
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

59 | P a g e

www.ijacsa.thesai.org

Implementation of Binary Search Trees Via Smart

Pointers

Ivaylo Donchev, Emilia Todorova

Department of Information Technologies, Faculty of Mathematics and Informatics

St Cyril and St Methodius University of Veliko Turnovo

Veliko Turnovo, Bulgaria

Abstract—Study of binary trees has prominent place in the

training course of DSA (Data Structures and Algorithms). Their

implementation in C++ however is traditionally difficult for

students. To a large extent these difficulties are due not so much

to the complexity of algorithms as to language complexity in

terms of memory management by raw pointers – the

programmer must consider too many details to ensure a reliable,

efficient and secure implementation. Evolution of C++ regarded

to automated resource management, as well as experience in

implementation of linear lists by means of C++ 11/14 lead to an

attempt to implement binary search trees (BST) via smart

pointers as well. In the present paper, the authors share

experience in this direction. Some conclusions about pedagogical

aspects and effectiveness of the new classes, compared to

traditional library containers and implementation with built-in

pointers, are made.

Keywords—abstract data structures; binary search trees; C++;

smart pointers; teaching and learning

I. INTRODUCTION

From the C language, we know that pointers are important
but are a source of trouble. One reason to use pointers is to
have reference semantics outside the usual boundaries of scope
[1]. However, it can be quite difficult to ensure that the life of a
pointer and the life of the object to which it points will
coincide, especially in cases where multiple pointers point to
the same object. Such is the situation when an object must
participate in multiple collections – each of them must provide
a pointer to this object. To make everything correct it is
necessary to be sure that:

- when destroying one of the pointers, take care that
there are no dangling pointers or multiple deletions of
the pointed object;

- when destroying the last reference to an object, to
destroy the very object in order not to allow resource
leaks;

- do not allow null-pointer dereference – a situation in
which a null pointer is used as if it points to a valid
object.

It is a must to have in mind such details to accomplish
dynamic implementation of ADS (Abstract Data Structures)
and often time for this exceeds time remaining to comment the
structures and operations on them. Moreover, there are rare
cases when these is a working implementation of a structure
with carefully designed interface and methods written

according to the best methodologies, but gaps can be identified
in memory management only when a non-trivial situation
occurs, such as copying large structures, transfer of items from
one structure to another, or destruction of a large recursive
structure. For each class representing ADS the programmer
must also provide characteristic operations as well as correctly
working copy and move semantics, exception handling,
construction and destruction. This requires both time and
expertise in programming at a lower level. The teacher will
have to choose between emphasizing on language-specific
features and quality of implementation or to compromise with
them and to spend more time on algorithms and data structures.
In an attempt to escape from this compromise, it is decided to
change the content of CS2 course in DSA, include the study of
smart pointers for resource management and with their help to
simplify implementations of ADS to avoid explicit memory
management which is widely recognized as error-prone [2].

In the work, the emphasis is on the implementation of
linear structures (linked lists) and binary trees. This paper
discusses only part of this work dedicated to binary search trees
(BST).

The initial hypothesis is that a correct and effective
implementation of BST is possible, which could relieve the
work in two directions:

- operations with whole structures (trees): not having to
implement copy and move semantics methods;

- shorter explanation and easier understanding of
implementation of operations with elements of BST –
include (insert element), search, delete.

The remaining content of the paper is as follows: Section II
is a brief overview of language features for managing dynamic
memory and its development. In paragraph III an
implementation of Binary Search Trees (BST) is presented and
compared to those based on build-in pointers. Section IV
discusses effectiveness of the implemented structures and
algorithms compared to the similar realization of the library
container std::set. In section V some conclusions are made
and recommendations are given for smart pointers usage in the
DSA course.

II. DEVELOPMENT OF LANGUAGE FEATURES FOR DYNAMIC

MEMORY MANAGEMENT

Before introducing of new and delete for work with
dynamic memory, inherited from the C language functions

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

60 | P a g e

www.ijacsa.thesai.org

malloc, calloc, realloc and free are used, which are still
available in C++ by including the header file <cstdlib>.

