
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

35 | P a g e

www.ijacsa.thesai.org

Memetic Multi-Objective Particle Swarm

Optimization-Based Energy-Aware Virtual Network

Embedding

Ashraf A. Shahin1,2

1
College of Computer and Information Sciences,

Al Imam Mohammad Ibn Saud Islamic University (IMSIU)

Riyadh, Kingdom of Saudi Arabia
2
Department of Computer and Information Sciences, Institute of Statistical Studies & Research,

Cairo University,

Cairo, Egypt

Abstract—In cloud infrastructure, accommodating multiple

virtual networks on a single physical network reduces power

consumed by physical resources and minimizes cost of operating

cloud data centers. However, mapping multiple virtual network

resources to physical network components, called virtual

network embedding (VNE), is known to be NP-hard. With

considering energy efficiency, the problem becomes more

complicated. In this paper, we model energy-aware virtual

network embedding, devise metrics for evaluating performance

of energy aware virtual network-embedding algorithms, and

propose an energy aware virtual network-embedding algorithm

based on multi-objective particle swarm optimization augmented

with local search to speed up convergence of the proposed

algorithm and improve solutions quality. Performance of the

proposed algorithm is evaluated and compared with existing

algorithms using extensive simulations, which show that the

proposed algorithm improves virtual network embedding by

increasing revenue and decreasing energy consumption.

Keywords—energy-efficient resource management; green

computing; virtual network embedding; cloud computing; resource

allocation; substrate network fragmentation

I. INTRODUCTION

Cloud computing is a model for enabling on-demand
network access to a shared pool of configurable computing
resources that can be rapidly provisioned and released with
minimal management effort [1]. Cloud computing data centers
are established as large-scale data centers containing
thousands of servers, switches, and routers that consume
enormous amounts of electrical energy and release CO2.

One of the most prominent approaches to address energy
inefficiency is to leverage the capabilities of the virtualization
technology, which allows creation of multiple Virtual
networks on a single physical network [2]. However, mapping
virtual resources to physical resources is known to be
nondeterministic polynomial-time hard (NP-hard), even if
energy efficiency is not considered.

Main objectives of energy-aware virtual network
embedding are increasing revenue of substrate network and
decreasing power consumed by substrate resources. Revenue

can be maximized by increasing number of accommodated
virtual networks and decreasing cost of embedding each
virtual network. Number of accepted and accommodated
virtual networks can be increased by using suitable search
technique to find sub-substrate network for accommodating
virtual network in reasonable time, regardless of virtual
network size or substrate network size. Furthermore, number
of accepted virtual networks can be increased by reducing
substrate resources fragmentation. Substrate resources are
considered fragmented if there are enough substrate resources
to achieve virtual network request but virtual network request
is rejected due to substrate resources scattering.

Virtual network embedding cost is the total substrate
resources used to achieve virtual network request. Virtual
network embedding solution maps each virtual node to a
substrate node and each virtual link to a loop-free substrate
path, which is consists of a set of substrate links. Fig. 1 shows
an example of virtual network embedding. The cost of
embedding virtual network can be minimized by decreasing
number of required substrate links. This can be done by
minimizing the length of required substrate paths or by
accommodating more than one virtual node from the same
virtual network on the same substrate node to eliminate the
cost of embedding virtual links between them.

Power consumed by substrate network can be reduced by
minimizing number of substrate nodes that are turned on from
off to accommodate virtual node or to participate in substrate
path. Furthermore, power can be minimized by selecting
substrate nodes that have less power consumption. As shown
in Fig. 2, different types of servers have different power
consumption rates. Proposing energy-aware virtual network
embedding with considering all of the above concerns is a
very complicated task.

Multi-objective Particle Swarm Optimization (MOPSO) is
a heuristic search technique for optimizing multi-objective
optimization problems, which have more than one objective
function, such as energy-aware virtual network embedding
problem. In such problems, there is no single optimal solution.
Instead, we try to find a set of good solutions that compromise
among all objective functions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

36 | P a g e

www.ijacsa.thesai.org

In this paper, we propose a model for energy-aware virtual
network embedding, devise an energy-aware virtual network
embedding metrics to compare different algorithms, and
propose memetic multi-objective particle swarm optimization-
based energy-aware virtual network embedding algorithm,
called MOPSO-EVNE. Performance of the proposed
algorithm have been evaluated using extensive simulations,
which show that the proposed algorithm increases the long-
term average revenue and decreases the power consumption
compared with some of existing algorithms.

