which classes include described attributes
and methods.

In general, new requirements for SSS will demand changes
in the entire system. For example, let us consider the
following new system requirements:

1) Frequent customer should receive a discount,

2) To log all transactions.
For these requirements, a classic solution consists of

adding new attributes and methods to either ShoppingSession
or Transaction class. Hence, either the buying(..) method of
class ShoppingSession or the constructor method of class
Transaction would invoke new required methods; mentioned
methods would include non-natural attributes and behavior no
needed for their core purpose. Thus, these extensions represent
clear examples of crosscutting concerns.

B. JPI UML Class Diagrams

This article follows ideas of [12] to propose and apply on
the ShoppingSession system JPI class-based diagram to model
JPI systems. The stereotype <<jpi>> labels join point
interfaces which may not contain attributes or methods. In
addition, a class linked to a JPI exhibits that join point
interface and possibly defines a pointcut PC rule for that
exhibition, i.e., a rule that defines a design policy through
aspects and thus precludes any design violation at the join
point events. In our proposal, aspects are represented as
normal classes that define attributes and methods, and
stereotyped by <<aspect>>. Since aspects implement join

point interfaces, they directly link to a join point interface
class and define a kind of join point (before, around, and after)
for the join point interface implementation.

Fig. 1. UML class diagram of the system Shopping Session

Figure 2 shows a JPI UML class diagram for the JPI SSS
version. Note that there is a join point interface JPIPreBuying
to link the ShoppingSession class and PreBuying aspect. In
these associations, JPIPreBuying defines a method exhibited
by class ShoppingSession and implemented by aspect
PreBuying; class ShoppingSession defines a PC rule for the
buying(..) method execution. Furthermore, Figure 2 presents a
join point interface JPIDiscount to link the ShoppingSession
class and Discount aspect, as well as, a join point interface
JPILogging to link the ShoppingSession class and Logger
aspect. For the first mentioned association, ShoppingSession
exhibits the method JPIDiscount(price, ss), a method defined
by JPIDiscount and implemented by the Discount aspect, and
defines a PC rule for the BuyTransaction class invocation. In
this case, price is an argument of the constructor whereas ss
corresponds to the ShoppingSession instance that invokes for
the execution of BuyTransaction class constructor. It is
necessary to remark, each link from a class to a join point
interface is stereotyped by the name <<exhibits>> to indicate
the associated join point interface method and its arguments
along with a PC rule to define the join points occurrence.
Similarly, the implements signature labels links from aspects
to join point interfaces. Thus, since JPI UML class diagrams
only applies stereotypes for associations and JPI elements;
therefore, usual UML tools seems able for JPI UML class
modeling.

Next section presents details about a proposal for the
behavior modeling of a JPI system by JPI sequence diagrams,
and presents example models for scenarios of the
ShoppingSession system, as well.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

228 | P a g e
www.ijacsa.thesai.org

Fig. 2. JPI UML class diagram of updated version of system ShoppingSession

III. JPI UML SEQUENCE DIAGRAMS

UML sequence diagrams model execution scenarios of
object-oriented programs [7]. Hence, to model the interaction
between participants in the execution of JPI systems, this
article proposes the so-called JPI sequence diagram which
considers aspects as a sort of participants stereotyped by
<<aspect>> in diagrams, and interactions between participant
objects and aspects at join points are denoted by advices. Our
modeling hypothesis is that by means of JPI sequence
diagrams, the associated behavior of JPI programs for model-
scenarios is deductible.

According to JPI notation, join point interfaces act as a
bridge to let in the UML class instance catches up the result of
the defined aspect’s method [1] [2] [3]. Communication
between aspects and classes instances is synchronous. Thus,
when an instance of an aspect advises an object, i.e., it
implements a join point interface for that class instance, the
advised object, in order to continue its actions, waits for a
message from the aspect to proceed.