Memory blocks allocated by these functions are not
necessarily compatible with those returned by new, so each
must be handled with its own set of functions or operations.
The problems with using these functions are related to
unnecessary type conversions and error-prone size calculations
(with sizeof).

Introduction of new and delete operators simplifies the
syntax, but does not solve all problems. Especially in
applications that manipulate complicated linked data structures
it may be difficult to identify the last use of an object. Mistakes
lead to either duplicate de-allocations and possible security
holes, or memory leaks [2].

All the potential problems with locally defined naked
pointers include:

- leaked objects: Memory allocation with new can
cause (though rarely) an exception which is not
handled. It is also possible the function execution to
be terminated by another raised exception and the
allocated with new memory to remain unreleased (it is
not exceptions safety). Avoiding such resource leak
usually requires that a function catch all exceptions.
To handle deletion of the object properly in case of an
exception, the code becomes complicated and
cluttered. This is a bad programming style and should
be avoided because it is also error prone. The situation
is similar when the function execution is terminated
by premature return statement based on some
condition (early return);

- premature deletion: An object is deleted that has
some other pointer to and later that other pointer is
used.

- double deletion: There is a possibility to re-delete the
object.

One way to circumvent these problems is to simply use a
local variable instead of a pointer, but if we insist to use pointer
semantics, the usual approach to overcome such problems is to
use "smart pointers". Their "intelligence" is expressed in the
fact that they "know" whether they are the last reference to the
object and use this knowledge to destroy the object only when
its "ultimate owner" is to be destroyed.

It is possible to consider that a "smart pointer" is RAII
(Resource Acquisition Is Initialization) modeled class that
manages dynamically allocated memory. It provides the same
interfaces that ordinary pointers do (*, ->). During its
construction it acquires ownership of a dynamic object in
memory and deallocates that memory when goes out of scope.
In this way, the programmer does not need to care himself for
the management of dynamic memory.

For the first time standard C++98 introduces a single type
of smart pointer – auto_ptr which provides specific and
focused transfer-of-ownership semantics. auto_ptr is most
charitably characterized as a valiant attempt to create a
unique_ptr before C++ had move semantics. auto_ptr is

now deprecated, and should not be used in new code. It works
well in trivial situations – template auto_ptr holds a pointer
to an object obtained via new and deletes that object when it
itself is destroyed (such as when leaving block scope). Here
auto_ptr is "smart" enough, but it appears that the problems
entailed outweigh the benefit from it:

- copying and assignment among smart pointers
transfers ownership of the manipulated object as
well. That is, by default move assignment and move
construction are carried out. Such is the situation with
passing of auto_ptr as a parameter of the function.
After function completes the memory allocated in the
initialization of auto_ptr variable and then passed as
argument to the function will be released (at
destruction of the formal parameter) and will not be
given back to this variable (the actual parameter).
This will result in a dangling pointer. The auto_ptr
provides semantics of strict ownership. auto_ptr
owns the object that holds a pointer to. Copying
auto_ptr copies the pointer and transfers ownership
to the destination. If more than one auto_ptr owns
the same object at the same time, program behavior
is undefined.

- auto_ptr can not be used for an array of objects.
When auto_ptr goes out of scope, delete runs on
its associated memory block. This works for a single
object, not for an array of objects that must be
destroyed with delete [].

- because auto_ptr does not provide shared-
ownership semantics, it can not even be used with
Standard Library containers like vector, list, map.

Practice shows that to overcome (or at least limit) problems
as described above it is not sufficient to use only one smart
pointer class. Smart pointers can be smart in some aspects and
carry out various priorities, as they have to pay the price for
such intelligence [1], p. 76. Note that even now, with several
types of smart pointers, their misuse is possible and it leads to
wrong program behavior.

