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Abstract—Denial-of-service (DoS) attack is aim to block the
services of victim system either temporarily or permanently
by sending huge amount of garbage traffic data in various
types of protocols such as transmission control protocol, user
datagram protocol, internet connecting message protocol, and
hypertext transfer protocol using single or multiple attacker
nodes. Maintenance of uninterrupted service system is technically
difficult as well as economically costly. With the invention of new
vulnerabilities to system new techniques for determining these
vulnerabilities have been implemented. In general, probabilistic
packet marking (PPM) and deterministic packet marking (DPM)
is used to identify DoS attacks. Later, intelligent decision proto-
type was proposed. The main advantage is that it can be used with
both PPM and DPM. But it is observed that, data available in
the wireless network information system contains uncertainties.
Therefore, an effort has been made to detect DoS attack using
dominance based rough set. The accuracy of the proposed model
obtained over the KDD cup dataset is 99.76 and it is higher
than the accuracy achieved by resilient back propagation (RBP)
model.

Keywords—Denial of service; Rough set; Lower and upper
approximation; Dominance relation; Data analysis

I. INTRODUCTION

Denial-of-service attack is one of the most threatening
security issues in wireless networks. Over the past few years,
it is observed that while surfing websites on the internet
a computer in the network host may have been the target
of denial-of-service attacks using various protocols such as
TCP, UDP, ICMP, and HTTP. Among which TCP flooding is
the most prevalent [1]. This results in disruption of services
at high cost. The main objective of denial-of-service attack
is to consume a large amount of resources, thus preventing
legitimate users from receiving service with some minimum
performance. TCP flooding [1] exploits TCPs three-way hand-
shake procedure, and specifically its limitation in maintaining
half-open connections. Denial of service attack is a technique
to make a host or network resource block to its intended
users. The attack temporarily or permanently interrupts or
suspends services of a computer in the network host connected
to the Internet. A permanent denial-of-service attack damages a
system so badly that it requires replacement or reinstallation of
hardware such as routers, printers, or other network hardware.
Hence in general, detection is required before the spread of
this attack. Detection of such an attack is often a part of
information security [2, 3]. Therefore, it is essential to secure
wireless networks from such an attack.

A distributed denial of service (DDoS) attack is a simul-
taneous network attack on a victim from a large number of
compromised hosts, which may be distributed widely among
different, independent networks [4]. By exploiting asymmetry
between network wide resources, and local capacities of a
victim a DDoS attack can build up an intended congestion
very quickly. The Internet routing infrastructure, which is
stateless and based mainly on destination addresses, appears
extremely vulnerable to such coordinated attacks. It is a type of
cyber attacks in which the victim will be overloaded and will
not able to perform any normal functions. Many researchers
have presented their work in various directions. Gavrilis and
Dermatas uses radial basis function neural network and sta-
tistical features to achieve accurate classification of abnormal
activity under DDoS attack without interfering normal traffic
[5]. The advantage of this method is that it can block the
traffic selectively based on the attack. Wang et al. introduced
a queuing model for the evaluation of the denial of service
attacks in computer networks. The network is characterized
by a two-dimensional embedded Markov chain model. It helps
in developing a memory-efficient algorithm for finding the
stationary probability distribution which can be used to find
other interesting performance metrics such as connection loss
probability and buffer occupancy percentages of half-open
connections [6]. Gelenbe and Lukes proposed a model to
defense denial of service attack using cognitive packet network
infrastructure. The technique uses smart packets to select paths
based on quality of service [7].

Mell introduces resistant intrusion detection system archi-
tecture to counter denial of service attack. The components
of intrusion detection system architecture are invisible to the
attacker and also this architecture relocates intrusion detection
system components from attacked hosts. This is achieved by
using mobile agent technology [8]. Hamdi uses outbound and
inbound demilitarized zone to detect denial of service attack.
The major advantage is that it also identifies synchronize-
flooding attack [9]. Later, Chen et al., applied targeted filtering
method to identify a distributed denial of service attack. The
advantage is that it can be deployed at a local firewall. But,
it takes extra time to detect the attack [10]. Rajkumar and
Selvakumar proposed a model using Resilient back propaga-
tion (RBP) algorithm as the base classifier for the detection of
denial of service attack [11]. From the literature survey, it is
understood that much research is carried out for the detection
of denial of service attack and distributed denial of service
attack.
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Denial-of-service attacks commonly block the services of
legitimate user in a wireless network either temporarily oe per-
manently by supplying either short term orlong term harmful
artificial traffic. Additionally, it is observed that the informa-
tion system pertaining to denial-of-service attack in wireless
network contains uncertainties and the attributes involved in
the information system have some specific order. To deal with
such uncertainties, criteria, and specific order the concept of
dominance based rough set can be used. This motivation help
us to think a alternative approach using dominance based rough
set.

In this paper, we propose an alternative method using
dominance based rough set for the detection of denial of
service attack. The rest of the paper is organized as follows:
we discuss basic concepts of dominance based rough set in
section 2. Section 3 discusses dominance principle. A case
study is presented in section 4 to analyze and track denial of
service attack using dominance based rough set. Finally, the
paper is concluded with a conclusion.

II. FOUNDATION OF INFORMATION SYSTEM

An information system provides an expedient to describe
a finite set of objects called the universe with a finite set
of attributes thereby represents all the available information
and knowledge. Formally, it is defined as a four tuple T =
(U,A, V, f) where U = {x1, x2, · · · , xn} is a non-empty finite
set of objects called the universe, A = {a1, a2, · · · , an} is a
nonempty finite set attributes. The component V is defined
as V = ∪a∈AVa, where Va is the set of attribute values that
an attribute a may take. The component f : (U × A) → V
is an information function. The information system is said to
be a decision system if A = C ∪ {d} , C 6= φ, {d} 6= φ and
C ∩ {d} = φ where C is a set of conditional attributes and d
is the decision [12].

Let B ⊆ A. Two objects xi and xj are said to be B-
indiscrinble if f(xi, a) = f(xj , a) for all a ∈ B. Mathemat-
ically, we denote it as IND(B) is defined as below and we
write xiIBxj .

IND(B) =
{
(xi, xj) ∈ U2 : f(xi, a) = f(xj , a)∀a ∈ B

}
Object xj dominates object xi on criteria a if V xj

a ≤ V xi
a ,

where V xj
a is the attribute value of object xj on criteria a. Let

Q ⊆ C be a criteria set. Let us define a dominance relation
dm(Q) on U as

dm(Q) =
{
(xi, xj) ∈ U2 : V xj

a ≤ V xi
a ∀a ∈ Q

}
(1)

If (xi, xj) ∈ dm(Q), then we write xjDQxi. Let P ⊆ C is a
criteria set. Let us define D+

P (xi), P -dominating xi as below.

D+
P (xi) = {xj ∈ U : xjDPxi} (2)

Similarly, we define a set D−P (xi), P -dominated by xias below.

D−P (xi) = {xj ∈ U : xiDPxj} (3)

Two object xi and xj are said to be inconsistent, if their
criterion do not satisfy dominance principle with ordered
decision class [13].

III. DOMINANCE BASED ROUGH SET

Rough set of Pawlak is a mathematical tool used in data
analysis in particular to analyze uncertainties [14]. But it fails
to analyze data containing preference order and may lead to
loss of information. To overcome the limitations the concept
of dominance based rough set is introduced [15, 16, 17]. In
dominance based rough set, given a set of objects, there is
a criterion at least among condition attributes. Additionally
attributes like color, country may not be of preference ordered.
Therefore, criteria attributes are divided into ordered decision
classes based on decision attribute. Also criteria in condition
attributes are correlated semantically with ordered decision
attribute by means of dominance relation.