AOP languages like AspectJ as well as JPI only permit
around advices to explicitly proceed. Therefore, in AspectJ
and JPI, before and after advices implicitly proceed associated
to the advised classes’ methods execution, i.e., before or after
advices must execute and then the advised classes can
continue their execution. Like for the around advices
behavior, this proposal considers messages for an explicit
activation from aspects to class instances to proceed. Given

these ideas, rules to model JPI program-behavior execution
scenarios by means of JPI sequence diagrams correctly are:

I. Object and aspects in any execution scenario are

participants.

II. As usual, objects participants communicate by

synchronous and asynchronous messages represented

by and , respectively. A participant that sends a

synchronous message waits for a return message,

represented by , from the target object to continue
its actions.

III. A participant can create or delete an existent object.

For objects creation, a box that represents an object

participant is linked to the creation-sent message. An

arrow like a return message represents a creation-sent

message. Destruction messages, synchronous or

asynchronous, imply that the affected object will

definitely end its activities and a cross at the bottom of

its lifeline after its destruction represents this situation.

IV. When a participant receives a message, an activation

gray line is created until it finishes its associated

actions and returns.

V. When a class B exhibits a join point interface with a
pointcut PC, and a participant a’ of class A sends a

message M to a participant b’ of class B asking for a

method involved in the PC rule, there will be a

synchronization point in b’ lifeline, if PC rule holds. A

JPI message denotes the JPI method name and the

values of its arguments. These values are usually

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

229 | P a g e
www.ijacsa.thesai.org

conformant with the advised method signature, i.e.,

matching the number and types of parameters. For

example, message 3.0 of Figure 3 shows a JPI message

<<around>> JPIPreBuying(it, qty = units), i.e., it and

qty are arguments of the JPIPreBuying method call,

and it takes the value of it from the source participant,

in this case from sp1, and qty takes the value of units

from that source as well. In addition, advice

<<around>> stereotypes the JPI message.

To preserve the UML sequence diagrams semantic, three
important rules are proposed and applied here:

 1st, a JPI message from a participant object O to a
participant aspect A always appears after the invocation
message of the advised method.

 2nd, for any synchronized message M from a
participant X1 to a participant X2, then M requires a
return message from X2 to X1.

 3rd, for around advices, proceed calls are nested non-
return calls.

In addition, for a JPI message from an object to an aspect,
the message signature must be conformant to the JPI interface,
which includes details for the advice execution by the aspect,
i.e., kind of advice, parameters of the method in the JPI
interface along with their values. Before performing any
action, advised object waits for a proceed message from the
aspect.

Proceed messages associated to before and after advices
are like return messages in OOP-languages, whereas around
advices cause that proceed messages behave like nested calls
in an imperative language.

In general, proceed messages are more like the “pony
express” in the Old West that delivers an important
information (e.g. “paidPrice with discount” in the 1st proceed
message of Figure 4) to the encamped (waiting) cavalry
commander (the method) just before conducting the “correct”
attack (method execution) to the enemy.

Following preceding mentioned rules, since a JPI message
is a synchronized message, for the previous described
sequence of Figure 3, the first aspect-participant sends
proceed message 3.1 to the participant object sp1, which then
can perform its actions. A proceed message indicates the
preserved and updated values of arguments important for the
advised method to execute. For example, message 3.1 of
Figure 3 shows a proceed message, proceed(it = new
Item(“null product”, 0, 0), units = 0), for the participant sp1,
i.e., a new item instantiates the argument it of advised method
whereas units has the value of 0.

With these rules, it is possible to model behavior of JPI
programs for particular scenarios. Since UML sequence
diagrams allow modeling global scenarios and algorithmic
behavior by means of combined fragments, thus this modeling
proposal for JPI programs behavior would permit to
understand JPI programs participants and their interactions for
the reviewed scenarios, i.e., what a JPI program does, to
obtain a semantics understanding about model JPI programs.

