
 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

60 | P a g e

www.ijacsa.thesai.org

Developing Software Bug Prediction Models Using

Various Software Metrics as the Bug Indicators

Varuna Gupta

Research Scholar, Christ University,

Bangalore

Dr. N. Ganeshan

Director, RICM, Bangalore

Dr. Tarun K. Singhal

Dean-Academic, INMANTEC, Gzb

Abstract—The bug prediction effectiveness reasonably

contributes towards enhancing quality of software. Bug

indicators contribute significantly in determining the bug

prediction approaches and help in achieving software reliability.

Various comparative research studies have indicated that Depth

of Inheritance (DIT), Weighted Method per Class (WMC),

Coupling between Objects (CBO) and Lines of Code (LoC) have

significantly established themselves as reliable bug indicators for

comprehensive bug predictions.

The researchers have carried out a quantitative research and

have developed prediction models using above bug indicators as

models input and have applied these models on open source

projects (Camel and Ant). During this research, the results

demonstrates that there is significant correlation between size

oriented metrics (bug indicators) such as DIT, WMC, CBO, LoC

and bugs. Overall, DIT takes dominance in achieving better

impact on predicting bugs than WMC, CBO and LoC.

The outcomes of the present research study would be of

significance to software quality practitioners worldwide and

would help them in prioritizing the efforts involved in bug

prediction.

Keywords—Bug Prediction; DIT; WMC; CBO; LoC; SRGM

I. INTRODUCTION

Software reliability is considered critical and important
aspect of software quality. Organizations pay due emphasis in
detecting the quality of software product at an early stage to
avoid late embarrassments arising due to late detection
culminating in poor quality product ultimately. This approach
ensures that organizations are able to redesign wherever
possible and ensure consistent quality throughout.
Organizations aim to ensure savings towards costs of
development, reduction in time to develop and high reliability
of software products.

Various attributes such as proneness to faults, testing
efforts, maintenance efforts etc govern the quality of software
products. Through this research, we have considered
proneness to bugs as bug predictor utilizing DIT, WMC, CBO
and LoC indicators within the realm of this research.

Various bug indicators proposed during last few decades
have made the selection of right bug indicator a demanding
task considering the complexity and nature of varying
software development processes. In the wake, a number of
researchers have predominantly proposed product oriented
bug indicators. The testers across many organizations dedicate

time and resources by allocating same priorities across all
components of a project, which is not considered as an
optimal approach.

Parts of the software systems don’t have uniformity in bug
distribution. This calls for comprehensive identification of
files containing bugs throughout the project. The testers with
such knowledge would be able to identify and prioritize the
appropriate tests while achieving efficiency in testing process.
In order to achieve the said, it is essential to ensure availability
of appropriate software bug prediction models. The main
objective of this research is to construct software bug
prediction models using four bug indicators as the model
input. The metrics collected by promise repository are used as
the model input. Therefore, the model construction process
allows assessment of appropriateness of the collected metrics
as usable bug predictors. The predicted number of bugs for the
files is the model output.

The present research has been organized into six sections.
Section I introduces the concepts and practices being adopted
in software bug prediction. Section II contains detailed review
of literature. Section III demonstrates the process map adopted
by the researchers. Section IV proposes modeling framework.
Section V & VI contain analysis, conclusion and future
research work.

Need of the Study

The generic realization is that software practitioners need
to focus early on bug prediction approaches to ensure
reasonable quality in software products. Therefore, a
comprehensive research was needed to widen the scope of bug
prediction approaches and identify bug indicators causing
significant impact on software quality.

Objectives

1) To assess the correlation of bug indicators (DIT,

WMC, CBO, LoC) with software bugs.

2) To develop software bug prediction models using bug

indicators (DIT, WMC, CBO, LoC) as model inputs.

3) To compare the relative effectiveness of DIT, WMC,

CBO and LoC towards prediction of bugs in Camel and Ant

projects.