Formally, dominance based rough set (DRS) is based on
the concept of dominance principle to extract knowledge from
the information system. Here, the classification is carried out
based on decision class (d). Therefore, the decision (d) divides
the universe U into finite number of classes, CL, such as

CL = {CLi : i ∈ T} ;T = {1, 2, 3, · · · ,m}

Additionally, these classes are ordered. It means that, if r, s ∈
T and r > s, then the objects of class Clr are preferred then
the objects of class Cls. The upward and downward unions of
every element Cli of CL is given as Cl≥i and Cl≤i respectively.
Mathematically, it is defined as

Cl≥i = ∪j≥iClj ;Cl≤i = ∪j≤iClj

Let Q ⊆ C, objects certainly belongs to Cl≥i and Cl≤i are
in their lower approximations Q(Cl≥i ) and Q(Cl≤i ) respec-
tively. The lower approximations are defined as below.

Q(Cl≥i ) =
{
x ∈ U : D+

Q ⊆ Cl
≥
i

}
(4)

Q(Cl≤i ) =
{
x ∈ U : D−Q ⊆ Cl

≤
i

}
(5)

Similarly, objects possibly belong to Cl≥i and Cl≤i are in
their upper approximations Q(Cl≥i ) and Q(Cl≤i ) respectively.
It is defined as below.

Q(Cl≥i ) =
⋃

x∈Cl
≥
i

D+
Q(x) (6)

Q(Cl≤i ) =
⋃

x∈Cl
≤
i

D−Q(x) (7)

The boundary region of Cl≥i and Cl≥i , which contains am-
biguous elements are defined as below

BNQ(Cl
≥
i ) = Q(Cl≥i )−Q(Cl≥i )

BNQ(Cl
≤
i ) = Q(Cl≤i )−Q(Cl≤i )
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A. Dominance Relation Based Rule Formation

For a given information system, the dominance principle is
capable of deducing more generalized description of objects.
This can be done by means of upward and downward union
of rough approximation. This is a fundamental concept in a
knowledge discovery.

Let Q ⊆ C be a conditional attributes. Based on the rough
approximation, the Q-lower and Q-upper approximations are
computed on criterion attribute to extract the knowledge. The
rules generated from criterion attribute using upward and
downward union of Q-lower, Q-upper approximations are of
the form “If Condition then Decision”.

In real life situation, the data collected may be uncertain,
vague and imprecise which may leads to inconsistency. The
inconsistency data are identified in rough set by means of
indiscernible relation. Likewise the inconsistency presents in
the collected data are identified in dominance based rough
set on employing dominance relation. The two objects are
said to be inconsistent when the criteria attributes do not
satisfy dominance principle with decision attribute. Further
such inconsistency exists in logic must be removed try as
it leads to error decision. The simplest way to remove such
inconsistency is to omit the inconsistent objects. The five kinds
of determinate rules associated with dominance based rough
set are defined as follows [13].

1) For all criteria ai ∈ Q ⊆ C; if f(x, a1) ≥ V x
a1

and f(x, a2) ≥ V x
a2

and · · · f(x, ai) ≥ V x
ai

, then
x ∈ Cl≥t where t ∈ {2, 3, · · · , n}. Rules generated in
such way called as certain D≥ decision rules. These
rules are obtained from Q(Cl≥t ).

2) For all criteria ai ∈ Q ⊆ C; if f(x, a1) ≥ V x
a1

and f(x, a2) ≥ V x
a2

and · · · f(x, ai) ≥ V x
ai

, then
x ∈ Cl≥t where t ∈ {2, 3, · · · , n}. Rules generated
in such way called as possible D≥ decision rules.
These rules are obtained from Q(Cl≥t ).

3) For all criteria ai ∈ Q ⊆ C; if f(x, a1) ≤ V x
a1

and f(x, a2) ≤ V x
a2

and · · · f(x, ai) ≤ V x
ai

, then
x ∈ Cl≤t where t ∈ {1, 2, · · · , (n− 1)}. Rules
generated in such way called as certain D≤ decision
rules. These rules are obtained from Q(Cl≤t ).

4) For all criteria ai ∈ Q ⊆ C; if f(x, a1) ≤ V x
a1

and
f(x, a2) ≤ V x

a2
and · · · f(x, ai) ≤ V x

ai
, then x ∈

Cl≤t where t ∈ {1, 2, · · · , (n− 1)}. Rules generated
in such way called as possible D≤ decision rules.
These rules are obtained from Q(Cl≤t ).

5) Let O1 = {a1, a2, · · · , ak} ⊆ C; O2 = {ak+1,
ak+2, · · · , ai} ⊆ C; Q = (O1 ∪ O2); O1 and
O2 are not necessarily disjoint. If f(x, a1) ≥ V x

a1

and f(x, a2) ≥ V x
a2

, · · · , and f(x, ak) ≥ V x
ak

and
f(x, ak+1) ≤ V x

ak+1
and f(x, ak+2) ≤ V x

ak+2
, · · ·

and f(x, ai) ≤ V x
ai

, then x ∈ Clu∪Clu+1∪· · ·∪Clv ,
where r ≤ u ≤ v ≤ t and r, u, v, t ∈ T .
Rules generated in such way called as approximate
D≥≤ decision rules. These rules are obtained from
Q(Cl≤r ) ∩Q(Cl≥t ).

The rules 1 and 3 represent certain knowledge whereas
rules 2 and 4 represent possible knowledge that can be ex-

tracted from the information system. The rules 5 represent am-
biguous knowledge. If y ∈ Q(Cl≥t ) such that f(y, a1) = V y

a1
,

f(y, a2) = V y
a2

, · · · , f(y, ai) = V y
ai

, then y is called as basis of
the rule. An object which matches both condition and decision
parts of a rule supports the decision rule. An object which
meets only condition part of a rule is covered by a decision
rule. Decision rules either certain or approximate is said to be
complete if it satisfies following conditions.

1) Each x ∈ Q(Cl≥t ) must support at least one certain
D≥ decision rule whose consequent is x ∈ Cl≥r
where r, t ∈ {2, 3, · · · , n} and r ≥ t.

2) Each x ∈ Q(Cl≤t ) must support at least one certain
D≤ decision rule whose consequent is x ∈ Cl≤r
where r, t ∈ {1, 2, · · · , (n− 1)} and r ≤ t.

3) Each x ∈ (Q(Cl≤r ) ∩ Q(Cl≥t )) must support at
least one approximate D≥≤ decision rule whose
consequent is x ∈ Clu ∪ Clu+1 ∪ · · · ∪ Clv where
r ≤ u ≤ v ≤ t and r, u, v, t ∈ T .

It means that, the set of rules must cover all objects of the
information system. Additionally, it assigns consistent objects
to their original classes and inconsistent objects to clusters of
classes pertaining to this inconsistency.