The remaining of the paper is organized as follows.
Section 2 introduces the fundamentals of the proposed
algorithm. In Section 3, we discuss the related work on
energy-aware virtual network embedding problem. Section 4
presents the virtual network embedding model and problem
formulation. Section 5 describes the proposed algorithm.
Section 6 evaluates the proposed energy aware virtual
network-embedding algorithm using extensive simulations.
Finally, in Section 7 we conclude this paper.

 Virtual network empedding example Fig.1.

 Power consumption of different types of servers Fig.2.

II. BACKGROUND

A. Particle swarm optimization

Particle swarm optimization (PSO) is a population-based
stochastic global optimization technique first proposed by

Kennedy and Eberhart in 1995 [3]. PSO is inspired by the
sociological behavior associated with bird flocking or fish
schooling. PSO searches for a possible solution in multiple
areas simultaneously and can obtain better optimal solution
quickly in lesser computing time than other population based
methods. PSO algorithm simultaneously maintains a number
of particles, which represent candidate solutions in the search
space.

Each particle has position vector and velocity vector,

which can be represented as: () (
 ()

 ()
 ())

and () (
 ()

 ()
 ()) , where () is the

position of particle at time , () is the velocity of particle
at time , and is the dimensions of the solution space. The
position and velocity of each particle are updated using the
following equations:

 () () (() ())
 (() ())

 () () ()

Where, and are two random numbers between 0 and 1.
The constants (
) are specified by user. () is the best
previous position for the particle at time and is known as
the personal best position. () is the best position
among all previous personal best positions at time and is
known as the global best position. The constant is called
inertia weight and the first term () is called inertia
component, which keeps the particle moving forwarding. The
constant is called cognitive weight and the first term

 (() ()) is called cognitive component, which

represents the attraction that a particle has toward its best
previous position. The constant is called social weight and
the first term (() ()) is called social
component, which represents the attraction that a particle has
toward the global best position. The random numbers and
cause the particle to move in a semi-random manner.

B. Multi-objective optimization

Multi-objective optimization problem can be described as
following [4]:

Minimize ⃗(⃗) ((⃗) (⃗) (⃗))

subject to:

 (⃗)

 (⃗)

Where ⃗ () ⃗ is a decision vector

consists of decision variables, ⃗ is a decision space,

 ⃗(⃗) ((⃗) (⃗) (⃗)) ⃗⃗ , is an objective

vector consists of objective functions, ⃗⃗ is an objective
space, (⃗) are the objective
functions, (⃗) , (⃗)
 are inequality and equality constraints functions of
the problem. Multi-objective optimization problem tries to

find the decision vector ⃗ in the decision space ⃗ that will

optimize the objective vector ⃗(⃗).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

37 | P a g e

www.ijacsa.thesai.org

Definition 1 (Feasible Solution Set). The set of all decisions

from a decision space ⃗ that satisfy all inequality and equality

constraints is called a feasible solution set, denoted by
⃗⃗⃗⃗⃗ and

⃗⃗⃗⃗⃗ ⃗.

Definition 2 (Pareto dominance). Let ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗
⃗⃗⃗⃗⃗, we say

that ⃗⃗⃗⃗⃗ dominates ⃗⃗⃗⃗⃗ (denoted by ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗) or ⃗⃗⃗⃗⃗ is

dominated by ⃗⃗⃗⃗⃗ iff (
 ⃗⃗⃗⃗⃗) (

 ⃗⃗⃗⃗⃗) * +

 * + (
 ⃗⃗⃗⃗⃗) (

 ⃗⃗⃗⃗⃗)

Definition 3 (Non-domination). We say that a decision

vector ⃗ ⃗ is non-dominated with respect to ⃗ , if ⃗⃗⃗⃗ ⃗

such that ⃗⃗⃗⃗ ⃗.

Definition 4 (Pareto optimality). A decision vector ⃗⃗⃗⃗⃗
⃗⃗⃗⃗⃗

is Pareto optimal if ⃗⃗⃗⃗⃗ is non-dominated with respect to
⃗⃗⃗⃗⃗.

Definition 5 (Pareto optimal set). The set of all Pareto
optimal decision vectors is called Pareto optimal set and is
denoted by .

Definition 6 (Pareto front). The Pareto front is defined

by: { ⃗(⃗) | ⃗ +

C. Multi-objective particle swarm optimization

In multi-objective PSO (MOPSO), instead of finding
single solution (global best solution), we aim to find a Pareto
optimal set, which will be stored in an external repository,
called external archive [5]. Instead of using global best
solution to guide other solutions, Pareto optimal is selected
from the external archive to guide each particle.