In the standard [3] instead of auto_ptr several different
types of smart pointers are introduced (also called Resource
Management Pointers) [4]. They model different aspects of
resource management. The idea is not new – it formally
originates from [5] and is originally implemented in the Boost
library and only in 2011 became a part of the Standard Library.
The basic, top-level and general-purpose smart pointers are
unique_ptr and shared_ptr. They are defined in the header
the file <memory>.

Unfortunately, excessive use of new (and pointers and
references) seems to be an escalating problem. However, when
pointer semantics is you really needed, unique_ptr is a very
lightweight mechanism, with no additional costs compared to
the correct use of built-in pointer [4], p. 113. The class
unique_ptr is designed for pointers that implement the idea of
exclusive (strict) ownership, what is intended auto_ptr to do.
It ensures that at any given time only one smart pointer may
point to the object. As a result, an object gets destroyed
automatically when its unique_ptr gets destroyed. However,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

61 | P a g e

www.ijacsa.thesai.org

transfer of ownership is permitted. This class is particularly
useful for avoiding leak of resources such as missed delete
calls for dynamic objects or when exception occurs while an
object is being created. It has much the same interface as an
ordinary pointer. Operator * dereferences the object to which it
points, whereas operator -> provides access to a member if the
object is an instance of a class or a structure. Unlike ordinary
pointers, smart pointer arithmetic is not possible, but specialists
consider this an advantage, because it is known that pointer
arithmetic is a source of trouble. Use of unique_ptr includes
passing free-store allocated objects in and out of functions (rely
on move semantics to make return simple and efficient).

Copying or assignment between unique pointers is
impossible if ordinary copy semantics is used. However, move
semantics can be used. In that case, the constructor or
assignment operator transfers ownership to another unique
pointer.

Typical use of unique_ptr includes:

- ensuring safe use of dynamically allocated memory
through the mechanism of exceptions (exception
safety);

- transfer of ownership of dynamically allocated
memory to function (via parameter);

- deallocating dynamically allocated memory for a
function;

- storing pointers in the container.

A point of interest is the situation when unique_ptr is
passed as a parameter of а function by rvalue reference, created
by std::move(). In this case the parameter of the called
function acquires ownership of unique_ptr. If this function
then does not pass ownership again, the object will be
destroyed at the completion of the function.

Using a unique pointer, as a member of a class may also be
useful to avoid leak of resources. By using unique_ptr,
instead of built-in pointer there is no need of a destructor
because the object will be destroyed while destroying the
member concerned. In addition, unique_ptr prevents leak of
resources in case of exceptions which occur during
initialization of objects – it is known that destructors are called
only if any construction has been completed. So, if an
exception occurs within a constructor, destructors will be
executed for objects that have been already fully constructed.
As a result there can be outflow of resources for classes with
multiple raw pointers, if the first construction with new is
successful, but the second fails.

Simultaneous access to an object from different points in
the program can be provided through ordinary pointers and
references, but it was already commented on the problems
associated with their use. Often it is needed to make sure that
when the last reference to an object is deleted, the object itself
will be destroyed as well (which usually implies garbage
collection operations – to deallocate memory and other
resources).

The shared_ptr class implements the concept of shared
ownership. Many smart pointers can point to the same object,

and the object and its associated resources are released when
the last reference is destroyed. The last owner is responsible for
the destroying. To perform this task in more complex scenarios
auxiliary classes weak_ptr, bad_weak_ptr,
enable_shared_from_this are provided.

The class shared_ptr is similar to a pointer with a counter
of the number of sharings (reference counter), which destroys
the pointed object when this counter becomes zero. Imagine
shared_ptr as a structure of two pointers – one to the object
and one to the counter of sharings.

Shared pointer can be used as an ordinary pointer – to
assign, copy and compare, to have access to the pointed object
via the operations * and ->. A full range of copy and move
constructions and assignments is available. Comparison
operations are applied to stored pointers (usually the address of
the owned object or nullptr if none). shared_ptr does not
provide index operation. For unique_ptr a partial
specialization for arrays is available that provides [] operator,
along with * and ->. This is due to the fact that unique_ptr is
optimized for efficiency and flexibility. Access to the elements
of the owned by shared_ptr array can be provided through the
indices of the internal stored pointer, encapsulated by
shared_ptr (and accessible through the member function
get()).