IV. PROPOSED RESEARCH DESIGN

A common type of attack used to block the service of the
wireless network in recent years is denial of service attack.
Therefore, recognizing such an attack is of great challenge. To
this end, in this section, we purpose our research design for
detecting dos attack. The following Figure 1 depicts an abstract
view of the model. The initial step of any model development
is problem identification that includes basic knowledge of the
problem undertaken. The data collected initially preprocessed.
The main objective is to transform the raw input data into
an appropriate format for subsequent analysis. The various
steps involved are merging of data from data repositories, data
cleaning which removes noise and duplicate observations and
then selecting relevant observations as per the requirement
of the problem undertaken. The selection of observations is
done in order to analyze only one decision denial-of-service.
The processed data is partitioned into two categories such as
training data of 55% and testing data of 45%. The training data
is analyzed using dominance based rough set to identify the
decision class that effects the decision. We apply DOMLEM
algorithm to obtain the rules. algorithm:

A. DOMLEM Algorithm

In rough set theory several algorithms are proposed for in-
duction of decision rules [18, 19, 20]. Some of these algorithms
also generate minimum number of rules. Generally, we use
heuristic approach to deduce rules because of NP-hard nature
[18]. In this paper we use DOMLEM algorithm as proposed by
Greco et al [13] for the detection of denial-of-service attack.
The algorithm is repeatedly applied for all lower or upper
approximations of the upward (downward) unions of decision
classes. Considering preference order of decision classes and
of getting minimum rules, the algorithm is applied repeatedly
starting from the strongest union of classes. Therefore, decision
rules of the lower approximations of upward unions of classes
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Fig. 1: Abstract View of Research Design

should be taken into consideration in decreasing order. The
following notations are used in the DOMLEM algorithm.
C: Denotes set of conditional attributes
Q: Denotes set of criteria, ai ∈ Q ⊆ C
E: Denotes conjunction of elimentary conditions e ={
f(x, ai) ≥ V x

ai

}
[E]: Denotes set of objects in E; [E] =

{
x : f(x, ai) ≥ V x

ai

}
FMk: Denotes the first measure
SMk: Denotes the second measure

Algorithm 1: (DOMLEM)
Input: Lower approximation of upward union; Q(Cl≥i ), i = m,
(m− 1), · · · , 2
Output: Set of D≥ decision rules

Begin

D≥ = φ

for each Q(Cl≥i ), do

E = Find Rules (Q(Cl≥i ))

for each rule r ∈ E, do

if r is a minimal rule, then D≥ = D≥ ∪ {r}

End

Function Find Rules

Begin

G = Q(Cl≥i )

E = φ

while G 6= φ, do

E = φ

S = G

while E = φ or not ([E] ⊆ Q(Cl≥i )), do

best = φ

for each criteria ai ∈ Q do

Cond =
{
f(x, ai) ≥ V x

ai
: ∃x ∈ S, f(x, ai) = V x

ai

}

for each ek ∈ Cond, do

FMk = |[ek] ∩G|/|[ek]|

SMk = |[ek] ∩G|

find ek for which FMk and SMk is maximum

best = best ∪ {ek}

end for

end for

E = E ∪ {best}

S = S ∩ [best]

end while

for each ek ∈ E, do

if [E − {ek}] ⊆ Q(Cl≥i ), then E = E − {ek}

E = E ∪ {E}

G = Q(Cl≥i )− ∪e∈E [E]

end while

End

B. An Illustration of DOMLEM Algorithm

This section explains how the above concepts can be
applied in analyzing denial-of-service attack in a wireless
network. To analyze the above concepts, we have considered
the dataset discussed by various authors in their papers [15,
21, 22, 23]. We present the dataset in the following Table
1. The various attributes considered are packets received or
sent per seconds (Mbps), number of attacker nodes, types of
protocol, service block period, and damage. We denote these
attributes as a1, a2, a3, a4, and a5 respectively. The attribute
a3 may take values TCP, UDP, or ICMP. Similarly, different
values the attribute a4 may take are zero (Zo), short (So),
long (Lo), or permanent (Pt). Finally, the different values that
the attribute a5 may take are hardware fail (HF), software
fail (SF), system hang (SH), system reset (SR), time waste
(TW), or no damage (ND). The decision attribute (d) describes
category of denial of service attack such as permanent denial
of service attack (PDA), distributed denial of service attack
(DDA), simple denial of service attack (SDA), and no attack
(NA). Consider the attributes Q = {a1, a2, a4} as criteria
among all conditional attributes a1, a2, a3, a4, a5.

The above table contains 13 objects of denial-of-service at-
tack in a wireless network and its various conditional attribute
values, where U denotes node number. For analysis purpose,
the dataset is divided into two training dataset of 7 objects
(55%) and testing dataset of 6 objects (45%). We employ
dominance based rough set data analysis on training dataset to
obtain candidacy classes. The testing dataset is used to detect
over fitting of the decision classes based on the predefined
threshold value 70%. The decision divides the training dataset
of universe into finite number of classes, CL, as below.

CL = {Cl1, Cl2, Cl3, Cl4}

where Cl1 = {x1, x7}; Cl2 = {x2, x6}; Cl3 = {x3} and Cl4
= {x4, x5}. It is also observed that the class Cl4 has more
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TABLE I: An information system of denial-of-service attack
in a wireless network

U a1 a2 a3 a4 a5 d

x1 1.3 2 TCP Zo ND NA

x2 2.67 1 UDP So TW SDA

x3 2.5 4 ICMP Lo SF DDA

x4 3.0 5 UDP Lo SH PDA

x5 2.4 2 TCP Pt SF PDA

x6 2.6 7 TCP Lo SF SDA

x7 2.68 1 ICMP So ND NA

x8 3.1 4 UDP Lo SR DDA

x9 2.68 1 ICMP So TW SDA

x10 2.5 6 UDP Pt HF PDA

x11 2.7 2 TCP So TW SDA

x12 3.2 3 ICMP Lo SH NA

x13 1.5 0 UDP Zo ND NA

delay than Cl3; Cl3 has more delay than Cl2; and Cl2 has
more delay than Cl1. The downward unions of every element
Cli, i = 1, 2, 3 of CL are given below.

Cl≤1 = {x1, x7}
Cl≤2 = ∪j≤2Clj = Cl1∪Cl2 = {x1, x2, x6, x7}
Cl≤3 = {x1, x2, x3, x6, x7}

Similarly, the upward unions of training dataset element Cli,
i = 4, 3, 2 of CL are given below.

Cl≥4 = ∪j≥4Clj = Cl4 = {x4, x5}
Cl≥3 = ∪j≥3Clj = Cl3∪Cl4 = {x3, x4, x5}
Cl≥2 = {x2, x3, x4, x5, x6}

Let us consider the downward union Cl≤1 = {x1, x7} on
considering the criteria Q = {a1, a2, a4} ⊆ C, the lower
and upper approximations are given as Q(Cl≤1 ) = {x1} and
Q(Cl≤1 ) = {x1, x2, x7} respectively. Therefore, the boundary
objects are BNQ(Cl

≤
1 ) = {x2, x7}. It is because the objects

x2 and x7 violates the dominance principle. This can be seen
from the information system presented in Table I. From Table
1, it is clear that object x7 dominates object x2 on criteria Q,
but the decision corresponding to the object x7 is finer then
the decision corresponding to the object x2. Hence, they are
inconsistent. Also, it can be shown that objects x3 and x6 are
also inconsistent. Similarly the lower, upper approximations,
and boundary of downward and upward unions of other classes
are presented below.

Q(Cl≤2 ) = {x1, x2, x7} , Q(Cl≤2 ) = {x1, x2, x3, x6, x7}
BNQ(Cl

≤
2 ) = {x3, x6}

Q(Cl≤3 ) = {x1, x2, x3, x6, x7} ,
Q(Cl≤3 ) = {x1, x2, x3, x6, x7} , BNQ(Cl

≤
3 ) = {φ}

Q(Cl≥4 ) = {x4, x5} , Q(Cl≥4 ) = {x4, x5}
BNQ(Cl

≥
4 ) = {φ}

Q(Cl≥3 ) = {x4, x5} , Q(Cl≥3 ) = {x3, x4, x5, x6}
BNQ(Cl

≥
3 ) = {x3, x6}

Q(Cl≥2 ) = {x3, x4, x5, x6}
Q(Cl≥2 ) = {x2, x3, x4, x5, x6, x7} , BNQ(Cl

≥
2 ) = {x2, x7}

Now, we explain how certain D≥ decision rules are induced
for the upward union. Let us consider the class Cl≥4 and
the lower approximation Q(Cl≥4 ) = {x4, x5} for obtaining
D≥ decision rules. Employing the DOMLEM algorithm on
Q(Cl≥4 ), we get the elimentary conditions as below.

