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Abstract—This paper develops a steganography-based
paradigm for lossless-quality compression of high-resolution
color images acquired by megapixel cameras. Our scheme
combines space-domain and frequency-domain image processing
operations where in the space domain, color-brightness
separation is exploited, and in the frequency domain, spectral
properties of the Fourier magnitude and phase of the color
image is exploited. Working in both domains concurrently allows
for an approach to ultrahigh-resolution image compression that
addresses both issues of quality and storage size. Experimental
results as well as empirical observations show that our technique
exceeds the highest quality JPEG image compression standard
in terms of compression rates while being very competitive with
JPEG in the overall fidelity of the decompressed image, with
the added advantage of being able to recover the original fine
details in the color image without any degradations common in
lossy image compression techniques.

Keywords—Lossless Quality Compression; Steganography;
Color Image Compression; Lab color space; RGB color space,
Frequency Domain Data Hiding

I. INTRODUCTION

The most widely used compression technique for storing
color images acquired by high-resolution digital cameras is
the Joint Photographic Experts Group (JPEG) image format.
Needless to say, images compressed using JPEG’s lossy com-
pression paradigm suffer from JPEG blocking artifacts due
to the nature of the lossy Discrete Cosine Transform (DCT)
8 × 8 block-size used by the JPEG compression standard, as
well as the inherent loss of fine details due to degredation
in picture resolution. Figure 1 shows an example of typical
JPEG blocking artifacts appearing in images compressed by
this standard. High compression rates1 result in images with
blockyness in the blue and red channels. This is the reason
most professional digital cameras implement a RAW image
storage format which leaves the image uncompressed and
huge.

Attempts to remove these blocking artifacts from JPEG-
compressed images have been dicussed extensively in the
literature [38], [19], [21], [34]. Nevertheless, these techniques
fail to retain the high quality of fine details in the compressed
images which is an inevitable consequence of the JPEG
compression scheme. As a matter of fact, while deblocking
the JPEG-compressed images, these methods remove more of
the fine detail in the process [22].

1Compression Rate = 1 - (compressed file size/uncompressed file size)

Fig. 1: JPEG compressed color image showing blocking arti-
facts in the right image portion.

This paper presents a detailed account of an improved color
image compression scheme that is lossless in the luminance
image quality while being lossy only in the chrominance
channel representations, which have an insignificant effect on
the overall decompression quality as we will show. This new
scheme provides important improvements over the original
Fourier-domain image-hiding compression framework, first
presented in [32], which suffered from discoloration artifacts
in the decompressed color image due to the nature of the
Frequency domain color embedding and extraction scheme
used.

The proposed idea is to utilize the space-domain and Fast
Fourier Transform (FFT) domain of the high-resolution color
image to enhance the compression rate while avoiding the
undesirable effects of reduced detail quality and blocking
artifacts inherent in other commonly used image compression
schemes. In the space domain, image color-brightness separa-
tion is exploited, and in the FFT domain, spectral properties
of the Fourier magnitude and phase of the acquired image is
exploited. Working in both domains concurrently allows us to
address both issues of quality and storage size when dealing
with high-resolution color image compression.

Information hiding techniques, commonly known as
steganography when dealing with hiding secret messages into a
cover medium to form a ”stego” medium [28], or watermarking
when copyright protection of multimedia data is involved [37],
have received a great deal of attention in the past decade [4],
[35], [17], [20], [23]. Motivated by growing concern about
the protection of intellectual property on the Internet and by
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the threat of a ban for encryption technology, the interest in
information hiding systems has been increasing over the years
[27].

Techniques for information hiding inside digital images
have been generally confined to three popular approaches,
namely; the spatial approach, which involve manipulation of
the least significant bit (LSB) of an image pixel value and
the rearrangement of image colors to create LSB or parity bit
patterns, which correspond to the message being hidden [3],
[12], [6]; the compression approach [8], [5]; and the frequency
domain approach [7], [30], with variants that try to improve
four different aspects; perceptibility, capacity, security, and
robustness [11].

Perceptibility deals with the amount of ”distortion” in the
cover medium due to embedding information and if this infor-
mation will lead to a visibly (visually or audibly) unacceptable
level of the cover medium. Capacity refers to the amount of
information that can be hidden in the cover medium relative to
the change in perceptibility. For images, capacity is measured
in bits per pixel. Security refers to an eavesdropper’s inability
to detect and inturn extract or change the hidden information,
and robustness to the amount of modification the stego medium
can withstand before an adversary can destroy the hidden
information.