II. RELATED WORK

A significant amount of work has been cited using product
metrics to predict bug prone files. Though major work has
utilized Chidamber and Kemerer (CK) metrics suite [18] to

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

61 | P a g e

www.ijacsa.thesai.org

predict accurately pre and post release bugs in commercial and
open source systems [23, 10, 8, 20, 13, 22]. Further, though
CK metrics suite, empirical justification has also been made
regarding usefulness in bug prediction [3, 6, 14].

Pareto analysis has also been used for evaluating the
ability of models for identification of fault-prone classes,
modules and files. As substantiated with presence of 80% of
bugs in 20% of files [15, 26, 24, 25].

Linear regression has been widely considered as a
common technique for bug prediction. Also DIT has been
demonstrated to carry a linear relationship with bugs [16].
Further, our data was linear in nature advocating application
of linear regression. Still, keeping with [1], which suggested
application of nonlinear regression as better indicator for this
type of data, so decided to go ahead with non linear
regression.

Logistic regression models have also been used to identify
fault-prone modules [4]. CK metrics suite was also used to
find fault-prone classes [19]. This work involved investigation
of two C++ written projects and followed with outcome
involving analysis of 43-48% of classes to cover for 80% of
the bugs

Bug prediction models were created based on the module
size representing Line of Code (LoC). The models produced
outputs in strong correlation with actual data [12]. These
models suggested considering LoC in the bug prediction
models.

A majority of CK metrics were found to be effective
predictors for fault-proneness of class. In addition, DIT and
Response for a Class (RFC) were found to be carrying more
influence on the dependent variable [2].

A study on data from an industrial system comprising of
more than 200 C++ subsystems added different metrics than
CK metrics and applied logistic regression to evaluate those
metrics. The outcomes suggested WMC and DIT as
significant indicators for finding fault-prone classes [21].

Another research applying logistic regression on data from
a telecommunication system having 174 C++ classes
demonstrated close association of WMC, RFC and Coupling
between Objects (CBO) with software bugs [5]. Another
research using univariate logistic regression also identified
WMC and SLOC as significant predictors [11].

Another research using data from two commercial
applications, one having 150 classes and 23 KSLOC while
other having 144 classes and 25 KSLOC evaluated the
influence of six CK metrics on the number of bugs and
identified RFC and DIT as most significant variables [19].

As per recent citations of the research works carried out,
no significant amount of work has been done on the use of
logistic reliability growth model for bug prediction.

Proneness to Bugs
Software failing to fulfill the specified requirement needs

to be fixed. Signifying that the mistake has been committed

between the initial requirement and the final operation of the
software system. Since source code matters the most
corresponding to the realization of the software system, the
errors in source code are called bugs. There are changes that
error may not become a bug. However, we need to fix it if it
ultimately becomes a bug causing a failure. The proneness of
bugs depends on reasons like DIT, WMC, CBO , LoC.,

DIT (Depth of Inheritance Tree): The maximum length
from the root to a given class in the inheritance hierarchy. DIT
is defined as the maximum length inheritance path from the
class to the root class [19].

WMC (Weighted Methods per Class): WMC is defined
as the sum of the complexity of the methods of the class. It is
equal to the number of methods when all methods are of the
complexity equal to UNITY. The sum of normalized
complexity of every method in a given class.

CBO (Coupling Between Objects): The CBO metric
represents the number of classes coupled to a given class.
These couplings can occur through method calls, field
accesses, inheritance, method arguments, return types and
exceptions [18].

LOC (Line of Code): the LOC metric based on Java
binary code represents sum of number of fields, number of
methods and number of instructions in every method of the
investigated class.

III. PROCESS MAP

Fig. 1. Process Map

In this paper, the proposed process map is using the mixed
method combining qualitative and quantitative research
methods. The research work is detailed in five phases as
shown in Figure 1.

A. Extraction of Data: Researchers have used PROMISE

repository to extract the bug indicators (DIT, WMC, CBO

and LoC) and bug data. The reason for selecting the open

source projects from PROMISE repository was that it is a

trustworthy software foundation having positive feedback

from software users. It is also well-recognized in the

software community.