e1 = {f(x, a1) ≥ 3.0} = {x4} ; 1/1; 1
e2 = {f(x, a1) ≥ 2.4} = {x2, x3, x4, x5, x6, x7} ; 2/6; 2
e3 = {f(x, a2) ≥ 2.0} = {x1, x3, x4, x5, x6} ; 2/5; 2
e4 = {f(x, a2) ≥ 5.0} = {x4, x6} ; 1/2; 1
e5 = {f(x, a4) ≥ Lo} = {x3, x4, x5, x6} ; 2/4; 2
e6 = {f(x, a4) ≥ Pt} = {x5} ; 1/1; 1
The elementary conditions e1, e6 produce the highest first

measure and second measure. But, both elementary conditions
covers only one distinct positive example. Further both [e1],
[e6] are the subsets of Q(Cl≥4 ). We choose elementary con-
dition e1 initially which covers the object x4 and is used to
introduce the rule. However, we can also choose the elementary
condition e6. Further, the object x4 is removed from G and
the remaining object is to be covered is x5. Thus, we have 4
elimentary conditions as below to cover the object x5.

e7 = {f(x, a2) ≥ 2.0} = {x1, x3, x5, x6} ; 1/4; 1
e8 = {f(x, a1) ≥ 2.4} = {x2, x3, x5, x6, x7} ; 1/5; 1
e9 = {f(x, a4) ≥ Lo} = {x3, x5, x6} ; 1/3; 1
e10 = {f(x, a4) ≥ Pt} = {x5} ; 1/1; 1
Next, we can pick the elementary condition e10 because of

the highest first and second measure which covers the object
x5. Thus no need to proceed further and the rule can be written
as:

if f(x, a1) ≥ 3.0, then x ∈ Cl≥4
if f(x, a4) ≥ Pt, then x ∈ Cl≥4
Similarly, consider Q(Cl≥2 ) to obtain the rules for the class

x ∈ Cl≥2 . On employing the DOMLEM algorithm we get the
following elimentary conditions.

e1 = {f(x, a1) ≥ 2.5} = {x2, x3, x4, x6, x7} ; 3/5; 3
e2 = {f(x, a1) ≥ 3} = {x4} ; 1/1; 1
e3 = {f(x, a1) ≥ 2.4} = {x2, x3, x4, x5, x6, x7} ; 4/6; 4
e4 = {f(x, a1) ≥ 2.6} = {x2, x6, x7} ; 1/3; 1
e5 = {f(x, a2) ≥ 4} = {x3, x4, x6} ; 3/3; 1
e6 = {f(x, a2) ≥ 5} = {x4, x6} ; 2/2; 2
e7 = {f(x, a2) ≥ 2} = {x1, x3, x4, x5, x6} ; 4/5; 4
e8 = {f(x, a2) ≥ 7} = {x6} ; 1/1; 1
e9 = {f(x, a4) ≥ Lo} = {x3, x4, x5, x6} ; 4/4; 4
e10 = {f(x, a4) ≥ Pt} = {x5} ; 1/1; 1
The elementary conditions e2, e5, e6, , e8, and e9 have the

highest first measure but the elimentary condition e9 has the
highest second measure and so we choose the elementary
condition e9. Further [e9] is subset of Q(Cl≥2 ) and covers all
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positive examples. Thus the process terminates and the rule
can be written as:

if f(x, a4) ≥ Lo, then x ∈ Cl≥2
Likewise, we explain how certain D≤ decision rules are

induced for the downward union. Let us consider the class Cl≤1
and the lower approximation Q(Cl≤1 ) = {x1} for obtaining
D≤ decision rules. The elementary conditions obtained are
given below.

e1 = {f(x, a1) ≤ 1.3} = {x1} ; 1/1; 1
e2 = {f(x, a4) ≤ Zo} = {x1} ; 1/1; 1
e3 = {f(x, a2) ≤ 2} = {x1, x2, x7} ; 1/3; 1
The elementary conditions e1, and e2 have the highest

first measure and covers all the positive examples. Further
both [e1], [e2] are subsets of Q(Cl≤1 ). Therefore, the process
terminates and the rules can be stated as:

if f(x, a4) ≤ Zo, then x ∈ Cl≤1
if f(x, a1) ≤ 1.3, then x ∈ Cl≤1
Similarly, we consider Q(Cl≤2 ) = {x1, x2, x7} to obtain

the rules for the class Cl≤2 . The elementary conditions obtained
are listed below.

e1 = {f(x, a1) ≤ 1.3} = {x1} ; 1/1; 1
e2 = {f(x, a1) ≤ 2.67} = {x1, x2, x3, x5, x6} ; 2/5; 2
e3 = {f(x, a1) ≤ 2.68} = {x1, x2, x3, x5, x6, x7} ; 3/6; 3
e4 = {f(x, a2) ≤ 2} = {x1, x2, x7} ; 3/3; 3
e5 = {f(x, a2) ≤ 1} = {x2, x7} ; 2/2; 2
e6 = {f(x, a4) ≤ Zo} = {x1} ; 1/1; 1
e7 = {f(x, a4) ≤ So} = {x1, x2, x7} ; 3/3; 3
The elementary conditions e1, e4, and e7 have the highest

first measure and the condition e1 covers only one positive
example. Alternatively, the conditions e4, and e7 have the
highest second measure and covers all the positive examples.
Further, both [e4], and [e7] are subsets of Q(Cl≤2 ). Therefore,
the process terminates and the rule can be stated as:

if f(x, a2) ≤ 2, then x ∈ Cl≤2
if f(x, a4) ≤ So, then x ∈ Cl≤2
Likewise, consider Q(Cl≤3 ) = {x1, x2, x3, x6, x7} to ob-

tain the decision rules for the class Cl≤3 . The elementary
conditions obtained are listed below.

e1 = {f(x, a1) ≤ 1.3} = {x1} ; 1/1; 1
e2 = {f(x, a1) ≤ 2.67} = {x1, x2, x3, x5, x6} ; 4/5; 4
e3 = {f(x, a1) ≤ 2.6} = {x1, x3, x5, x6} ; 3/4; 3
e4 = {f(x, a1) ≤ 2.68} = {x1, x2, x3, x5, x6, x7} ; 5/6; 5
e5 = {f(x, a1) ≤ 2.5} = {x1, x3, x5} ; 2/3; 2
e6 = {f(x, a2) ≤ 1} = {x2, x7} ; 2/2; 2
e7 = {f(x, a2) ≤ 2} = {x1, x2, x7} ; 3/3; 3
e8 = {f(x, a2) ≤ 4} = {x1, x2, x3, x5, x7} ; 4/5; 4

e9 = {f(x, a2) ≤ 7} = {x1, x2, x3, x4, x5, x6, x7} ; 5/7; 5
e10 = {f(x, a4) ≤ Zo} = {x1} ; 1/1; 1
e11 = {f(x, a4) ≤ So} = {x1, x2, x7} ; 3/3; 3
e12 = {f(x, a4) ≤ Lo} = {x1, x2, x3, x4, x6, x7} ; 5/6; 5
The elementary conditions e1, e6, e7, e10, and e11 have

highest first measure whereas e7 and e11 have highest second
measure. But, both elementary conditions e7 and e11 covers
same positive examples. Further both [e7], and [e11] are the
subsets of Q(Cl≤3 ). Therefore, we can choose either of the
elementary conditions e7 and e11. Let us choose the elementary
condition e7 that covers objects x1, x2, and x7. To proceed
further, the objects x1, x2, and x7 are removed from G and the
process is repeated. The remaining objects are to be covered
are x3, and x6. Therefore, the above elementry conditions leads
to 7 elementary conditions as below.