The main driving force behind data hiding in images is
the fact that most images have inter-pixel relations that vary
between high correlation and almost no correlation. The idea
is to identify the redundancy in the pixel information of the
cover image where the correlation is the least and use it to
embed the secret information that we seek to hide.

The rest of this paper is organized as follows. In section II
we present prior work in the area of steganography-based high-
compression rate techniques. Section III discusses the theory
behind separation of phase from magnitude in the frequency-
domain of the image, while section IV briefly reviews the
different color standards commonly used in image processing
operations and discusses the advantage of space-domain color-
brightness separation for preservation of fine details dur-
ing image compression. Our proposed high-fidelity Lossless-
quality Steganography-based color image compression scheme
which we denote as ”LqSteg” is discussed in section V, and
section VI presents our results and comparisons to the popular
JPEG compression standard, and also demonstrates the highest
image quality that can be achieved based on our approach.
Finally, concluding remarks appear in section VII.

II. PREVIOUS WORK

Steganography has been extensively used for hiding secret
data into different media types and many schemes have been
proposed in the literature which try to address one or more
important aspects, namely; perceptibility, capacity, security,
and robustness, but rarely have they been utilized effectively
for lossless-quality image compression. The only accounts
of published work in the area of image compression that
utilize steganography techniques (other than the preliminary
idea first presented by the author in [32]) are; the compressive
data hiding scheme proposed by Campisi et. at. [1], the
dual domain watermarking for authentication and compression
method presented in [40], the DCT-based data-hiding method

to embed color information in JPEG grey level images pub-
lished in [10], the Semantic compression method for grey-
scale image compression proposed by Zhang & Zhang [39],
and the Reversible Data Hiding-based compression Technique
proposed by Kang et. al [18].

In [1] the chrominance information is subsampled and
embedded in the discrete wavelet transform (DWT) domain
of the luminance component. This method was used as a pre-
processing stage to improve the performance of popular image
compression schemes that are optimized for grayscale image
compression. In their scheme the color image is converted to
the YIQ color space where the chrominance components are
processed in the DWT domain and embedded in the wavelet
domain of the luminance component of the original color
image, with compression rates reaching 98%. The method,
however, differs completely from our approach in the fact that
it is highly lossless and is not concerned with maintaining high-
frequency image structure, and therefore, we cannot compare
our scheme to their results because of the different objectives
of the two methods.

The dual domain watermarking and compression scheme
proposed in [40] is an extension of the previous method in
[1] where they implement the watermarking as a DCT-DWT
dual domain algorithm and apply it for the protection and
compression of cultural heritage imagery, with results that
also fail to preserve the high-frequency image structure in the
original image.

In [10], the objective of their scheme is to allow free
access to compressed grey-level images and give color image
access only if the user owns a secret key. This method consists
of color quantization, color ordering, and DCT-based data
hiding to embed the color information of the image in the
corresponding compressed grey-level image.

In [39] the authors create a compact image from the full
size grey-scale image by downsampling the pixels in the
original image, and collect the estimation errors between the
downsampled compact image pixels and the original image
pixels. Then, the estimation errors, which provide the com-
pression information, are embedded into the compact image
using a LSB replacement technique to produce a compressed
image with smaller size and similar content. The maximum
compression rates they have been able to achieve for grey-
scale images was 50%.

In [18] the authors implement a lossless compression
technique for further compressing JPEG compressed images
by hiding some of the image data inside the entropy coded
portion of the JPEG quantized DCT coefficients. The maxi-
mum compression rates they have been able to achieve for
grey-scale images was 0.36% above the already compressed
JPEG image.