By using shared pointers the problems with dangling
pointers can be avoided. This problem arises while pointers are
stored in containers.

A problem with reference-counted smart pointers is that if
there is a ring of objects that have smart pointers to each other,
they keep each other "alive" – they will not be deleted even if
no other objects are pointing to them from "outside" the ring.
Such a situation often occurs in implementations of recursive
data structures. C++11 includes a solution: "weak" smart
pointers: these only "observe" an object but do not influence its
lifetime. A ring of objects can point to each other with
weak_ptrs, which point to the managed object but do not keep
it in existence. Like raw pointers, weak pointers do not keep
the pointed-to object "alive". The cycle problem is solved.
However, unlike raw pointers, weak pointers "know" whether
the pointed-to object is still there or not and can be interrogated
about it, making them much more useful than a simple raw
pointer would be.

In practice often happens a situation when the programmer
hesitates which version of a smart pointer to use – unique_ptr
or shared_ptr. The advice is to prefer unique_ptr by default,
because later move-convert to shared_ptr can be done if
needed. There are three main reasons for this [6]:

- try to use the simplest semantics that are sufficient;

- a unique_ptr is more efficient than a shared_ptr. A
unique_ptr does not need to maintain reference
count information and a control block under the
covers, and is designed to be just about as cheap to
move and use as a raw pointer;

- starting with unique_ptr is more flexible and keeps
the options open.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

62 | P a g e

www.ijacsa.thesai.org

In this particular case, however, it is necessary to start from
the very beginning with shared_ptr, because being recursive
by definition, binary trees that have to be implemented with
smart pointers, and this cannot do without shared ownership.

III. IMPLEMENTATION OF BINARY SEARCH TREES

Most attention in the course is given to binary search trees,
so here the focus is only on the implementation. The traditional
implementation interface with build-in pointers looks like this:

template <typename T>
class BTree {
 struct Node {
 T key;
 Node* left;
 Node* right;
 Node();
 Node(T);
 };
typedef Node* pNode; //pNode& instead of Node*&
 pNode root;
 //........ some helper functions here
public:
 BTree() : root(nullptr){}
 ~BTree();
 BTree(const BTree&);
 BTree(BTree&&);
 BTree& operator =(const BTree&);
 BTree& operator =(BTree&&);
 bool insert(T);
 bool remove(T);
 void inorder(void(*)(pNode&));
 void preorder(void(*)(pNode&));
 void postorder(void(*)(pNode&));
 void breath_first(void(*)(pNode&));
 size_t height();
 Node* find(T);
};

Beside the special member functions methods are added to
insert, search and remove elements, and various deep-first
(inorder, preorder, postorder) and breath-first traversals. A
number of additional functions are included. Their
implementation is a question of interest, for example,
calculating the height of the tree and, if there is enough time,
balancing. For implementation of these operations, recursive
algorithms are preferred because they are shorter and more
intuitive. Most difficulties are met with the deletion, which is
normal – the algorithm is most complex.

Since the aim is to count on the reliability, in the course it
is chosen to follow the methodology for verification of object-
oriented programs as proposed in [7].

In order to simplify the technical part and to focus on
algorithms, implementing the operations on trees from 2013-
2014, it is decided to choose implementation with smart
pointers. The initial expectation is that it is possible to avoid all
methods of copy and move semantics, destructors for nodes
and whole trees.