Extractio
n of data
from
Promise
Repositor
y

Extractio
n of
buggy
files and
selection
of bug
indicators

Assess
ment of
correlati
on
between
bug
indicato
rs and
number
of bugs

Constru
ction of
bug
predicti
on
models

Predicti
on of
bugs

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

62 | P a g e

www.ijacsa.thesai.org

B. Extraction of buggy files and selection of bug indicators:

Two open source projects (Camel and Ant) were preferred

to extract bug data from and selection of bug indicators for

the analysis. Proper literature review was performed to

select suitable bug indicators (DIT, WMC, CBO and LoC)

for this research.

C. Assessment of correlation between bug indicators and

bugs: Pearson correlation analysis was performed to assess

the correlation between the various bug indicators (DIT,

WMC, CBO, LoC) and number of bugs.

D. Construction of prediction models: After significant

correlation between bug indicators and bugs, researchers

have constructed prediction models using logistic software

reliability growth model on extracted data from PROMISE

bug database.

E. Prediction: After successful conclusion of the above four

sub processes, finally predicted bugs was given as the

model output.

IV. MODELLING FRAMWORK

A. Software Reliability Growth Models (SRGM)

Software reliability growth models are a statistical
exclamation of detected bug’s data using various
mathematical functions. To predict the number of bugs in the
code these mathematical functions are used. There are many
types of software reliability growth models as to predict future
bugs or failure rates.

B. Models Assumptions

Some of the general assumptions (apart from some special
ones for specific models discussed) for the above model are as
follows:

a) Software system is subject to failure during execution

caused by bugs remaining in the system.

b) Failure rate of the software is equally affected by

bugs remaining in the software.

c) The number of bugs predicted at any time instant is

proportional to the actual number of bugs in the software.

d) Bug indicators referring the software size and its

proportional impact on bugs have the capabilities of certain

prediction.

e) All bugs are mutually independent from bug

prediction point of view.

f) Bug prediction rate/bug detection rate is a logistic

learning function as it is expected the learning process will

grow with time.

g) The bug prediction phenomenon is modeled by Non

Homogeneous Poisson Process (NHPP).

C. Models Notations

a- initial fault-content of the software.

k- A constant parameter in the logistic learning function

b1- bug prediction rate/detection rate per unit time.

M (t) - expected number of bugs predicted.

Bug prediction models using SRGM are given by:

 1.() / 1 . b tm t a k e  (4.1)

Prediction model-1

DIT is considered as a first model input referring to the
below mentioned proposed model:

  1.() / 1 . b ditm t a k e  (4.2)

Prediction model-2

WMC is defined as a second model input referring to the
below mentioned proposed model:

  1.() / 1 . b wmcm t a k e  (4.3)

Prediction model -3

CBO is defined as a third model input referring to the
below mentioned proposed model:

 1.() / 1 . b cbom t a k e 

 (4.4)

Prediction model -4

LoC is defined as a fourth model input referring to the
below mentioned proposed model:

  1.() / 1 . b locm t a k e  (4.5)

D. Goodness of Fit Criteria

The performance of a bug prediction model is judged by
its ability to fit the past software reliability data and to predict
satisfactorily the future behavior from present and past data
behavior. The following criteria defined as:

1) Coefficient of Multiple Determinations (
2R)

2) Bias

3) Variation

4) The Root Mean Square Prediction Error (RMSPE)

5) Mean Square Error (MSE)
Bug Prediction Parameter Estimation

To examine the effectiveness of software bug prediction
models using four indicators as model input, a set of
comparison criteria is used to compare models quantitatively.

The different comparison criterions used in our paper are as
follows:

1) Coefficient of Multiple Determination (R
2
):

This Goodness-of-fit measure has been used to investigate
significance in trend existing in prediction of bugs. This
coefficient was used as the ratio of the Sum of Squares (SS)
derived from the trend model to that from a constant model
subtracted from 1, that is

SScorrected

SSresidual
R 12

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

63 | P a g e

www.ijacsa.thesai.org

R
2
 measures the percentage of the total variation about the

mean accounted for by the fitted curve. It ranges in value from
0 to 1. Small values indicate that the model does not fit the
data well. With movement of value towards 1, the model
significantly explains the variation in the data [7].