Another Scheme proposed by Qin et. al. [29] is the Joint
Data-Hiding and Compression technique which combines the
two functions of data-hiding and commpression simultane-
ously. It should be noted, however, that this technique does
not fall into the same category of Steganography-based com-
pression techniques since the authors do not use data hiding for
the purpose of compression, but rather integrate both functions
of data hiding and compression in one process.
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III. SIGNIFICANCE OF MAGNITUDE AND PHASE

It has been experimentally established that for many im-
ages, the phase of the Fourier transform is more important than
the magnitude [15], [24], [25]. Specifically if

F (u, v) = |F (u, v)|ejθ(u,v) (1)

denotes the two-dimensional (2D) Fourier transform of an
image f(x, y), then the inverse Fourier transform of ejθ(u,v)
has many recognizable features in common with the original,
whereas the inverse Fourier transform of |F (u, v)| generally
bears no resemblance to the original. This is illustrated in
figure 2 where figure 2-(a) is a Red, Green, Blue (RGB)
color image and figure 2-(b) is the phase-only image, i.e., the
inverse Fourier transform of ejθ(u,v). Clearly, the phase-only
image retains many of the features of the original. By contrast,
the magnitude-only image, i.e., the inverse Fourier transform
of |F (u, v)|, shown in figure 2-(c), bears no resemblance to
the original image. As is evident in this example, the phase-
only image often has the general appearance of a high-pass
filtered version of the original with additive broadband noise.
It is apparent that retaining the phase component is of utmost
importance to the proper recontruction of the original image
structure.

The importance of phase also extends to one-dimensional
signals. It has been shown that the intelligibility of a speech
sentence is retained if the inverse transform of the Fourier
phase of a long segment of the speech signal is combined with
unity magnitude to obtain the phase-only equivalent speech
[24]. In fact, in listening to this processed sentence, total
intelligibility is retained although the speech has the general
quality associated with high-pass filtering and the introduction
of additive white noise. The magnitude-only speech has some
structure which provides a speech-like characteristic but with
no speech intelligibility.

IV. COLOR-BRIGHTNESS SEPARATION

There are several advantages to the separation of color
from brightness information in image processing. Perceptual
experimental evidence has established that the human visual
system has a much higher sensitivity to changes in brightness
details than to color. Moreover, there seems to be general
agreement that spatial resolution is markedly lower in the
chromatic channels, as is clear from figure 3 (a,b), than in
the achromatic one, as in figure 3 (L). Hence, high frequency
information, representing fine details and edges, come mainly
from the achromatic channel [36], [14]. This consideration and
experimental results suggest that a color model which separates
luminance from chrominance is most suitable for our image
compression framework, where we can take advantage of the
inherent lower spatial information carried in the color channels
to embed them at a reduced-size image resolution inside the
brightness information without altering the fine details in the
original image.

Several color space representations exist that separate an
RGB color image into separate brightness and color compo-
nents. For instance, HSV space and HLS space are trans-
formations of RGB space that can describe colors in terms
more natural to an artist. The name HSV stands for hue,
saturation, and value, and HLS stands for hue, lightness, and

saturation, where the value or lightness components represent
the luminance channel, and the hue/saturation components are
the chromatic channels. The only disadvantage of the HSV and
HLS spaces are the fact that they are device-dependent where
one imaging sensor may produce a different color value from
another sensor depending on how it is manufactured.

Some color spaces can express color in a device-
independent way. Whereas HSV colors vary with imaging
sensor hardware characteristics, device-independent colors are
meant to be true representations of colors as perceived by
the human eye. These color representations, called device-
independent color spaces, are the result of work carried out
in 1931 by the Commission Internationale d’Eclairage (CIE)
and for that reason are also called CIE-based color spaces. The
CIE created a set of color spaces that specify color in terms of
human perception. It then developed algorithms to derive three
imaginary primary constituents of color, that can be combined
at different levels, to produce all the colors the human eye can
perceive. The resulting CIE color models form the basis for
all color management systems.

Although the RGB and HSV color representations differ
from device to device, human perception of color remains
consistent across devices. One such consistent color represen-
tation is the CIE L*a*b* color space, which is a nonlinear
transformation of the RGB color space, that specifies color
in terms of human perception in a way that is independent
of the characteristics of any particular imaging device. We,
thus, choose to separate the high resolution RGB color image
into separate luminace and chrominance channels using the
CIE L*a*b* color space2, where L* represents luminance
(brightness) image values, a* represents redness-greenness,
and b* represents yellowness-blueness color values [13].

V. THE PROPOSED LQSTEG COMPRESSION SCHEME

The L*a*b* color space separates a digitally acquired RGB
image into a luminance channel L, and two chrominance chan-
nels (a, b). In general the luminance channel (L) suffers less
noise artifacts than the (a, b) chrominance channels, as well as
retaining all the high-quality fine details of the original color
image [31]. These considerations prompt us to embed reduced-
size thumbnails of the (R,G,B) color components of the
original image inside the (less-important) Fourier magnitude
spectrum of the full-size luminance channel, while maintaining
the phase spectrum intact to avoide any modifications to the
original fine-detailed information in the image.