Figure 3 shows a JPI UML sequence diagram for the
scenario in which a frequent customer wants to buy a product
not sold by the ShoppingSession system: action 1 shows a
TestDriver object that obtains sp1, an instance of
ShoppingSession, for a frequent Costumer c1 = {2, ‘Cristian’}
who wants to buy 15 units of the item b1, a not in stock item,
action 2.0 represented by the message buying(it = b1, units =
15) from TestDriver to sp1. Next, action 3.0 represents the
<<around>> advice JPIPreBuying(it, qty = units) activation
for the PreBuying aspect, meanwhile the action 3.1 represents
a proceed message from PreBuying aspect that changes values
of arguments it and units of the sp1’s advised method, i.e., it =
new item(“null product”, 0, 0), units =0. Action 4.0 takes into
account the <<around>> advice in message
JPIDiscount(paidPrice=it.getPrice(), ss=this) from sp1 to an
instance of aspect Discount. By action 4.1, aspect Discount
sends a message to one of its methods
freqCustomer(ss.getCustomer()); and action 4.2 represents a
proceed message from Discount aspect to sp1. The result of
this proceed message is to update paidPrice to 0.9*paidPrice
whereas the price of stocked item ss remains invariant. Action
5.0 follows an <<around>> advice without arguments from
sp1 to the aspect Logger. Action 5.1 is a proceed message
from the aspect Logger to sp1. Action 6.0 is a message that
creates a new Transaction instance t1 with arguments it, qty,
and paidPrice; and action 6.1, return t1, is a message from the
created Transaction object to sp1 that returns itself. After
these actions, since proceed messages return in a LIFO order
like nested procedure calls, and previous <<around>>
messages have not returned yet, action 5.2 returns t1 from sp1
to the Logger aspect, and action 5.3, after transaction t1 gets in
the log, returns t1 from Logger aspect to sp1. Likewise, action
4.2 returns t1 from sp1 to aspect Discount, and action 4.3
returns t1 from aspect Discount to sp1. Since the latter is a
“null item”, the stock of item it does not change (decremented
by 0). Likewise, action 3.2 is a return message, in this case,
the message returns idTrans=t1.getIdTrans(), from sp1 to
PreBuying aspect, and message 3.3 returns from PreBuying
aspect to sp1 again. Finally, message 2.1 returns idTrans from
sp1 to TestDriver instance which sends message 7.0 to method
TranDetails(idTrans) of the Logger aspect. Message 7.1 gives
back the execution control to instance of TestDriver and the
execution scenario finishes.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

230 | P a g e
www.ijacsa.thesai.org

Fig. 3. JPI UML sequence diagram for a frequent customer buying a product not sold by the ShoppingSession system

Figures 4, 5, and 6 describe other execution scenarios for
the ShoppingSession system, which semantic is similar to the
Figure 3 described semantic.

Next section presents part of the ShoppingSession system
code, to review and verify its functioning according to the
described modeled scenarios.

IV. ANAYZING JPI CODE

Figure 7 presents the code of class ShoppingSession that
exhibits the join point interfaces JPIPreBuying, JPIDiscount,
and JPILogger: execution of method buying(..) exhibits
JPIPreBuying whereas the call of constructor of class
Transaction exhibits JPIDiscount and JPILogger. Figures 8,
9, and 10 show the aspects PreBuying, Discount, and Logger

to implement mentioned join point interfaces. In addition,
Figure 11 presents the code for the join point interfaces
definition. Clearly, this code solution structurally represents
associations and components of JPI UML class diagram of
Figure 2.

In the functioning logic analysis of the code class
ShoppingSession and its exhibited aspects, i.e., aspect
PreBuying, Discount, and Logger, a clear hegemony exists to
the functioning logic of the sequence diagrams of Figures
3, 4, 5, and 6. When a frequent costumer buys units of an item
it, Figure 3, 4, and 5 show the behavior of class
ShoppingSession and its exhibited aspects when the item it
represents a null item, item it is an item in stock, and item it is
an item without enough units in stock, respectively. Figure 3