III. RELATED WORK

In the past few years, several researches have been
proposed for effective virtual network embedding and energy-
aware virtual network embedding. Rodriguez et al. [6]
proposed an integer linear programming model for VNE
problem to minimize energy and bandwidth consumption.
Rodriguez et al. assigned variant weight values to balance
minimization of energy and bandwidth consumption. Their
simulation results showed that considering energy
consumption minimization only could extremely increase
bandwidth consumption and decrease the quality of service;
while assigning equal weights to both consumptions
minimizes the energy consumption near to optimal solution
without significantly increase the bandwidth consumption.

Tarutani et al. [7] studied the energy consumption of the
data centers network, which are constructed of optical cross
connects and electronic switches (called top-of rack). Tarutani
et al. proposed a virtual network topology called Generalized
Flattened Butterfly to achieve sufficient bandwidth and to
minimize the energy consumption. The energy consumption is
minimized by reducing the number of ports of electronic
switches used in the virtual network topology.

Sun et al. [8] modeled the energy-aware VNE problem
using mixed-integer programming and proposed a heuristic
algorithm to solve the proposed model with efficient power
consumption and with minimal violation of service level

agreements (SLAs). The proposed algorithm minimizes the
energy consumption by consolidating virtual network
resources into few substrate resources as possible.

Chang et al. [9] proposed virtual network architecture with
virtual network components such as routers and switches. The
proposed architecture provides communication functions for
virtual resources in Cloud data centers. The authors designed
an energy aware routing algorithm for the proposed
architecture.

Fischer et al. [10] extended the VNE algorithm proposed
by Lischka and Karl in [11] to be energy-aware VNE
algorithm. Fischer et al. minimized energy consumption by
allowing more than one virtual node from the same virtual
network to coexist on the same substrate node. Furthermore,
Fischer et al. considered active nodes and nodes that consume
less power during node and link mapping to minimize energy
consumption.

Beloglazov et al. [12, 13] studied the single VM migration
and dynamic VM consolidation problems and they proved the
competitive ratios of optimal online deterministic algorithms
for energy and performance efficient dynamic VM
consolidation. Beloglazov et al. proposed heuristic algorithms
for dynamic adaption of VM allocation at run-time based on
an analysis of historical data on the resource usage. However,
the proposed algorithms do not consider the communication
between VMs in allocating or in reallocating VMs.

Cheng et al. [14] proposed topology-aware node ranking
technique, called NodeRank, to reflect the topological
structure of the VNs and the SN. Based on the proposed
ranking technique, Cheng et al. proposed two stage virtual
network embedding algorithm called RW-MaxMatch.
However, mapping nodes and links in two independent stages
without coordination between them leads to high consumption
of the underlying SN’s resources. To solve this problem,
Cheng et al. [14] proposed RW-BFS algorithm. RW-BFS
algorithm is a backtracking one-stage VN embedding
algorithm, which maps nodes and links at the same stage.

Zhang et al. [15] proposed two VN embedding models: an
integer linear programming model and a mixed integer-
programming model. Furthermore, Zhang et al. proposed a
discrete particle swarm optimization based VNE algorithm,
called RW–PSO, to solve the proposed models. RW–PSO
algorithm is an enhanced version of RW-MaxMatch [15]
algorithm to find near optimal node mapping solutions in
large-scale substrate networks. After nodes mapping, Zhang et
al. map links using shortest paths algorithm and greedy k-
shortest paths algorithm. Cheng et al. [16] proposed discrete
Particle Swarm Optimization based virtual network
embedding algorithm similar to the proposed algorithm in [15]
but they ranked nodes using topology-aware node ranking
technique proposed in [14].

Su et al. [17] formulated an energy consumption model for
substrate network infrastructures and proposed an extended
version of RW-BFS [14] algorithm, called EA-VNE, for
energy-aware virtual network embedding. Su et al. minimized
the energy consumption by mapping virtual nodes to Best-fit
substrate node according to the required and available CPU to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

38 | P a g e

www.ijacsa.thesai.org

minimize number of active substrate nodes. Virtual links are
mapped to shortest loop-free substrate path with minimal
number of substrate nodes that are turned on from off.