The proposed technique we describe in this section intro-
duces quality improvements over results obtained using the
preliminary idea first presented in [32]. The former method
suffered from discoloration artifacts due to the color embed-
ding scheme adopted which did not deal with contaminating
noise added to the RGB thumbnail images during the extrac-
tion process. This old technique also suffered from RGB em-
beddings being placed too close to the borders of the significant
frequency coefficients in the Fourier spectral magnitude of
the luminance channel of the source image, which resulted
in further noise added to the (R,G,B) components during
extraction. These types of additive noise caused color artifacts

2For detailed information about the CIE color spaces please visit their
website at http://www.cie.co.at
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(a) (b) (c)

Fig. 2: (a) Zebras image, (b) Inverse Fourier transform of ejθ(u,v) (the phase-only image of the Red-channel of the Zebras image).
(c) Inverse Fourier transform of |F (u, v)| (the magnitude-only image of the Red-channel of the Zebras image).

Fig. 3: A color image of a House separated into its component channels using the L*a*b* color space to show that spatial
resolution is markedly lower in the chromatic channels (a) and (b) than in the achromatic luminance (L) channel.

when regenerating the decompressed color image as will be
shown from figure 7 when we talk about the experimental
results in section VI. The comparisons shown in figure 7 are
between example results obtained using the method in [32]
and the LqSteg scheme we describe in this work. The figure
shows the extracted RGB components using both methods and
it is clear how high-frequency noise contaminates the extracted
RGB components when using the old method.

This noise was however dealt with in the old scheme by
applying a wavelet denoising operator (the default wdencmp
Matlab wavelet denoising filter) on the extracted noisy RGB
components which resulted in a smoothing effect on the color
channels thus causing a faded color effect on the decom-
pressed recovered image as shown in the image of figure 7-
(c). The fine details were however preserved in the unaltered
luminance component. This denoising step has been rendered
mostly unnecessary in our new LqSteg implementation, which
results in major improvements in reproduction of colors in the
decompressed image, as well as a boost in the speed of the
decompression process.

A. Compression: Embedding Chrominance into Luminance

The 2D Fourier transform of the luminance channel is first
computed and the magnitude spectrum is separated from the
phase spectrum. Let fL(x, y) be the space-domain luminance
channel of the acquired image f(x, y). The Fourier transform
of this luminance channel can be expressed in polar form as:

FL(u, v) = ML(u, v)ejθL(u,v) (2)

where ML = |FL(u, v)| is the luminance magnitude spectrum,
θL(u, v) is its phase angle, and (u, v) are the frequency
coordinates.

The technique used to embed the reduced-size RGB color
components into the Fourier magnitude of the luminance chan-
nel of the acquired image is to replace the low-amplitude-high
frequency (insignificant) areas in this luminance magnitude
spectrum with downsampled 1/8-size (thumbnail) (R,G,B)
image components in a triangular formation (clearly depicted
in figure 5). This type of embedding prevents aliasing of
the color components when extracted (which appears as a
mirroring of parts of the RGB component images from one
side onto the opposite side and causes data loss).

The implications of embedding the RGB thumbnail images
in the high frequency areas of the Fourier magnitude is a two-
fold effect; firstly, an additive noise component is introduced
in the modified space-domain luminance image. The amplitude
of this noise is proportionate to the variance in the RGB
images. The smaller the changes in the RGB images, the less
noise that appears in the luminance image, and vice versa.
Secondly, an additive noise component is introduced in the ex-
tracted (R,G,B) component images during the decompression
process due to the Fourier-Inverse-Fourier transform operations
which take place during embedding-extraction process, where
the (R,G,B) embedding location in the luminance magnitude
spectrum is mostly where high-frequency noise resides.

Nevertheless, the two types of noise effects are dealt with
in the implementation. The first type of additive noise is re-
moved during the decompression stage of regenerating the full
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(a) (b)

Fig. 4: (a) A typical Magnitude spectrum of the acquired image
before embedding occurs, (b) The embedded (R,G,B) color
components in the low-amplitude-high-frequency region of the
Magnitude spectrum in a triangular formation.

color image by zero-padding the locations left behind in the
magnitude spectrum of the luminance channel after extraction
of the embedded thumbnail RGB component images. This
zero-padding has the effect of suppressing any high frequency
noise, thus preserving the quality of the original high-detail
luminance image.