e13 = {f(x, a1) ≤ 2.67} = {x3, x5, x6} ; 2/3; 2
e14 = {f(x, a1) ≤ 2.6} = {x3, x5, x6} ; 2/3; 2
e15 = {f(x, a1) ≤ 2.68} = {x3, x5, x6} ; 2/3; 2
e16 = {f(x, a1) ≤ 2.5} = {x3, x5} ; 1/2; 1
e17 = {f(x, a2) ≤ 4} = {x3, x5} ; 1/2; 1
e18 = {f(x, a2) ≤ 7} = {x3, x4, x5, x6} ; 2/4; 2
e19 = {f(x, a4) ≤ Lo} = {x3, x4, x6} ; 2/3; 2
The elementary conditions e13, e14, e15, and e19 have the

highest first measure. Also, the second measure of these condi-
tions are same. But, it is not sufficient to create decision rules
using any of the conditions because all these conditions cover
objects either x5 or x4 which is a negative example. Therefore,
one has to consider complexes (e13 ∩ e19), (e14 ∩ e19), and
(e15 ∩ e19). All the complexes have highest first measure
and covers positive examples. Therefore, we get the following
decision rules.

if f(x, a2) ≤ 2, then x ∈ Cl≤3
if f(x, a4) ≤ So, then x ∈ Cl≤3
if f(x, a1) ≤ 2.67 and f(x, a4) ≤ Lo, then x ∈ Cl≤3
if f(x, a1) ≤ 2.6 and f(x, a4) ≤ Lo, then x ∈ Cl≤3
if f(x, a1) ≤ 2.68 and f(x, a4) ≤ Lo, then x ∈ Cl≤3
Now we explain how approximate D≥≤ approximate deci-

sion rules are induced form Q(Cl≤1 )∩Q(Cl≥2 ) = {x2, x7}. Let
O1 = {a1, a2} and O2 = {a1, a4}. The elementary conditions
obtained are listed below.

e1 = {f(x, a1) ≥ 2.67} = {x2, x4, x7} ; 2/3; 2
e2 = {f(x, a1) ≥ 2.68} = {x4, x7} ; 1/2; 1
e3 = {f(x, a2) ≥ 1} = {x1, x2, x3, x4, x5, x6, x7} ; 2/7; 2
e4 = {f(x, a1) ≤ 2.67} = {x1, x2, x3, x5, x6} ; 1/5; 1
e5 = {f(x, a1) ≤ 2.68} = {x1, x2, x3, x5, x6, x7} ; 2/6; 2
e6 = {f(x, a4) ≤ So} = {x1, x2, x7} ; 2/3; 2
The elementary conditions e1, and e6 produces the highest

first measure. But, both elementary conditions e1 and e6 covers
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the positive and negative example. Further both [e1], [e6] are
not the subsets of Q(Cl≤1 )∩Q(Cl≥2 ). Thus one has to consider
complex (e1 ∩ e6). It is also a subset of Q(Cl≤1 ) ∩ Q(Cl≤1 ).
Additionally, it produces the highest first and second measure.
Therefore, the rule can be stated as below:

if (f(x, a1) ≥ 2.67 and f(x, a4) ≤ So) then x ∈ Cl1∪Cl2
Similarly, on considering Q(Cl≤2 ) ∩ Q(Cl≥3 ) = {x3, x6}

and O1, O2 as stated above, the approximate D≥≤ rules
are computed. The elementary conditions obtained are listed
below.

e1 = {f(x, a1) ≥ 2.5} = {x2, x3, x4, x6, x7} ; 2/5; 2
e2 = {f(x, a1) ≥ 2.6} = {x2, x4, x6, x7} ; 1/4; 1
e3 = {f(x, a2) ≥ 4} = {x3, x4, x6} ; 2/3; 2
e4 = {f(x, a2) ≥ 7} = {x6} ; 1/1; 1
The elementary condition e4 produces the highest first

measure, covers positive example, and [e4] is a subsets of
Q(Cl≤2 ) ∩Q(Cl≥3 ). Therefore, the elementary condition e4 is
considered to generate rule. Further, the object x6 is removed
and elementary conditions are obtained to include the object
x3.

e5 = {f(x, a1) ≥ 2.5} = {x2, x3, x4, x7} ; 1/4; 1
e6 = {f(x, a2) ≥ 4} = {x3, x4} ; 1/2; 1
e7 = {f(x, a1) ≤ 2.5} = {x1, x3, x5} ; 1/3; 1
e8 = {f(x, a1) ≤ 2.6} = {x1, x2, x3, x5} ; 1/4; 1
e9 = {f(x, a4) ≤ Lo} = {x1, x2, x3, x4, x7} ; 1/5; 1
The elementary conditions e6 produces the highest first

measure, covers both positive and negative example, and is
not a subset of Q(Cl≤2 ) ∩Q(Cl≥3 ). Thus we have to consider
the complex (e6 ∩ e7) to cover the positive example x3. The
rules generated in this way are listed below.

if (f(x, a2) ≥ 7) then x ∈ Cl2 ∪ Cl3
if (f(x, a1) ≤ 2.5 and f(x, a2) ≥ 4) then x ∈ Cl2 ∪ Cl3
Now, collectively we write the decision rules obtained as

below.

1) if f(x, a1) ≥ 3.0, then x ∈ Cl≥4
2) if f(x, a4) ≥ Pt, then x ∈ Cl≥4
3) if f(x, a4) ≥ Lo, then x ∈ Cl≥2
4) if f(x, a4) ≤ Zo, then x ∈ Cl≤1
5) if f(x, a1) ≤ 1.3, then x ∈ Cl≤1
6) if f(x, a2) ≤ 2, then x ∈ Cl≤2
7) if f(x, a4) ≤ So, then x ∈ Cl≤2
8) if f(x, a2) ≤ 2, then x ∈ Cl≤3
9) if f(x, a4) ≤ So, then x ∈ Cl≤3

10) if f(x, a1) ≤ 2.67 and f(x, a4) ≤ Lo, then x ∈ Cl≤3
11) if f(x, a1) ≤ 2.6 and f(x, a4) ≤ Lo, then x ∈ Cl≤3
12) if f(x, a1) ≤ 2.68 and f(x, a4) ≤ Lo, then x ∈ Cl≤3
13) if f(x, a1) ≥ 2.67 and f(x, a4) ≤ So, then x ∈

(Cl1 ∪ Cl2)
14) if f(x, a2) ≥ 7, then x ∈ (Cl2 ∪ Cl3)
15) if f(x, a1) ≤ 2.5 and f(x, a2) ≥ 4, then x ∈ (Cl2 ∪

Cl3)

Finally, the rules obtained are validated with the testing dataset
on computing the accuracy (Acc.) basing on precision (Prec.)
and recall (Rec.). The precision, recall, and accuracy are
computed using the equations (8), (9), and (10). The notation
TP is used for correct classification of cases to decisions
whereas FP is used for incorrect classification of cases to
decisions. The notation TN is the number of cases which
correctly classified as negative whereas FN is the number of
incorrect cases classified as positive. Additionally a rule is
also discarded if the accuracy falls less than the predefined
threshold value 70%.

Prec. =
|TP |

|TP + FP |
(8)

Rec. =
|TP |

|TP + FN |
(9)

Acc. =
|TP + TN |

|TP + FP + TN + FN |
(10)

The computation of precision, recall, and accuracy for the
testing objects is presented in Table II. It is clear that the
accuracy of rules 1, 5, 8, 9, 10, 11, 12, 14, and 15 are less
than the predefined threshold value and hence discarded.

TABLE II: Rule validation of denial-of-service attacks in a
wireless network

Rule Sup. Obj. TP FN FP TN Prec. Rec. Acc.