2) Bias: The difference between the actual and predicted

number of bugs at any instant of time i is known as Prediction

Error (PEi). The average of PEs is known as bias. With

movement of value towards 0, the model significantly

explains low presence of prediction error. The bias is defined

mathematically as [9]:

Where mi indicates actual bugs, m(t) indicates predicted

bugs and k is the number of observations in the data set.

3) Variance: The variance is defined as [9].

 
2

^

1

1

1

k

i i

i

Variance m m t Bias
k 

 
   

  


4) Root Mean Square Prediction Error (RMSPE): It

measures the closeness with which the model predicts the

bugs and mathematical representation of this characteristic is

given as [9].
2 2RMSPE Variance Bias 

5) Mean Square Error (MSE): MSE measures the

difference between the predicted and actual values of bugs,

and is given mathematically as [17].

 
2

^

1

k

i i

i

m m t

MSE
k p



 
 

 






Where k is the number of observations in the data set and p
is the number of parameters.

E. Data Sets

The data about bug indicators and bugs has been collected
from PROMISE repositories. The following data sets have
been used with explanations marked in:

Data Set 1(Camel) Apache Camel is a powerful open
source integration framework based on known Enterprise
Integration Patterns with powerful Bean Integration.

Data Set 2 (Ant) Ant is a well known Java-based, shell
independent build tool.

V. ANALYSIS AND CONCLUSION

While checking the accuracy of different proposed models
of bug prediction using different bug indicators, researchers
have first estimated the unknown parameters of bug data for
final software product on bug cumulative consumption data.
Then, to judge the fitting of various proposed models of
prediction given by equations (4.2), (4.3) (4.4) and (4.5) R

2
,

bias, variation, RMSPE and MSE have been calculated as the
performance measures. Table I and Table II depict the
estimated values for the parameters while Table III provides
the correlation criteria and finally Table IV and Table V

summarizes the estimated and optimized values of attributes
of proposed models.

TABLE I. ESTIMATED PARAMETERS OF PROPOSED MODELS USING DS-1

S.

No.

Parameter

s

Estimated parameters values

DIT WMC LOC CBO

1 a 136.41 139.99 135.89 161.86

2 K 24.48 10.16
12.

57
11.86

3 b1 .071 .008 .001 .006

TABLE II. ESTIMATED PARAMETERS OF PROPOSED MODELS USING DS-2

S.
No.

Parameters

Estimated parameters values

DIT WMC LOC CBO

1 a 51.09 46.32 48.19 46.59

2 K 11.54 12.12 18.07 14.11

3 b1 .046 .013 .001 .015

In our research, researchers observed significant
correlations of WMC, DIT, CBO and LOC with bugs. In this
research only highly correlated four metrics have shown from
each data set that are listed in Table III. The interesting part of
this result is that all four indicators are correlated significantly
with software bugs.

TABLE III. CORRELATION TABLE

Project Metrics Correlation

with Bugs

Camel

DIT .976

WMC .987

LOC .984

CBO .992

Ant

DIT .997

WMC .989

LOC .992

CBO .991

TABLE IV. ESTIMATED AND OPTIMAL VALUES OF ATTRIBUTES FOR FOUR

PREDICTION MODELS FOR DS-1

Project Metrics R2 Bias Variance RMSE MSE

Camel

DIT 99.5 -0.271 3.318 3.329 11.253

WMC 98.9 0.183 4.712 4.716 23.048

LOC 98.9 0.122 5.518 5.519 22.687

CBO 98.6 0.141 5.271 5.273 28.88

TABLE V. ESTIMATED AND OPTIMAL VALUES OF ATTRIBUTES FOR FOUR

PREDICTION MODELS FOR DS-2

Project Metrics R2 Bias Variance RMSE MSE

Ant

DIT 99.1 0.089 1.349 1.352 1.893

WMC 98.3 0.156 1.891 1.898 3.693

LOC 98.9 0.132 1.505 1.511 2.333

CBO 98.9 0.147 1.507 1.514 2.331

 
^

1

k

i i

i

m t m

Bias
k



 
 