IV. VIRTUAL NETWORK EMBEDDING MODEL AND PROBLEM

FORMULATION

Substrate network (SN): as in our previous work [18, 19],
we modeled the substrate network as a weighted undirected
graph (), where is the set of substrate nodes and
 is the set of substrate links. Each substrate node is
weighted by the CPU capacity, and each substrate link
is weighted by the bandwidth capacity. Fig. 1(b) shows a
simple SN example, where the available CPU resources are
represented by numbers in rectangles and the available
bandwidths are represented by numbers over the links.

Virtual network (VN): virtual network is modeled as a

weighted undirected graph
 (

), where

 is the

set of virtual nodes and
 is the set of virtual links. Virtual

nodes and virtual links are weighted by the required CPU and
bandwidth, respectively. Fig. 1(a) shows an example of VN
with required CPU and bandwidth.

Virtual network requests (VNR): the VN request
in the set of all VN requests is modeled as (

),

where
 is the required VN to be embedded,

 is the arrival

time, and is the lifetime. When arrives, substrate

nodes’ CPU and substrate links’ bandwidth are allocated to
achieve the . If the substrate network does not have
enough resources to achieve , is rejected. At the end
of lifetime, all allocated resources to are released.

Virtual Network Embedding (VNE): embedding on SN

is defined as a map
 (

) , where

 , and

 , where is the set of all loop free substrate

paths in . Embedding can be decomposed into node and
link mapping as follows:

 Node mapping:

 Link mapping:

Virtual Network Embedding Revenue: the revenue of
embedding at time is defined as the sum of all required
substrate CPU and substrate bandwidth by at time .

 () () (∑ (
)

 ∑ (
)

) (1)

Where (
) is the required CPU for the virtual

node
, (

) is the required bandwidth for the virtual

link
, and () if is in its lifetime and

substrate resources are allocated to it,

otherwise (
) .

Substrate resources fragmentation (SNF): substrate
resources fragmentation is one of the most important factors
that have high impact on VNE revenue and cost. Substrate
resources are considered fragmented if there are enough
substrate resources to embed VN but the available substrate
resources are scattered. VNR will be rejected, because it

cannot be allocated to connected substrate resources while
there are sufficient substrate resources to achieve this VNR.

Substrate network is considered fragmented if there are
two sub-graphs

 , such that

 and

 connects two substrate nodes from
and

,

where
 is the set of all loop free substrate paths in that

have available bandwidth greater than or equal a pre-specified
lower bound bandwidth and have path length less than or
equal a pre-specified maximum path length.

To measure substrate network fragmentation (SNF) at time
 , we use the following formula:

 ()
∑ ((

))

(∑ (
)

)
 (2)

Where is the number of fragments in the SN, is a
positive integer number greater than 1 to reduce the influence
of the small negligible fragments as long as one large
fragment exits, and (

) is the total residual

substrate resources in sub-substrate network
 at time .

 (
) is calculated as following:

 (
) ∑ (

)

 ∑ (
)

,

Where
 (

)

The substrate network fragmentation formula in equation
(1) is inspired by the fragmentation measure proposed by Gehr
and Schneider in [20].

Virtual Network Embedding Cost: as in [18, 19], the cost
of embedding at time is defined as the sum of all
allocated substrate CPU and substrate bandwidth to at
time .

 () () (∑ (
)

 ∑ (
)

 (

(
))) (3)

Where (
(

)) is the length of the substrate

path that the virtual link
 is mapped to.

Power consumption modeling: Substrate nodes are turned
on from off to accommodate virtual nodes or to work as
intermediate nodes in substrate paths. Recently, there is a new
trend to deploy routing cards in data center networks to
function as IP routers. Like commercial routers, routing cards
handles all packet-processing tasks in hardware with high
processing rate and low latency. The power consumption of
the routing cards is nearly constant. As shown in [21], fully
loading routing card increases its power consumption by
around 5% over being idle. As any PCI-based cards, routing
card has two states: enabled state, which consumes constant
power, denoted by , and disabled state, which does not
consume any power.

To model power consumed by substrate nodes to
accommodate virtual nodes, we studied the power
consumption rates of different types of servers, which are
collected using SPEC power benchmark

1
 and is depicted in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

39 | P a g e

www.ijacsa.thesai.org

Fig. 2. Fig. 2 shows that each server has a baseline power,
which is the power consumed in idle state, and the remaining
power consumption is proportional to CPU utilization. Now,
we can model the power consumed by an active substrate node
 at time as:

 () () (() ()) ()

 () ()

Where () is the baseline power of the substrate node
 , () is the maximum power consumption for the
substrate node , () is the total CPU utilization for
the substrate node at time , () is the power consumed
by active routing card, and () is equal to 1 if
the routing card is enabled and equal to 0 if the routing card is
disabled.