The second type of noise is avoided altogether by raising
the gain of the pixel values of the embedded RGB thumb-
nail images before the embedding process. This is done by
rescaling the pixel-intensity range for each individual (R,G,B)
component to be in the range [0, k] instead of the normal
range [0, 255], where k is emperically set to a value greater
than the maximum spectral noise amplitude measured inside
the embedding locations of the spectral magnitude of the
luminance image. This has the effect of raising the signal-to-
noise ratio of the embedded RGB components, which results
in high signal-to-noise ratio during extraction.

Figure 4 shows before and after figures of the luminance
magnitude spectrum of a typical image when the reduced-size
RGB components are embedded in the high frequency areas
of this magnitude spectrum in a triangular formation.

This modified Fourier magnitude M̂L(u, v) in which the
RGB thumbnail images are embeded is then combined with
the complex Fourier phase of the original luminance image
to produce the modified Fourier spectrum of the luminance
channel as in equation (3), which when transformed back to
the space domain, using the inverse Fourier transform, will
produce the space-domain luminance image which represents
the compressed image ready for storage and transmission (as
depicted in figure 5). This compressed luminance image is then
stored in the JPEG format set to 100% compression quality
This further improves the compression rate, as will be clear
from table I, since it provides a two-stage compression; color
compression inside the luminance image followed by JPEG
compression of this compressed luminance image.

F̂L(u, v) = M̂L(u, v)ejθL(u,v). (3)

B. Decompression: The Extraction Process

Extraction of the hidden color information and recomposit-
ing (decompressing) the full color image takes place after com-

Fig. 5: Block diagram showing the general steps to embed
the RGB color image thumbnails inside the Fourier magnitude
of the Luminace channel after separating Luminance from
Chrominance information.

puting the magnitude of the Fourier transform (F̂L(u, v)) of the
modified (compressed) luminance image to give: M̂L(u, v).

The decompression steps are given as follows:

1) The reduced-sized RGB component images are ex-
tracted from their original locations inside this lumi-
nance magnitde spectrum M̂L(u, v) and their pixel
values are rescaled back to their original [0, 255]
range.

2) The locations inside the luminance magnitde spec-
trum of extracted RGB thumbnail images are zero-
padded to give a restored luminance magnitude
spectrum given by: M̄L(u, v). It is this magnitude
spectrum which is then combined with the unal-
tered Fourier phase ejθL(u,v) of the luminance image
to produce the Fourier spectrum of the luminance
channel as in equation (4), which when transformed
back to the space domain, using the inverse Fourier
transform, will produce the full-size space-domain
luminance channel image L̄(x, y) which retains all
the fine details of the original image.

F̄L(u, v) = M̄L(u, v)ejθL(u,v). (4)

3) The next step is to transform the low-resolution
reduced-sized RGB thumbnail components to the
L*a*b* color space. The low-resolution (L) compo-
nent is then discarded.
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4) The (â, b̂) components are then resized using high-
quality interpolation to the same resolution size of
the original image to give (ā, b̄).

5) The resized (ā, b̄) components are then combined with
the full-size space-domain luminance channel image,
generated from its component magnitude and phase
spectra in step (2), to form the three components
(L̄, ā, b̄).

6) This color image in the L*a*b* space is then trans-
formed back to the RGB space to produce the re-
covered decompressed high-resolution color image,
which retains all the fine details that would otherwise
be lost if other lossy compression techniques were
used.

VI. EXPERIMENTAL RESULTS

In this section, experimental results are presented to show
the performance of our LqSteg image compression scheme
when used to compress a high-resolution image into a lumi-
nance image, and regenerate the decompressed high-resolution
color image back. Our LqSteg compression scheme described
in previous sections was implemented in the Matlab program-
ming environment.

A. Image Quality Measures

In evaluating the performance of our LqSteg compression
scheme it is important to take into consideration both the
analytical performance of the algorithm as well as the visual
quality of the decompressed images generated by the scheme
in comparison to the ideal image. The most important tests
are related to our human perception, the ultimate measure of
visual fidelity, which is very subjective.