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

231 | P a g e
www.ijacsa.thesai.org

shows a sequence diagram that includes a UML 2.0 opt
combined fragment, between class ShoppingSession and
aspect PreBuying, with a constraint for item it, when it is a
null item. For this scenario, aspect PreBuying instantiates item
it to an item named “null item”, and proceeds with the new
value of it and units = 0, i.e., buying 0 units of item it. Figure
4 shows a sequence diagram that includes an opt combined
fragment between class ShoppingSession and aspect
PreBuying, with a constraint for item it that is fulfilled, i.e.,
item it !=null and it.getUnits() >= qty, qty represents the units

argument in PreBuying aspect. For the latter scenario, aspect
PreBuying proceeds with it and qty actual values without
changes. Figure 5 shows a sequence diagram that includes an
opt combined fragment, between class ShoppingSession and
aspect PreBuying, with a constraint for item it that is not
fulfilled in that scenario, though there are enough units in
stock, i.e., item it is not a null item, but it.getUnits() < qty. For
this scenario, Figure 5 shows that aspect PreBuying proceeds
with item it and units = 0.

Fig. 4. JPI UML sequence diagram for a frequent customer buying a product in stock at the ShoppingSession system

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

232 | P a g e
www.ijacsa.thesai.org

When a non-frequent costumer buys qty units of an item it
in stock, such as Figure 6 shows, aspect PreBuying proceeds
without changing it and qty values.

Concerning aspect Discount that receives paidPrice, i.e.,
the price for the new item, and ss, the equivalent instance of
ShoppingSession, such as Figures 3, 4, and 5 show, for a
frequent costumer, the constraint of the second opt combined
fragment of these figures is fulfilled, thus aspect Discount
proceeds with price = paidPrice*0.9, and preserves the ss
value. Thus, there is always a discount for transactions
performed by a frequent costumer. However, for a non-

frequent costumer, Figure 6 shows that a discount does not
apply on the paid price.

Regarding aspect Logger, for the mentioned scenarios, this
aspect logs final values for each transaction, i.e., log of values
of transactions after being updated by aspects PreBuying and
Discount. Since each of these behaviors is modeled by JPI
UML sequence diagrams, and they are consistent to the code
of classes and aspects, the behavior of aspects PreBuying,
Discount, and Logger is consistent with the functioning logic
of ShoppingSession system execution scenarios expressed in
the JPI UML sequence diagrams of Figures 3, 4, 5, and 6.

Fig. 5. JPI UML sequence diagram for a frequent customer buying a product without enough stock at the ShoppingSession system

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

233 | P a g e
www.ijacsa.thesai.org

V. RELATED WORK

As was mentioned, AOP represents a software
development paradigm to modularize crosscut behavior [5].
For modeling traditional AOP solutions, [10] presents an
UML use case application and extension of the formal
language AspectZ for the aspect-oriented software
requirements specification and analysis. Likewise, [11]
describes an aspect-oriented UML class diagram-based and
the OOAspectZ formal language for the software structure and
requirements specification. In general, [14] surveys UML-
based aspect-oriented design approach. Thus, mentioned
research does not involve JPI ideas.

For JPI UML-based modeling, [13] presents an AspectZ
extension, JPIAspectZ, for the formal modeling of JPI
software requirements. Thus, given the JPI benefits for the

modular software production, this research is of a high value
looking for a complete JPI software development process.

VI. CONCLUSIONS

JPI is a novel aspect-oriented programming methodology
that permits solving classical issues of traditional aspect-
oriented programming, i.e., implicit dependencies among
classes and aspects. Nevertheless, as traditional aspect-
oriented programming, elements such as JPI UML or JPI
formal languages like JPI AspectZ [10] [11] [13] do not exist
to perform a complete software development process inspired
by JPI methodological practices. To partially solve these
issues, this article has proposed and applied as well, JPI UML
diagrams, i.e., JPI UML class diagrams and JPI UML
sequence diagrams, respectively, for modeling structure and
behavior of software applications developed using JPI to ease
aspect-based programming.