Total power consumed by substrate network at time t is
defined as the sum of all power consumed by all substrate
nodes at time t.

 () ∑ ()

Power consumption to accommodate virtual node in
substrate node can be calculated as following:

 ()

{

 () (() ()) ()

 ()

(() ()) ()

 ()

Where () is the state of substrate node at
time t. () equal to 1 if is on and equal to 0 if
is off. () is the required CPU for the virtual node .

Power consumption to embed virtual link on substrate
path can be calculated as following:

 () ∑

{

 () ()

 ()

 ()

 ()

 ()

Where is the set of all substrate nodes participate in
substrate path .

Total power consumption to embed virtual network
request at time is defined as the sum of all power
consumption to embed its virtual nodes and virtual links.

 () ∑ (
)

 ∑ (

)

 (4)

1
First Quarter 2011 SPECpower_ssj2008 Results available

online at
(http://www.spec.org/power_ssj2008/results/res2011q1/)

Objectives: the main objectives are to increase the revenue
of VNE, decrease the cost of VNE, decrease the power
consumed by substrate nodes, and decrease substrate resources

fragmentation in the long run. To evaluate the achievement of
these objectives, we use the following metrics:

- The long-term average revenue, which is defined by

 (
∑ ∑ ()

) (5)

Where , and is the total time.

- The VNR acceptance ratio, which is defined by

‖ ‖

‖ ‖
 (6)

Where is the set of all accepted virtual network
requests.

- The long term R/Cost ratio, which is defined by

 (
∑ ∑ ()

∑ ∑ ()

) (7)

- The long-term average substrate network fragmentation,
which is defined by

 (
∑ ()

) (8)

- The long-term average substrate network power
consumption, which is defined by

 (
∑ ()

) (9)

V. THE PROPOSED ALGORITHM

In this section, we redefine the parameters and operations
of the particles in PSO and describe the details of the proposed
MOPSO-EVNE algorithm

A. Redefining PSO particles operations

We redefined the parameters and operations of the
particles in PSO as following:

Position (X): the position vector

 () (
 ()

 ()
 ()) of a particle i at time t

represents virtual node mappings of a VNE solution. is the
number of virtual nodes in the virtual network. All virtual
nodes and substrate nodes are ordered and each node has an
order number.

 () is the order number of substrate node
that contains virtual node with order number .

Velocity (V): The velocity vector

 () (
 ()

 ()
 ()) guides VNE solution

(particle) to modifications that enhance current solution.

 () is a substrate path specifies a sequence of substrate
nodes in which a virtual node with the order number will be
mapped to.

Subtraction (): () () (
 ()

 ()

 ()) , where
 () is a shortest

loop free substrate path from substrate node with the order
number

 () to substrate node with the order number
 ().

Addition (): () () indicates that substrate

paths are kept from ()with probability and kept from
 () with probability , where .

Multiplication (): () () , where ()
(

 ()
 ()

 ()
 ()) , and ()

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

40 | P a g e

www.ijacsa.thesai.org

(
 ()

 ()
 ()

 ()) indicates
that the virtual node number , which is currently mapped to
the substrate node number

 (), will be mapped to the first

substrate node in the substrate path
 () with enough

CPU. If substrate node number
 () already participates in

the substrate path
 (), the virtual node number will

be mapped to the first substrate node after the substrate node
number

 () with enough CPU if found.

Finally, position and velocity updating equations are
redefined as following:

 () () (() ())

 (() ()) (10)

 () () () (11)

Where , and () is the
position vector of the particle (VNE solution) that is used to
guide another particle towards better areas in the solution

space. According to the redefined operations, (()

 ()) is a set of substrate paths from current position ()

to the personal best position () , and (()
 ()) is a set of substrate paths from current position ()
to the leader position (). As a result, () is a set
of substrate paths that guide particle to its personal best
position or to position of Pareto optimal solution.The
multiplication operation in equation (11) moves each
dimension in the position vector () one step toward
personal best position or toward Pareto optimal solution.

B. MOPSO-EVNE algorithm

The steps of the proposed multi-objective particle swarm
optimization energy aware virtual network-embedding
algorithm (MOPSO-EVNE), are shown in Algorithm 1.