The interface of smart pointers implementations with which
the work is started is the following:

template <typename T>
class Tree {
 struct Node {
 T key;
 shared_ptr<Node> left;
 shared_ptr<Node> right;
 Node():key(), left(), right(){}
 Node(T x):key(x),left(), right(){}
 };
 shared_ptr<Node> root;
//...
public:

 Tree():root(){}
 ~Tree();

Tree(Tree&&) = default;
 Tree& operator =(Tree&&) = default;

Tree(const Tree&);
 Tree& operator =(const Tree&);
 bool push(T);
 bool remove(T);
 void inorder();
 shared_ptr<Node> find(T x) {
 return find(x, root);
 }
 void breath_first();
 size_t height(){
 return height(root);

 }
};

Because of recursive algorithms that are used for each
operation two functions had to be written – one private, with
additional parameter the node from which to start. So public
method is very short and just calls the corresponding private
method that implements the algorithm. For example the public
method for deleting:

template <typename T>
bool Tree<T>::remove(T x){
 return remove(x, root);

}

calls the private method remove(T, shared_ptr<Node>&)
where the second parameter is the root of the tree:

template <typename T>
bool Tree<T>::remove(T x, shared_ptr<Node>& p) {
 if(p && x < p->key)

return remove(x, p->left);
 else if(p && x > p->key)

return remove(x, p->right);
 else if(p && p->key == x) {
 if(!p->left)
 p = p->right;
 else if(!p->right) p = p->left;
 else {

shared_ptr<Node> q = p->left;
 while(q->right) q=q->right;
 p->key = q->key;
 remove(q->key, p->left);
 }
 return true; }
 return false;}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

63 | P a g e

www.ijacsa.thesai.org

We note that the code for this method is 37% shorter than
the code for the corresponding raw pointers implementation
(due mainly to the fact that there is no need to call delete). In
addition readability of code is improved. For inserting a node
there is no difference between the amounts of code – both
methods have 16 rows.

For educational purposes, all operations with a single tree
run normally, but when a larger tree is tested, a "stack
overflow" error appears during automatic tree destruction at the
end of the program. With a standard size of 1 MB stack error
occurs even for destruction of a tree of 29,000 integers.
Because of recursive links, a situation arises where one node
keeps "alive" the whole structure. This on one hand requires a
large stack, and on the other – can lead to significant delays in
demolition of the structure. So the choice is to add a destructor,
instead of increasing stack size from the settings of the linker.
The decision is not to work for efficiency and chose the easiest
option – using the method for deletion. As such, the destructor
looks like this:

~Tree(){
while (root) remove(root->key);

}

As for the implementation of special member functions,
defaulting of move constructor and move assignment operator
works and it is not needed to implement move semantics, but
copy semantics requires to write appropriate methods, because
it is needed to copy the entire tree structure, so as to obtain a
true copy of the tree, not just tree, which contains the same
elements.

Comparing the overall implementation of trees with raw
pointers, the conclusion is that smart pointers give short and
easy to understand code without apparent loss of efficiency
(Table 1).

IV. PERFORMANCE EVALUATION

In order to evaluate the efficiency of smart pointers
implementation an experiment is carried out in which times for
typical operations with binary trees, implemented with and
without smart pointers, are compared.

Three conversions are compared: traditional row pointer
implementation, new smart pointer and library implementation
std::set (Table 1). Note that std::set is typically
implemented in libraries as a red-black tree. This may
adversely affect time for generating the tree (for coloring and
balance), but improves search speed.

The same data is used in the experiment: 100,000 randomly
generated unique strings of length of 20 stored in a text file.
They are used to construct trees. The first operation "Add
element" reads all strings from the file and stores them in the
relevant tree. For each tree, the text file is opened and read
again. For unbalanced versions, a tree with height of 38 is
obtained.

In testing for search and remove elements another file is
used, which records 10,000 strings that are found in the tree.
The algorithm makes search and remove operations for exactly
these elements.

TABLE I. TEST RESULTS FOR BINARY TREES

Note: time in milliseconds

The results show that there is practically no difference in
performance between implementation of operations with build-
in and smart pointers, which is a good argument to continue to
study smart pointers in the course DSA. Some surprise is the
time for std::set in operations creating structure (adding
operation), which is three times better. Apparently, extra time
for coloring and balancing the tree is offset by the lower height
of the red-black tree – std::set for these input data
theoretically the tree can get a height of 12, and as mentioned
before, the tree in our implementations has height 38. For the
same reasons, search time in our implementations is 2 times
worse, and time for removing elements – 1.5 times worse
library implementation.