Fig. 6. JPI UML sequence diagram for a non-frequent customer buying a product in stock at the ShoppingSession system

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

234 | P a g e
www.ijacsa.thesai.org

JPI UML class diagrams allow capturing main modules of
JPI programs, i.e., classes and join point interfaces, and
associations between them. The presented JPI UML proposal
clearly established associations among classes and join point
interfaces, such as direction, stereotypes for different kind of
advices, and pointcut rules. By mean of JPI class diagrams,
one can know and understand existing relationships among
classes and join point interfaces.

JPI UML sequence diagrams capture the functioning logic
of modeled execution scenarios of a JPI program, and by
means of these diagrams, we hypothesize that the functioning
of a program can be deduced. Our proposal used opt combined
fragments to zoom conditions and behavior for the functioning
logic of aspects. After applying JPI UML sequence diagrams
and analyzing the code of the modeled program for the
ShoppingSession example, this article has shown consistency
between models and the program code derived by means of
our methodological approach. Clearly, using JPI UML
diagrams, there is a functioning logic hegemony between
modeled execution scenarios and code of main class and the
exhibited aspects. This issue permits continuing researching
to look for a full JPI software development process.

REFERENCES

[1] E. Bodden, “Closure Joinpoints: Block Joinpoints without Surprises,”

Proceedings of the Tenth International Conference on Aspect-Oriented
Software Development, AOSD '11. ACM, New York, NY, USA, pp.

117-128, March 2011.

[2] E. Bodden, E. Tanter, M. Inostroza, “A Brief Tour of Join Point
Interfaces,” Proceedings of the 12th Annual International Conference

Companion on Aspect-Oriented Software Development, AOSD ’13
Companion. ACM, New York, NY, USA, pp. 19–22, March 2013.

[3] E. Bodden, E. Tanter, M. Inostroza, “Join point interfaces for safe and

flexible decoupling of aspects,” ACM Transactions on Software
Engineering and Methodology, ACM, New York, NY, USA, pp. 1–41,

February 2014

[4] B. Griswold, E. Hilsdale, J. Hugunin, W. Isberg, G. Kiczales, M.

Kersten, “Aspect-Oriented Programming with AspectJ™,” AspectJ.org,
Xerox PARC, 2001. Tutorial slides online at

http://www.cse.msu.edu/sens/Software/aspectj/aspectj1.0.4/doc/tutorial.
pdf [Accessed: 25-Sep-2015]

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M.

Loingtier, J. Irwin, “Aspect oriented programming,” Proceeding of the
European Conference on Object-Oriented Programming (ECOOP),

Springer-Verlag LNCS 124, Finland, June 1997.

[6] G. Kiczales, M. Mezini, “Aspect-Oriented Programming and Modular
Reasoning,” Proceedings of the 27th International Conference on

Software Engineering, ICSE '05. ACM, New York, NY, USA, pp. 49-
58, May 2005.

[7] T. Pender, “UML Bible,” John Wiley & Sons, Inc., New York, NY,

USA, 1 Edition, 2003.

[8] L. Ramnivas, “AspectJ in Action: Practical Aspect-Oriented
Programming,” Manning Publications Co. Greenwich, CT,

USA, 2003.

[9] F. Steimann, “The Paradoxical Success of Aspect-oriented

Programming,” Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages, and

Applications, OOPSLA '06, Portland, Oregon, USA, October 2006 .

[10] C. Vidal, R. Saens, C. Del Rio, R. Villarroel, “Aspect-Oriented
Modeling: Applying Aspect-Oriented UML Use Cases and Extending

AspectZ,” Computing and Informatics Journal, Bratislava, Slovak , pp.
573-593, 2013.

[11] C. Vidal, R. Saens, C. Del Rio, R. Villarroel, “OOAspectZ and Aspect-

Oriented UML Class Diagrams,” Ingeniería e Investigación Journal,
Medellín, Colombia, pp. 66-71, 2013.

[12] C. Vidal, R. Villarroel, “JPI UML: JPI class and sequence diagrams for

aspect-oriented JPI applications,” Proceedings of XXXIII International
Conference of the Chilean Computer Society, Talca, Chile, November

2014.