Particle swarm () is initialized by collecting a set of
VNE feasible solutions. MOPSO-EVNE algorithm initializes
 () by creating a candidate substrate node list for the virtual
node with the largest resources. Candidate substrate nodes list
is created by collecting all substrate nodes with enough
resources to embed virtual node. Candidate substrate nodes
list is sorted in ascending order according to the power
consumption rate for each node. Active substrate nodes with
lower power consumption are selected first before activating
inactive nodes. MOPSO-EVNE visits candidate substrate
nodes in the created list sequentially and maps virtual network
(starting from the virtual node with the largest resources).
Virtual link mappings are performed during the node mapping
process in breadth-first search manner to find shortest loop
free substrate path with minimum number of activated
substrate nodes. MOPSO-EVNE algorithm incrementally
increases the maximum allowed substrate path length to visit
large number of candidate substrate nodes and maximize the
spread of solutions found.

If the () function failed in creating
new VNE feasible solution from the current candidate

substrate node, we move to the next candidate node. After
initializing particle swarm (), each position vector for each
particle is improved by using (), which applies local
search. Each dimension in the particle position vector is
remapped to another substrate node, if this mapping improves
position vector. New substrate node is specified by creating
breadth first search trees from all substrate nodes contains
neighbor of the current virtual node. All trees are increased
concurrently and the first common substrate node is used as
optimization position. Dimensions in the particle position are
visited in a round robin fashion until no further improves are
reached.

In line 29, each particle position vector is evaluated using
objective functions specified by equations 1, 2, 3, and 4.
Velocity vectors are initialized randomly for each particle. In
line 30, () is sorted into a hierarchy of non-dominated
Pareto fronts by applying Fast Nondominated Sorting
approach proposed in [22]. Each particle is assigned a rank
value based on its dominance level and crowding distance
value.

External archive () is used to keep the non-
dominated solutions found during the search process.
External archive solutions will be used as leaders to update
velocity vectors of the particles of the swarm. Furthermore,
the final output of the MOPSO-EVNE algorithm will be
selected from the solutions contained in external archive. In
line 32, initial external archive () is created and the
non-dominated solution of the particle swarm () are
copied into the external archive ().

Lines from 33 to 47 describe details of each iteration. In
each iteration, one of the non-dominated particles is selected
from () to be used as leader. Velocity vector and position
vector are updated using equations (10) and (11).To avoid
swarm stagnation, position vector is mutated with mutation
probability . Without mutation, the proposed algorithm
might stop or converge to a local optimum. Mutation is
performed by remapping mutated dimension in the position
vector to substrate node with enough substrate resources.
Virtual links are remapped without considering the maximum
substrate path length. () Function is used to optimize
the new position vector to become visible solution. Each
particle is evaluated using objective functions and its pBest is
updated accordingly.

At the end of each iteration, external archive () must
be updated to add new non-dominated solutions found during
this iteration. Solutions in external archive () are
combined with the updated solutions in swarm () ,
sorted into non-dominated Pareto fronts, and sorted in
descending order according to their Crowding-distance values.
External archive () is updated by selecting the first
 solutions.

After a certain number of iterations, the MOPSO-EVNE
algorithm selects best Pareto optimal front from the external
archive () and returns it as suggested solution.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

41 | P a g e

www.ijacsa.thesai.org

ALGORITHM 1: The details of the MOPSO-VNE algorithm

INPUTS:

 (): VN to be embed

 (): SN to embed on

 : maximum number of iterations

 : swarm size
 : maximum size of the external archive
 : upper bound of nodes re-mapping operation

 : maximum allowed substrate path length

OUTPUTS:

 (): map VN nodes and links to SN’s resources

 : VN embedding success flag

Begin

1: Build breadth-first searching tree of from virtual node with largest

resources.

2: Sort all nodes in each level in the created breadth-first tree in

descending order according to their required resources.

3: Create an empty particle swarm () at

4: , where is the maximum allowed substrate path length

in current iteration

5: Build candidate substrate node list for

6: while ()

7: for each substrate node

8: Create new map ()

9: ((

) ()), where

10:

11: if (
 () ()) then

12: () () * ()+

13: else

14: ((

) ())

15: end if

16: if () then

17: break

18: end if

19: end for

20:

21: end while

22: if () then

23:

24: return

25: else

26: ()

27: end if
28: (())
29: Evaluate each particle in () according to the objective functions (1),

(2), (3), and (4)

30: Initialize the velocity vector randomly for each particle
31: Sort swarm () into different non-domination levels.
32: create and initialize external archive () with non-dominated

particles in ()

33: while

34: for each particle p in ()
35: Randomly select a single leader out of ()
36: Update the particle’s velocity vector and the position vector using

equations (10) and (11).
 37: Perform mutation on particle p with the mutation probability

 38: locally improve the particle p

39: Evaluate the particle p according to the objective functions (1),
(2), (3), and (4)

40: Update pBest of the particle p
41: end for

42: Sort all particles in () () into different non-domination

levels.