1 - 0 1 2 3 0 0 50

2 x10 1 0 0 5 1 1 100

3 x8,x10 2 0 1 3 1 0.5 83.33

4 x13 1 1 0 4 1 0.5 83.33

5 - 0 2 0 4 0 0 66.67

6,7 x9,x11, 3 1 0 2 1 0.75 83.33
x13

8,9 x9,x11, 3 2 0 1 1 0.67 66.67
x13

10 x13 1 4 0 1 1 0.2 33.33

11 x13 1 4 0 1 1 0.2 33.33

12 x9,x13 2 3 0 1 1 0.4 50

13 x9,x11, 3 1 0 2 1 0.75 83.33
x13

14 - 0 0 3 3 0 0 50

15 - 0 1 3 2 0 0 33.33

V. EMPIRICAL STUDY OF DOS ATTACK

This section describes how the proposed technique is used
for a dataset. The dataset is preprocessed so that it may be
able to give as an input to our developed system. Collection
of data is a critical problem. This can be done by three ways
as by using real traffic, by using sanitized traffic, and by
using simulated traffic. However difficulties exist in using these
approaches. Real traffic approach is very costly while sanitized
approach is risky. The creating of simulation is also a difficult
task. Further, in order to model various wireless networks,
different types of traffic is needed. In order to avoid dealing
with these difficulties, Knowledge Discovery Dataset (KDD)-
cup dataset is considered for experimental analysis.

The dataset contains 11,160 records in which decisions
for 3,260 records are normal whereas for 7,900 recorrds are
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various dos attacks such as neptune, udp storm, smurf, ping
of death (PoD), back, teardrop, land, mailbomb, process table.
Each sample of the dataset represents a connection between
two wireless network hosts according to network protocols. It
is described by 42 features as depicted in Table III. Out of
42 features, 41 are conditional features and one is decision.
The set of 41 features are divided into four subsets such as
basic feature set, data flow feature set, host based feature
set, and content feature set. The basic feature set, a1 to a9,
is used to check the status of the flags, number of source
bytes, number of destination bytes, types of protocols used,
and duration of the period while information is communicated.
The content feature set, a10 to a22, is used to check the number
of logins failed, number of compromised, number of logged-
in, and number of guest login etc. Likewise the data flow
feature set, a23 to a31, is used to verify the sending and
receiving errors during communication between source and
destination. Similarly, the host based feature set, a32 to a41, is
used to get the information of receiving host and sending host
errors while communication. From 41 features, 38 features are
continuous or discrete (quantitative) and remaining 3 features
are qualitative or categorical.

Each sample of decision feature is labeled as either normal
or various dos attack. The dataset contains 10 class labels out
of which one class is normal and remaining classes are differ-
ent dos attacks such as neptune, udp storm, smurf, pod, back,
teardrop, land, mail bomb, process table respectively. Some dos
attacks such as mail bomb, neptune, or smurf abuse a perfectly
legitimate feature.The teardrop, pod create malformed packets
that confuse the TCP/IP stack of the machine that is trying to
reconstruct the packet. The other dos attacks such as back, land
takes the advantage of bugs in a particular network daemon.

A. Experimental Analysis

We implement wireless network dos detection system with
C programming language and perform experiments in a com-
puter with 2.67 GHz Intel core i3 processor, and 2 GB RAM.
Total 11,600 records are divided into two categories such as
training dataset of 6,138 (55%) records and testing dataset
of 5022 (45%) records. The details of training, testing, total
dataset and its various classifications are given in Table IV. Out
of 41 conditional features 18 features such as a1, a3, a4, a6,
a13, a14, a16, a17, a19, a20, a21, a22, a33, a34, a35, a37, a40,
a41 are considered as criterion as suggested by various authors
[24, 25]. For better visualization of the dataset, a graphical
representation is shown in Figure 2.

Experimental analysis is carried out on each class of
training dataset. Initially, we employed DOMLEM algorithm
on 1887 records that are falling under the category normal. The
total number of rules generated are 23. The rules generated
are presented on Table V. These rules are further validated
with 1373 records of testing dataset and found that rules 6,
9, 10, 16 and 18 are having accuracy less than the predefined
threshold value. Hence, these rules are discarded. A graphical
representation is shown in Figure 3. Likewise 740 records
of data that are falling under the category of neptune, 767
records of data of udp storm, 762 records of data of smurf,
1042 records of data of pod, 188 records of data of back,
285 records of data of tear-drop, 155 records of data of land,
162 records of data of mail-bomb, and 150 records of data of

TABLE III: Features set of denial-of-dervice attack

S. No. Features Notation Type

I Basic Feature
1 duration a1 continuous

2 protocol-type a2 symbolic

3 service a3 symbolic

4 flag a4 symbolic

5 src-bytes a5 continuous

6 dst-bytes a6 continuous

7 land a7 discrete

8 wrong-fragment a8 continuous

9 urgent a9 continuous

II Content Feature
10 hot a10 discrete

11 num-failed-logins a11 continuous

12 logged-in a12 discrete

13 num-compromised a13 continuous

14 root-shell a14 discrete

15 su-attempted a15 discrete

16 num-root a16 continuous

17 num-file-creations a17 continuous

18 num-shells a18 continuous

19 num-access-files a19 continuous

20 num-outbound-cmds a20 continuous

21 is-host-login a21 discrete

22 is-guest-login a22 discrete

III Data Flow Feature
23 count a23 continuous

24 srv-count a24 continuous

25 serror-rate a25 continuous

26 srv-serror-rate a26 continuous

27 rerror-rate a27 continuous

28 srv-rerror-rate a28 continuous

29 same-srv-rate a29 continuous

30 diff-srv-rate a30 continuous

31 srv-diff-host-rate a31 continuous

IV Host Based Feature
32 dst-host-count a32 continuous

33 dst-host-srv-count a33 continuous

34 dst-host-same-srv-rate a34 continuous

35 dst-host-diff-srv-rate a35 continuous

36 dst-host-same-src-port-rate a36 continuous

37 dst-host-srv-diff-host-rate a37 continuous

38 dst-host-serror-rate a38 continuous

39 dst-host-srv-serror-rate a39 continuous

40 dst-host-rerror-rate a40 continuous

41 dst-host-srv-rerror-rate a41 continuous

V Decision
42 decision d symbolic

process table are passed to DOMLEM algorithm. The total
number of rules generated are 146. The category neptune
generated 30 rules, category udp storm generated 18 rules,
category smurf generated 17 rules, category pod generated
20 rules, category back generated 15 rules, category tear-drop
generated 12 rules, category land generated 10 rules, category
mail bomb generated 13 rules, and the category process table
generated 11 rules. These rules are further validated with the
testing dataset as mentioned in Table IV. The number of rules
discarded for the categories naptune, udp storm, smurf, pod,
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TABLE IV: Training, testing classification of datasets

S. No. Description Training Set Testing Set Total Set

1 normal 1,887 1,373 3,260

2 neptune 740 1,270 2,010

3 udp-strom 767 478 1,245

4 smurf 762 579 1,341

5 pod 1,042 680 1722

6 back 188 24 212

7 tear-drop 285 29 314

8 land 155 150 305

9 mail-bomb 162 250 412

10 process-table 150 189 339

Total 6,138 (55%) 5,022 (45%) 11,160

Fig. 2: Characteristics of Dataset

TABLE V: Selected list of normal rules

Rule No. Description Acc.