[13] C. Vidal, R. Villarroel, C. Pereira, “JPIAspectZ: A formal specification
language for aspect-oriented JPI applications,” Proceedings of XXXIII

International Conference of the Chilean Computer Society, Talca, Chile,
November 2014.

[14] M. Wimmer, A. Schauerhuber, G. Kappel, W. Retschitzegger, W.

Schwinger, E. Kapsammer, “A survey ofn UML-based aspect-oriented
design modeling,” Journal ACM Computing Surveys CSUR, New York,

NY, USA. vol.43, issue 4, pp. 1-28, 2011.

Fig. 7. Class ShoppingSession code of the ShoppingSession system

package classes;

import java.util.*; import joinpointinterfaces.*;

public class ShoppingSession {

 private HashMap<Integer, Transaction> ShoppingSessionTrans;

 private Customer cus;

 exhibits Integer JPIPreBuying(Item it, int qty): execution(Integer buying(..)) && args(it, qty);

 exhibits BuyTransaction JPIDiscount(double price, ShoppingSession ss): call(BuyTransaction.new(..)) &&

 args(*, *, price) && this(ss);

 exhibits BuyTransaction JPILoggingBuy(): call(BuyTransaction.new(..));

 public ShoppingSession(Customer acus){...}

 public Customer getCustomer(){ return cus;}

 public void closingSession(){ ...}

 public Integer buying(Item it, int units){

 BuyTransaction buyTrans; Integer key;

 buyTrans = new BuyTransaction(it, units, it.getPrice());

 key = buyTrans.getIdTrans();

 ShoppingSessionTrans.put(key, buyTrans);

 it.setUnits(it.getUnits()-units);

 return key;

 }

 ...

}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

235 | P a g e
www.ijacsa.thesai.org

Fig. 8. Aspect PreBuying of the ShoppingSession system

Fig. 9. Aspect Discount of the ShoppingSession system

Fig. 10. Aspect Logger of the ShoppingSession system

Fig. 11. JPI instances of the ShoppingSession system

package aspects;

import classes.*; import joinpointinterfaces.*;

public aspect PreBuying{

 Integer around JPIPreBuying(Item it, int qty){

 if (it != null){

 if (qty <= it.getUnits())

 return proceed(it, qty);

 }

 else

 it = new Item("null product", 0, 0);

 return proceed(it, 0);

 }

}

package aspects;

import classes.*; import joinpointinterfaces.*;

public aspect Discount {

 /*To estabish aspects precedence*/

 declare precedence: Discount, Logger;

 final String freqCustomers[] = {"Laurie", "Cristian"};

 boolean frequentCostumer(String N){

 for(int i=0;i<freqCustomers.length; i++){

 if (freqCustomers[i].equals(N))

 return true;

 }

 return false;

 }

 BuyTransaction around JPIDiscount(double paidPrice, ShoppingSession ss){

 double factor = 1;

 if (frequentCostumer(ss.getCustomer().getName()))

 factor = 0.9; return proceed(paidPrice*factor, ss);

 }

}

package aspects;

import java.util.*; import classes.*; import joinpointinterfaces.*;

public aspect Logger {

 private static HashMap<Integer, Transaction> log = new HashMap<Integer, Transaction>();

 BuyTransaction around JPILoggingBuy(){

 BuyTransaction BT = proceed();

 if (BT.getQuantity()==0)

 //Non-Successful Logging

 else

 //Successful Logging

 log.put(BT.getIdTrans(), BT);

 return BT;

 }

 public void ListLogger(){ ... //List of Transactions}

 public static void TranDetails(Integer idTrans){ ... // Details of Transaction idTrans}

}

package joinpointinterfaces;

import classes.*;

jpi BuyTransaction JPIDiscount(double paidPrice, ShoppingSession SS);

jpi BuyTransaction JPILoggingBuy();

jpi Integer JPIPreBuying(Item it, int qty);