The subjective tests are carried out by people who look for
visual differences between the images (original and recovered
image) trying to find which one of them is the original. If the
percentage of success is below 50%, it can be concluded that
the quality of the recovered image is close enough to that of the
original. The subjective test’s rules and recommendations are
defined by the International Telecommunication Union [16],
[33].

Unlike the subjective approach which is based on human
vision, the well known mean-square-error (MSE) metric calcu-
lates the global error variance (power in the difference image)
between an ideal image f , and the recovered image f̂ , and has
been widely used for measuring the performance of various
filters [2]. The only shortcoming in an MSE metric is that it
is not ideal for tracking visual quality in the estimated image,
because it is sensitive to minor pixel variations between the
ideal and recovered images that do not, in general, affect the
perceived visual quality.

A more robust measure of decompression performance that
has been widely used by the signal processing community is
the Peak-Signal-to-Noise-Ratio (PSNR) in decibels (dB) [9],
[26], given by:

PSNR = 20 log10

(
L− 1

σe

)
(5)

Fig. 6: Four mega-pixel-size color test images (top left and
right: Lake, Mountain, bottom left and right: Zebras, Plug)
which represent images of various detail and color structure.

where L is the number of gray levels in an image (L = 256
for 8-bit images), and σe is the residual standard deviation in
the error image given as:

σe =

√√√√ 1

S

S−1∑
s=0

(fs − f̂s)2 (6)

for S-sized images.

This PSNR metric is an engineering term for the ratio be-
tween the maximum possible power of a signal and the power
of corrupting noise that affects the fidelity of its representation.
The PSNR is most commonly used to measure the quality of
reconstruction in an image by comparing the decompressed
image with the original image. This measure is less sensitive
to minor deviations between images and will be adopted for
comparing our results.

It is important to note, however, that objective measures
such as the PSNR and MSE metrics are not necessarily
correlated to our perception of an image. This is because
methods that are least squares based are optimum in terms
of MSE values without necessarily producing the best visual
results.

B. Results of Proposed Method

We start by showing the original test images used in our
experiments. Figure 6 shows four mega-pixel-size color test
images (top left and right: Lake, Mountain, bottom left and
right: Zebras, Plug) which represent images of various detail
and color structure.

The comparisons shown in figure 7 are between results
obtained using the method in [32] and our LqSteg scheme
described in this work. The figure shows the extracted RGB
components using both methods and it is clear how high-
frequency noise contaminates the extracted RGB components
when using the old method. It also shows how our technique
reproduces the colors in the original image to a high degree
of accuracy whithout the loss of any fine details.
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Fig. 7: Comparison between results obtained using the method in [32] and our new LqSteg method described in this work.

In figure 8 we show compression results for the Zebras im-
age at 8 megapixels. The left image shows the original Zebras
image, the middle image shows the compressed Luminance
image with a compression rate at 86.20%, and the right image
shows the decompressed image where the colors have been
accurately reproduced and all the fine details maintained.

Next, in figure 9-(a) we show a RAW color image (with
no compression of any sort) of a mountain scene acquired
by a digital camera using a high 3.9 megapixel resolution of
2560×1600 (3.9 mega pixels) and 12 megabytes (MB) in size.
Figure 9-(b) shows the compressed image using our Fourier-
stego-based compression technique (LqSteg) with the RGB
color thumbnail images embedded in the luminance image.
The size was reduced to 1.6 MB (i.e. an 86.29% compression
rate was achieved). The regenerated high-resolution color
image is shown in figure 9-(c) where it is clear that the colors
were preserved in the spectral magnitude of the luminance
channel and recovered properly.

The PSNR between the individual RGB color channels of
the original raw color image and the decompressed color image
using our stego-compression scheme was PSNRR = 32.14
dB, PSNRG = 39.10 dB, PSNRB = 27.79 dB, and the
average PSNRav = 33.02 dB.

Next, we present results of compressing a color image
acquired using a mega-pixel camera. Figure 10-(a) shows the
original RAW color image of size 1280 × 960 pixels (1.17
mega pixels) and file size of 3.6 MB. Figure 10-(b) shows

the compressed image where the file size was reduced to
625 kB (i.e. 82.64% compression rate). In comparison, the
compression rate of the JPEG standard set to 100% quality
for the same image in figure 10-(a) was 77.78%. Also, the
maximum compression rate that Zhang & Zhang were able to
achieve in [39] for grey-scale image compression was 1/2 of
the original image file size (i.e. 50% compression rate), while
Kang et. al in [18] were able to improve the JPEG compression
rate by adding an extra 0.36% to a current rate.