 



 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

64 | P a g e

www.ijacsa.thesai.org

In table III researchers observed significant correlations of
WMC, DIT, CBO and LOC with bugs. Table IV depicted that
in case of DS-1 using prediction model 4.2 the predictive
model coefficient of determination is 0.995 it means 99.5% of
the variation in bugs is associated with number of predictor.
Whereas using model 4.3, model 4.4 and model 4.5 the
variation in bugs is 98.9%, 98.6% and 98.9% respectively.

Table V depicted that in case of DS-2 using prediction
model 4.2 the predictive model coefficient of determination is
0.991 it means 99.1% of the variation in bugs is associated
with number of predictor. Whereas using model 4.3 model 4.4
and model 4.5 the variation in bugs is 98.3%, 98.3% and
98.9% respectively.

Fig. 2. Graph for Pattern of Actual and Predicted Software Bugs of DS-1

Fig. 3. Graph for Pattern of Actual and Predicted Software Bugs of DS-2

As shown above graphs in Figure – 2 and Figure – 3, the
predicted number of bugs is significantly higher than actual
number of bugs.

The research has comprehensively designed and tested
four models using DIT, WMC, CBO and LoC as model
inputs. These models produced significant results on all four
model inputs. However, model using DIT as input was shown
to be better performing than the other three models. This
conclusion can serve as strong motivation for software
practitioners to prioritize and allocate sufficient resources
towards DIT because of its better performance in comparison
to WMC, CBO and LoC.

VI. FUTURE WORK

More product metrics as bug indicators can be included in
future research work. More open source data sets can also be
included to bring higher reliability in bug prediction. An effort
can be made of applying different non linear regression

models on same two data sets already considered in present
research work.

REFERENCES

[1] A. Bernstein, J. Ekanayake, and M. Pinzger. Improving defect prediction
using temporal features and non linear models. In Proc. Int’l Workshop
on Principles of Softw. Evolution, pages 11–18, 2007.

[2] B asili , V.R., L.C. Briand and W.L. Melo, 1996. A validation of object-
oriented design metrics as quality indicators. IEEE Trans. Software
Eng., 22: 751-761. DOI10.1109/32.544352.

[3] CATAL C., DIRI B. and OZUMUT B., An Artificial Immune System
Approach for Fault Prediction in Object-Oriented Software. Proc. of
Dependability of Computer Systems, 2007, 238-245.

[4] DENARO G. and PEZZE M., An Empirical Evaluation of Fault-
Proneness Models. Proc. of International Conference on Software
Engineering (ICSE), 2002.

[5] El Emam, K., S. Benlarbi, N. Goel and S.N. Rai, 2001. The confounding
effect of class size on the validity of object-oriented metrics. IEEE
Trans. Software Eng., 27: 630-650. DOI: 10.1109/32.935855.

[6] JURECZKO M., Use of software metrics for finding weak points of
object oriented projects. Proc. Of Metody i narzędzia wytwarzania
oprogramowania 133-144, 2007 (in Polish).

[7] K. C. Chiu, Y. S. Huang, and T. Z. Lee, ―A study of software reliability
growth from the perspective of learning effects,‖ Reliability Engineering
and System Safety, pp. 1410–1421, 2008.

[8] K. E. Emam, W. Melo, and J. C. Machado. The prediction of faulty
classes using object-oriented design metrics. J. Syst. Softw., 56(1):63–
75, 2001.