1 If a34 ≥ 0.34 then d=Normal 100

2 If a35 ≥ 0.32 then d=Normal 99

3 If a37 ≥ 0.34 then d=Normal 100

4 If a40 ≥ 1 then d=Normal 99

5 If a19 ≤ 0 then d=Normal 100

6 If a21 ≥ 1 then d=Normal 63

7 If a1 ≤ 0 then d=Normal 100

8 If a34 ≥ 0.34 and a19 ≤ 0 then d=Normal 100

9 If a22 ≤ 1 then d=Normal 33.33

10 If a20 ≤ 0 then d=Normal 67.66

11 If a34 ≥ 0.34 and a1 ≤ 0 then d=Normal 99

12 If a37 ≥ 0.34 and a19 ≤ 0 then d=Normal 99

13 If a37 ≥ 0.34 and a1 ≤ 0 then d=Normal 100

14 If a22 ≥ 1 and a20 ≤ 0 then d=Normal 100

15 If a21 ≥ 1 and a1 ≤ 0 then d=Normal 99

16 If a21 ≥ 1 and a20 ≤ 0 then d=Normal 57.67

17 If a34 ≥ 0.34 and a21 ≤ 1 then d=Normal 100

18 If a21 ≥ 1 and a22 ≤ 1 then d=Normal 63.15

19 If a34 ≥ 0.34 and a37 ≤ 0.34 then d=Normal 98

20 If a35 ≥ 0.32 and a1 ≤ 0 then d=Normal 100

21 If a35 ≥ 0.32 and a20 ≤ 0 then d=Normal 100

22 If a37 ≥ 0.34 and a22 ≤ 1 then d=Normal 98

23 If a37 ≥ 0.34 and a21 ≥ 1 then d=Normal 100

Fig. 3: Graphical view of precision, recall, accuracy

back, tear-drop, land, mail bomb, and process table are 6, 3,
2, 2, 3, 2, 2, 3, and 3 respectively. The final rules selected
for various categories naptune, udp storm, smurf, pod, back,
tear-drop, land, mail bomb, and process table are presented in
Table VI, Table VII, Table VIII, Table IX, Table X, Table XI,
Table XII, Table XIII, and Table XIV respectively.

TABLE VI: Selected list of neptune rules

Rule No. Description Acc.

1 If a33 ≥ 304 then d=Neptune, Smurf 97.77

2 If a34 ≥ 0.36 then d=Neptune, UDP Storm 99.65

3 If a35 ≥ 0.76 then d=Neptune, Smurf, POD 100

4 If a37 ≥ 0.25 then d=Neptune, Smurf 98.78

5 If a40 ≥ 0.24 then d=Neptune 100

6 If a41 ≥ 0.15 then d=Neptune 99.65

7 If a13 ≥ 4 then d=Neptune, Smurf 99.65

8 If a14 ≥ 255 then d=Neptune, POD 100

9 If a16 ≤ 531 then d=Neptune 100

10 If a17 ≥ 8854 then d=Neptune 99.65

11 If a19 ≥ 104 then d=Neptune 100

12 If a20 ≤ 148 then d=Neptune 100

13 If a13 ≥ 1 then d=Neptune, POD 100

14 If a14 ≥ 1 then d=Neptune, Smurf 100

15 If a34 ≤ 0.10 then d=Neptune 100

16 If a37 ≥ 0.61 then d=Neptune 99.65

17 If a1 ≥ 31 and a20 ≤ 104 then d=Neptune 100

18 If a6 ≥ 2252 and a22 ≥ 1 then d=Neptune 100

19 If a6 ≥ 8854 and a33 ≥ 255 then d=Neptune, Smurf 100

20 If a6 ≥ 1461 and a33 ≤ 148 then d=Neptune 100

21 If a17 ≥ 304 and a34 ≤ 0.04 then d=Neptune, POD 100

22 If a16 ≥ 245 and a6 ≥ 3634 then d=Neptune, UDP Storm 100

23 If a14 ≥ 76 and a22 ≥ 1 then d=Neptune 100

24 If a34 ≥ 0.61 and a19 ≤ 148 then d=Neptune 100

B. Comparison with different approach

In this section, we compare results of proposed model
with five different models such as resilient back propagation
(RBP) [11], markov chain model (MCM) [6], radial basis
function (RBF) [5], resistant architecture model (RAM) [8],
and wavelet transform model (WTM) [9]. Unlike Table XV, the
computation is carried out for each case across each technique.
The following TABLE XVI presents the comparative analysis
of all the techniques mentioned above. The accuracy of the
proposed model over the KDD cup dataset is 99.76 whereas
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TABLE VII: Selected list of UDP strom rules

Rule No. Description Acc.

1 If a33 ≥ 42 then d=UDP Strom, Smurf 100

2 If a6 ≥ 42 then d=UDP Strom, POD 99.87

3 If a35 ≥ 0.28 then d=UDP Strom, Neptune 100

4 If a37 ≥ 1 then d=UDP Strom 100

5 If a40 ≥ 0 then d=UDP Strom, Back 100

6 If a41 ≤ 0.25 then d=UDP Strom, Smurf, Back 99.87

7 If a14 ≥ 7 then d=UDP Strom, Back 100

8 If a16 ≥ 40 then d=UDP Strom, Land 100

9 If a17 ≤ 40 then d=UDP Strom, POD 99.87

10 If a20 ≥ 1 then d=UDP Strom, Teardrop 100

11 If a33 ≥ 253 then d=UDP Strom 100

12 If a6 ≥ 40 and a14 ≤ 40 then d=UDP Strom 100

13 If a21 ≥ 1 and a33 ≤ 255 then d=UDP Strom 100

14 If a6 ≥ 40 and a33 ≥ 7 then d=UDP Strom 100

15 If a33 ≥ 77 and a6 ≥ 0 then d=UDP Strom 100

TABLE VIII: Selected list of smurf rules

Rule No. Description Acc.

1 If a40 ≥ 0.31 then d=Smurf, UDP Storm 100

2 If a41 ≥ 0.14 then d=Smurf, POD 100

3 If a13 ≥ 23 then d=Smurf 100

4 If a14 ≥ 30 then d=Smurf, Neptune 100

5 If a16 ≥ 93 then d=Smurf, Back 100

6 If a17 ≥ 64 then d=Smurf, Teardrop 100

7 If a19 ≥ 185 then d=Smurf 100

8 If a40 ≥ 0.31 and a41 ≥ 0.14 then d=Smurf 100

9 If a41 ≤ 0.14 and a13 ≥ 23 then d=Smurf 100

10 If a14 ≥ 30 and a16 ≥ 93 then d=Smurf 100

11 If a14 ≥ 30 and a19 ≥ 185 then d=Smurf 100

12 If a17 ≥ 64 and a19 ≥ 185 then d=Smurf 100

13 If a16 ≤ 93 and a13 ≥ 23 then d=Smurf 100

14 If a19 ≥ 185 and a16 ≥ 93 then d=Smurf 100

15 If a41 ≤ 0.14 and a19 ≥ 185 then d=Smurf 100

TABLE IX: Selected list of POD rules

Rule No. Description Acc.

1 If a33 ≥ 829 then d=POD, Smurf 100

2 If a34 ≥ 0.32 then d=POD, Back 100

3 If a35 ≥ 0.08 then d=POD, Neptune 100

4 If a37 ≥ 0.11 then d=POD 100

5 If a40 ≥ 0.47 then d=POD, Land 100

6 If a41 ≥ 0.03 then d=POD 100

7 If a33 ≥ 829 and a34 ≤ 0.32 then d=POD 99.45

8 If a33 ≥ 829 and a35 ≥ 0.08 then d=POD 100

9 If a40 ≥ 0 and a34 ≤ 0.32 then d=POD 100

10 If a40 ≥ 0 and a35 ≥ 0.08 then d=POD 100

11 If a37 ≥ 0.11 and a34 ≤ 0.32 then d=POD 100

12 If a37 ≥ 0.11 and a35 ≥ 0.08 then d=POD 100

13 If a33 ≤ 829 and a40 ≥ 0 then d=POD 100

14 If a37 ≤ 0.11 and a34 ≤ 0.32 then d=POD 100

15 If a37 ≤ 0.11 and a35 ≥ 0.08 then d=POD 100

16 If a34 ≥ 0.32 and a41 ≥ 0.03 then d=POD 100

17 If a35 ≥ 0.08 and a34 ≥ 0.32 then d=POD 100

18 If a34 ≤ 0.32 and a35 ≥ 0.08 and a33 ≥ 829 then d=POD 99.45

TABLE X: Selected list of back rules

Rule No. Description Acc.