The PSNR between the individual RGB color channels
of the original raw color image and the decompressed color
image was PSNRR = 25.22 dB, PSNRG = 31.60 dB,
PSNRB = 26.62 dB, and the average PSNRav = 27.81 dB.
It should be noted that the PSNR of the grey-scale compression
scheme of Zhang & Zhang [39] was generally higher than our
scheme at 36 dB, but as previously mentioned, at much lower
compression rates. Figure 10-(c) shows the regenerated high-
resolution color image where it is clear that the colors were
preserved in the spectral magnitude of the luminance channel
and recovered properly.

Table I clearly shows how our LqSteg compression scheme
exceeds the compression rates for high-quality JPEG com-
pressions for all image sizes, while staying comparable in
terms of PSNR. One observation when comparing the images
in Figure 9-(b) and Figure 10-(b) as well as tracking the
compression rates from table I is that the compression rates
increase as the size of the test images increase.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 4, 2015 

120 | P a g e
www.ijacsa.thesai.org 



Fig. 8: Compression results for the Zebras image at 8 megapixels. The left image shows the original Zebras image, the middle
image shows the compressed Luminance image with a compression rate at 86.20%, and the right image shows the decompressed
image where the colors have been accurately reproduced and all the fine details maintained.

(a) (b) (c)

Fig. 9: (a) Original mountain scene of size 2560×1600 pixels (3.9 mega pixels) and a file size of 12 MB, (b) Compressed image
with RGB thumbnail images embedded in the spectral magnitude of the luminance channel, with file size reduce to 1.6 MB
equivalent to a compression rate of 86.29%. (c) Recovered high-resolution image retaining the original high-resolution quality
and colors.

TABLE I: Compression Rate for our Lossless-quality Stego compression scheme (LqSteg) in comparison to the Compression
Rate of the JPEG standard set to 100% Quality. The table also shows the average PSNR (dB) achieved for each method at
various image megapixel sizes.

Image Images Size (MegaPixels) LqSteg Compression Rate (%) LqSteg PSNRav (dB) JPEG Compression Rate (%) JPEG PSNRav (dB)

0.30 78.47 30.84 73.14 37.98
Mountain 1.17 83.42 32.19 80.37 39.08

3.90 86.29 33.02 83.80 39.45
8.00 87.99 33.06 85.37 39.50

0.30 72.59 31.56 68.15 37.39
Zebras 1.17 79.34 33.05 75.65 38.71

3.90 83.84 33.45 81.08 39.27
8.00 86.20 33.41 83.73 39.56

Lake 6.10 80.69 26.04 72.27 32.37
Plug 1.17 82.64 27.81 77.78 35.79

Finally, figure 11 shows the compression rates in % and
the decompressed maximum achievable PSNR in dB plotted
against various image sizes (in mega-pixels) for the Mountain
and Zebras test color images. It clearly shows that both PSNR
and compression rates increase slightly as the image size
increases.

VII. CONCLUSION

This paper has developed the LqSteg high-quality color
image compression framework, that demonstrated signifi-
cant improvements over the Fourier-domain image com-
pression paradigm introduced in [32] and in [30]. This

new steganography-based compression scheme utilized space-
domain and frequency-domain color image processing opera-
tions that addressed both issues of quality and reduced storage
size. Experimental results as well as objective image quality
measures have shown that our technique is very competitive
with the widely used JPEG lossy image compression standard
with the added advantage of being able to recover the original
quality without blocking artifact degradations or loss of high-
frequency details common in lossy compression techniques. In
future work, we would like to investigate using the discrete
cosine transform (DCT) domain instead of the fast fourier
transform domain. The DCT possesses a high energy com-
paction property that would allow for an increase in the size
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(a) (b) (c)

Fig. 10: (a) Original Plug image of size 1280 × 960 pixels (1.17 mega pixels) and file size of 3.6MB, (b) Compressed image
with RGB thumbnail images embedded in the spectral magnitude of the luminance channel, file size was reduced to 625 kB (i.e.
82.64% compression rate). (c) Recovered high-resolution image, retaining the original high-resolution quality and colors.

of the embedded RGB color components which should further
improve the quality of the regenerated decompressed color
image.
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