[9] K. Pillai and V. S. S. Nair, ―A model for software development
effort and cost estimation,‖ IEEE Trans. Softw. Engineering, vol. 23, no.
8, pp. 485–497, 1997

[10] L. C. Briand, J. W. Daly, and J. K. W¨ust. A unified framework for
coupling measurement in object-oriented systems. IEEE Trans. Softw.
Eng., 25(1):91– 121, 1999.

[11] Malhotra R., and Jain A., ―Fault prediction using statistical and
machine learning methods for improving software quality‖, Journal of
Information Processing Systems, Vol.8, No.2, June 2012

[12] MENDE T., KOSCHKE R., Revisiting the Evaluation of Defect
Prediction Models. Proc. of PROMISE, 2009.

[13] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict
component failures. In Proc. Int’l Conf. on Softw. Eng. (ICSE’06),
pages 452–461, 2006.

[14] OLAGUE H. M., ETZKORN L. H., GHOLSTON S. and
QUATTLEBAUM S., Empirical Validation of Three Software Metrics
Suites to Predict Fault-Proneness of Object-Oriented Class Developed
Using Highly Iterative or Agile Software Development Processes. IEEE
Trans. on Software Engineering, 33(6), 2007, 402-419.

[15] OSTRAND T. J., WEYUKER E. J. and BELL R. M., Predicting the
Location and Number of Faults in Large Software Systems. IEEE Trans.
on Software Engineering, 31(4), 2005, 340-356.[8]

[16] S. Dowdy, S. Weardon, and D. Chilko. Statistics for Research.
Probability and Statistics. JohnWiley and Sons, Hoboken, New Jersey,
third edition, 2004.

[17] S. Hwang and H. Pham, ―Quasi-renewal time-delay fault-removal
consideration in software reliability modelling,‖ IEEE Trans. Systems,
Man and Cybernetics-Part A: Systems and Humans, vol. 39, no. 1,
January 2009.

[18] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Trans. Softw. Eng., 20(6):476–493, 1994.[1]

[19] SUCCI G., PEDRYCZ W., STEFANOVIC M. and MILLER J.,
Practical assessment of the models for identification of defect-prone
classes in object-oriented commercial systems using design metrics.
Journal of Systems and Software 65(1), 2003, 1-12.

[20] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE
Trans. Softw. Eng., 31(10):897–910, 2005.

[21] Tang, M.H., M.H. Kao and M.H. Chen, 1999. An empirical study on
object-oriented metrics. Proceedings of the 6th International Symposium

0

200

400

600

800

1 8 15 22 29 36 43 50

P
re

d
ic

te
d

 B
u

gs

Actual Bugs

p_Bugs(DIT)

p_cbo

p_Bugs(LoC)

p_Bugs(WMC)

Actual_Bugs

0

100

200

300

1 6 11 16 21 26 31 36

P
re

d
ic

te
d

 B
u

gs

Actual Bugs

Pred_bugs
(DIT)

pred_bugs
(CBO)

pred_bugs
(wmc)

pred_bugs
(loc)

 (IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

65 | P a g e

www.ijacsa.thesai.org

on Software Metrics, Oct. 04-06, IEEE Computer Society, Boca Raton,
FL., USA., pp: 242-249. DOI: 10.1109/METRIC.1999.809745.

[22] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for
Eclipse. In Proc. Int’l Workshop on Predictor Models in Software
Engineering (PROMISE’07), pages 1–7, 2007.

[23] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-
oriented design metrics as quality indicators. IEEE Trans. Softw. Eng.,
22(10):751–761, 1996.

[24] WEYUKER E. J., OSTRAND T. J. and BELL R. M., Adapting a Fault

Prediction Model to Allow Widespread Usage. Proc. of PROMISE,
2006.

[25] WEYUKER E. J., OSTRAND T. J. and BELL R. M., Do too many
cooks spoil the broth? Using the number of developers to enhance defect
prediction models. Empirical Software Engineering, 13(5), 2008, 539-
559.

[26] WEYUKER E. J., OSTRAND T. J. and BELL R. M., Comparing
Negative Binomial and Recursive Partitioning Models for Fault
Prediction. Proc. of PROMISE, 2008.