V. CONCLUSION

The initial hypothesis regarding the implementation of
BSTs with smart pointers is proven partially. It is not possible
to do the work entirely without implementation of methods of
copy and move semantics, but their code turns out to be short,
clear and easily understandable for students. Moreover, move
semantics can be provided by defaulted move constructors and
assignment operators. It is considered that the second part of
the hypothesis, namely the shorter and clearer implementation
of basic operations with data structures is fully achieved. In
addition, smart pointer versions do not require user-defined
exception handling.

Since there is not enough empirical data, the advantage of
this way of teaching DSA cannot be proved yet, but even
without holding a strictly formal pedagogical experiment, it
can be stated that results of students tests, homework and
exams are comparable to those demonstrated by their
colleagues trained in previous years under the old program.

Implementation of ADS with smart pointers is more clear
and concise, but requires spending time to study in addition
templates and essential elements of the STL, though not in
detail. This could be facilitated by reorganizing CS1 course
Programming Fundamentals, where to underlie learning
C++11/14 and STL. Note that for the presented
implementations it is not needed even to know the full
interface for work with smart pointers. In most situations the
interface of build-in pointers is sufficient plus function
make_shared and possibly member function reset. While
working with students during the school year some difficulties
are met in debugging of programs related to discovery of
logical errors in memory management, most often connected
with its release.

Operations

Binary Search Tree Implementations

Row Pointers
Smart

Pointers
std::set

Add element 438 453 156

Search 31 32 15

Remove 47 46 32

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

64 | P a g e

www.ijacsa.thesai.org

It is appropriate to add an intermediate output (operator
cout) in destructors as of DSA, as of the elements held in them
(if they are of user-defined types). In this way, it is easy to
detect situations where objects remain undestroyed.

Regarding the applicability of smart pointers in actual
programming the opinion of Stroustrup should be mentioned,
that they "are still conceptually pointers and therefore only my
second choice for resource management – after containers and
other types that manage their resources at a higher conceptual
level" [4], p. 114. The results of comparative tests also show
that library containers are sufficiently effective. In order to
learn smart pointers it is necessary to get into STL. On one
hand, it is better to teach students how to use its efficient and
reliable containers. On the other hand though, as future
professionals they must be able to independently implement
such containers – to develop creative thinking. It is therefore
not a bad idea to do so with smart pointers as well – one more
opportunity provided by the STL.

REFERENCES

[1] Josuttis, N. M. (2012). The C++ Standard Library: A Tutorial and
Reference. Addison-Wesley Professional; 2nd edition (April 9, 2012).

[2] Boehm, H. & Spertus, M. (2009). Garbage Collection in the Next C++
Standard. Proceedings of the 2009 international symposium on Memory
management, pp. 30-38. ACM New York.
doi>10.1145/1542431.1542437

[3] ISO/IEC. (2011). International Standard ISO/IEC 14882:2011(E)
Information technology – Programming languages – C++ (3rd ed.)

[4] Stroustrup, Bj. (2013). The C++ Programming Language, 4th Edition.
Addison-Wesley Professional; 4th edition (May 19, 2013)

[5] Dimov, P., Dawes, B. & Colvin, G. (2003). A Proposal to Add General
Purpose Smart Pointers to the Library Technical Report. C++ Standards
Committee Papers. Document number: N1450=03-0033
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1450.html

[6] Sutter, H. (2013). Sutter’s Mill. GotW #89 Solution: Smart Pointers.
http://herbsutter.com/2013/05/29/gotw-89-solution-smart-pointers/

[7] Todorova, M., Kanev, K. (2012). Educational framework for
verification of object-oriented programs, in Proceedings of the 2012
Joint International Conference on Human-Centered Computer
Environments, ACM, New York, pp. 23-27