43: Calculate Crowding-distance for each particle in () ()

44: Sort in () () in descending order based on Crowding-
distance values

45: Update external archive () by getting the first
particles from the sorted () ()

46:

47: end while

48: () (())

49:

50: return

End

VI. PERFORMANCE EVALUATION

To evaluate the performance of the proposed algorithm,
we have compared its performance with the following
algorithms: RW-MaxMatch [16], RW-BFS [14], AdvSubgraph-
MM [10], AdvSubgraph-MM-EE [10], and AdvSubgraph-MM-
EE-Link [10]. In the following subsections, we describe the
evaluation environment settings and discuss the simulations’
results.

A. Evaluation environment settings

Performance is evaluated using two substrate network
topologies, which are generated using Waxman generator.
The first SN topology is configured with 50 nodes and 250
links. Bandwidth of the substrate links are uniformly
distributed between 50 and 100 with average 75. The second
SN topology is configured with 200 nodes and 1000 links.
Bandwidth of the substrate links are uniformly distributed
between 50 and 150 with average 100. Each substrate node is
randomly assigned one of the following server configurations:
HP ProLiant ML110 G4 (Intel Xeon 3040, 2 cores X 1860
MHz, 4 GB), or HP ProLiant ML110 G5 (Intel Xeon 3075, 2
cores X 2660 MHz, 4 GB).

We generated 1000 Virtual network topologies using
Waxman generator with average connectivity 50%. The
number of virtual nodes in each VN is variant from 2 to 20.
Each virtual node is randomly assigned one of the following
CPU: 2500 MIPS, 2000 MIPS, 1000 MIPS, and 500 MIPS,
which are correspond to the CPU of Amazon EC2 instance
types. Bandwidths of the virtual links are real numbers
uniformly distributed between 1 and 50. VN’s arrival times
are generated randomly with arrival rate 10 VNs per 100 time
units. The lifetimes of the VNRs are generated randomly
between 300 and 700 time units with average 500 time units.
Generated SN and VNs topologies are stored in brite format
and used as inputs for all algorithms. For all algorithms, we
set the maximum allowed hops () to 2, and the upper
bound of remapping process () to 3n, where n
is the number of nodes in each VNR. and
 of the MOPSO-EVNE algorithm are set to 5 and
10. Finally, we compared the results from the implemented
algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

42 | P a g e

www.ijacsa.thesai.org

B. Evaluation results

MOPSO-EVNE algorithm increases VNR acceptance ratio
as shown in Fig. 3 and Fig. 4. Fig. 3 shows the VNR
acceptance ratio comparison using the first substrate network,
which is configured with 50 substrate nodes and 250 virtual
links. Fig. 4 shows the VNR acceptance ratio comparison
using the second substrate network, which is configured with
200 substrate nodes and 1000 virtual links. AdvSubgraph-MM,
AdvSubgraph-MM-EE, and AdvSubgraph-MM-EE-Link are
not compared using the second substrate network (200 nodes)
because they have high complexity (require more than one
month).

VNR acceptance ratio is evaluated using equation (6),
which only considers the number of accepted VNRs without
considering variations between VNRs’ sizes. In Fig. 5 and Fig.
6, we compared the ratio of accepted virtual resources (virtual
CPU and virtual BW) without considering its VNRs.

Although, MOPSO-EVNE algorithm increases the
acceptance ratio among other algorithms, it rejects 81% and
33% of virtual resources (Fig. 7 and Fig. 8). The reason
behind this rejection is the lack of available substrate
resources (Fig. 9 and Fig. 10), especially the lack of available
substrate CPU (Fig. 11 and Fig. 12).