1 If a13 ≥ 105 then d=Back, POD 100

2 If a14 ≥ 146 then d=Back, Land 100

3 If a16 ≥ 6 then d=Back, Process table 100

4 If a17 ≥ 20 then d=Back, Mailbomb 100

5 If a19 ≥ 1032 then d=Back 100

6 If a20 ≥ 7 then d=Back, Land 100

7 If a13 ≥ 105 and a14 ≥ 146 then d=Back 100

8 If a16 ≥ 6 and a13 ≥ 105 then d=Back 100

9 If a17 ≥ 20 and a14 ≥ 146 then d=Back 100

10 If a19 ≥ 1032 and a20 ≤ 7 then d=Back 100

11 If a20 ≥ 7 and a14 ≥ 146 then d=Back 100

12 If a17 ≤ 20 and a13 ≥ 105 then d=Back 100

TABLE XI: Selected list of teardrop rules

Rule No. Description Acc.

1 If a40 ≥ 0.52 then d=Teardrop, Back 100

2 If a41 ≥ 0.51 then d=Teardrop, Neptune 100

3 If a33 ≥ 20 then d=Teardrop 100

4 If a37 ≥ 0.17 then d=Teardrop, Land 100

5 If a40 ≥ 0.52 and a33 ≥ 20 then d=Teardrop, Land 100

6 If a40 ≥ 0.52 and a37 ≥ 0.17 then d=Teardrop, POD 100

7 If a41 ≥ 0.51 and a33 ≥ 20 then d=Teardrop 100

8 If a41 ≥ 0.51 and a37 ≤ 0.17 then d=Teardrop 100

9 If a6 ≤ 520 and a35 ≤ 0.20 then d=Teardrop 100

10 If a6 ≥ 520 and a34 ≤ 0.17 then d=Teardrop 100

TABLE XII: Selected list of land rules

Rule No. Description Acc.

1 If a22 ≥ 1 then d=Land, Teardrop 100

2 If a21 ≥ 1 then d=Land, Back 100

3 If a20 ≥ 79 then d=Land, POD 99.97

4 If a16 ≥ 18 then d=Land, Smurf 100

5 If a6 ≥ 511 and a6 ≥ 145 then d=Land 100

6 If a40 ≥ 0.51 and a41 ≤ 0.79 then d=Land, Mailbomb 100

7 If a6 ≥ 145 and a34 ≥ 0.18 then d=Land 99.97

8 If a22 ≥ 1 and a33 ≤ 18 then d=Land 100

TABLE XIII: Selected list of mailbomb rules

Rule No. Description Acc.

1 If a16 ≥ 1000 then d=Mailbomb, Land 100

2 If a6 ≥ 1024 then d=Mailbomb, Process table 100

3 If a33 ≥ 7 then d=Mailbomb, Back, Land 100

4 If a34 ≥ 0.25 then d=Mailbomb, Smurf 100

5 If a33 ≥ 114 then d=Mailbomb, Neptune 100

6 If a16 ≥ 1000 and a33 ≥ 7 then d=Mailbomb 100

7 If a16 ≤ 1000 and a34 ≥ 0.25 then d=Mailbomb 100

8 If a6 ≥ 1024 and a33 ≥ 114 then d=Mailbomb, Process table 100

9 If a6 ≥ 1024 and a34 ≥ 0.25 then d=Mailbomb 100

10 If a16 ≤ 1000 and a33 ≥ 114 then d=Mailbomb, Land 100

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 12, 2015 

276 | P a g e
www.ijacsa.thesai.org 



TABLE XIV: Selected list of process table rules

Rule No. Description Acc.

1 If a37 ≥ 0.10 then d=Process table, Mailbomb 100

2 If a33 ≥ 224 then d=Process table, Back 100

3 If a37 ≥ 0.10 and a4 ≥ 0 then d=Process table, POD 100

4 If a33 ≥ 224 and a4 ≥ 0 then d=Process table, Smurf 100

5 If a22 ≥ 0 and a6 ≥ 1024 then d=Process table 100

6 If a13 ≥ 224 and a19 ≥ 1024 then d=Process table, Mailbomb 100

7 If a37 ≤ 0.10 and a35 ≥ 0.10 then d=Process table 100

8 If a33 ≤ 224 and a37 ≥ 0.10 then d=Process table 100

TABLE XV: Precision, recall, accuracy of denial-of-service
attack

S. Descr. TP FN FP TN Prec. Rec. Acc.
No.

1 normal 1360 3 10 3649 0.99 1 99.74

2 neptune 1,258 2 10 3752 0.99 1 99.76

3 udp 465 5 8 4544 0.98 0.99 99.74
strom

4 smurf 556 8 15 4443 0.97 0.99 99.54

5 pod 605 6 9 4342 0.99 0.99 99.70

6 back 21 2 1 4998 0.95 0.91 99.94

7 tear 26 1 2 4993 0.92 0.96 99.94
drop

8 land 139 8 3 4872 0.99 0.95 99.78

9 mail 238 7 5 4772 0.98 0.97 99.76
bomb

10 process 175 7 7 4833 0.96 0.96 99.72
table

Total 4903 49 70 45198 0.99 0.99 99.76

the accuracy of the RBP model over the same dataset is
99.35. It indicates that the accuracy of the proposed model
is 0.41 higher than the RBP model. For better visualization, a
graphical representation of the comparative analysis is shown
in Figure 4. Figure 5 depicts the number of rules generated,
number of rules discarded, and the number of rules finally
selected for each class. The total number of rules generated
are 169, and 18% number of rules are discarded through
validation. This results the number of rules minimized to 82%.

Fig. 4: Graphical Presentation of Comparative Analysis

TABLE XVI: Comparative analysis

S. Descr. DRS RBP MCM RBF RAM WTM
No. Acc. Acc. Acc. Acc. Acc. Acc.

1 normal 99.74 99.42 97.67 98.45 98.37 98.36

2 neptune 99.76 99.32 97.30 98.71 98.31 98.21

3 udp 99.74 99.35 98.00 98.63 98.75 98.74
strom

4 smurf 99.54 99.41 97.79 99.01 98.59 98.57

5 pod 99.70 99.27 97.61 98.79 99.01 99.00

6 back 99.94 99.40 97.45 99.04 98.45 98.77

7 tear 99.94 99.31 98.11 99.45 98.63 98.45
drop

8 land 99.78 99.56 97.38 98.37 98.67 98.37

9 mail 99.76 99.22 97.32 98.71 98.35 98.44
bomb

10 process 99.72 99.32 97.43 98.84 98.38 98.37
table

Total Acc. 99.76 99.35 97.60 98.80 98.55 98.53

Fig. 5: Graphical view of numbers of rules selected

VI. CONCLUSION

Denial-of-service attack is one of the key security threats in
wireless networks. Defending against DoS attack is of prime
importance for industries, and internet service providers. To
overcome this attack many techniques are proposed by various
researchers [5, 6, 8, 9, 11]. In this paper, we propose a
model for the detection of denial of service attack in wireless
networks using dominance based rough set. The proposed
model is analyzed with the help of KDD cup dataset. The
total number of rules generated are 169, and 18% number of
rules are discarded through validation. This results the number
of rules minimized to 82%. Additionally, it is compared with
existing techniques and found better accuracy. The accuracy
of the proposed model is 99.76 whereas the accuracy of the
RBP model is 99.35. This shows that the proposed model is
0.41 higher than the RBP model.
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