MOPSO-EVNE algorithm increases the long-term average
revenue, which is defined by equation (5) (Fig. 13 and Fig.
14). As shown in Fig. 15 and Fig. 16, MOPSO-EVNE
algorithm increases the revenue compared with the cost of
embedding VNRs. In Fig. 15, revenue/cost ratio of MOPSO-
EVNE algorithm exceeds 100%, which means that the cost of
embedding VNRs is less than gained revenue from embedding
them. MOPSO-EVNE algorithm increases the revenue by
increasing substrate resource utilization (Fig. 17 and Fig. 18)
and reducing substrate resources fragmentation (Fig. 19),
which is defined by equation 8.

The long-term average substrate network power
consumption is compared and depicted in Fig. 20 and Fig. 21.
Fig. 20 and Fig. 21 show that MOPSO-EVNE algorithm
consumes more power, but this is due to the large amount of
accommodated virtual resources. To investigate this point, we
compared the power consumed by accommodating one unit of
virtual resources. Fig. 22 and Fig. 23 show the comparison
results. RW-MaxMatch algorithm is removed from Fig. 22
because it has a very high power consumption rate. Although,
MOPSO-EVNE algorithm activated more substrate nodes to
achieve more VNRs (Fig. 24 and Fig. 25), the power
consumption rate of the proposed algorithm is similar to the
power consumption rate of the AdvSubgraph-MM-EE-Link
algorithm using small substrate network. However,
AdvSubgraph-MM-EE-Link algorithm is not applicable to
large substrate networks.

Although, we run our simulation with small size of particle
swarm (10 particles) and with small number of iterations (5

iterations), MOPSO-EVNE algorithm increases the revenue
and the acceptance ratio in reasonable time. Fig. 26 and Fig.
27 show the average VNE time consumed by each algorithm.

 VNR acceptance ratio comparison using 50 substrate nodes Fig.3.

 VNR acceptance ratio comparison using 200 substrate nodes Fig.4.

 Virtual resources acceptance ratio comparison using 50 substrate Fig.5.
nodes

 Virtual resources acceptance ratio comparison using 200 substrate Fig.6.

nodes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

43 | P a g e

www.ijacsa.thesai.org

 Rejected virtual resources comparison using 50 substrate nodes Fig.7.

 Rejected virtual resources comparison using 200 substrate nodes Fig.8.

 Available substrate resources comparison using 50 substrate nodes Fig.9.

 Available substrate resources comparison using 200 substrate nodes Fig.10.

 Available substrate CPU comparison using 50 substrate nodes Fig.11.

 Available substrate CPU comparison using 200 substrate nodes Fig.12.

 Revenue comparison using 50 substrate nodes Fig.13.

 Revenue comparison using 200 substrate nodes Fig.14.

 Revenue/Cost ratio comparison using 50 substrate nodes Fig.15.

 Revenue/Cost ratio comparison using 200 substrate nodes Fig.16.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

44 | P a g e

www.ijacsa.thesai.org

 Substrate resources utilization comparison using 50 substrate nodes Fig.17.

 Substrate resources utilization comparison using 200 substrate nodes Fig.18.

 Substrate resources fragmentation comparison using 50 substrate Fig.19.

nodes

 Power consumption comparison using 50 substrate nodes Fig.20.

 Power consumption comparison using 200 substrate nodes Fig.21.

 Comparing power consumption per virtual resource unit using 50 Fig.22.

substrate nodes

 Comparing power consumption per virtual resource unit using 200 Fig.23.

substrate nodes

 Active substrate nodes comparison using 50 substrate nodes Fig.24.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

45 | P a g e

www.ijacsa.thesai.org

 Active substrate nodes comparison using 200 substrate nodes Fig.25.

 Average virtual network embedding time comparison using 50 Fig.26.

substrate nodes

 Average virtual network embedding time comparison using 200 Fig.27.

substrate nodes

VII. CONCLUTION

Embedding multiple virtual networks on a shared substrate
network is NP-hard. This complexity is increased by
considering energy efficiency of virtual network embedding.
In this paper, we modeled energy-aware virtual network
embedding problem and proposed an efficient energy aware
virtual network-embedding algorithm based on multi-
objective particle swarm optimization. The proposed
algorithm aims to find good “tradeoff” virtual network
embedding solutions that represent the best possible
compromises among virtual network embedding revenue, cost,
fragmentation, acceptance, and power consumption. Local
search is employed to enhance position vector of each particle
and to speed up the convergence of the proposed algorithm.
Elitism is insured by storing best non-dominated virtual
network embedding solutions into external archive. Extensive
simulations show that the proposed algorithm outperforms
previous algorithms in terms of the long-term average
revenue, long-term average cost, long-term average substrate
resources fragmentation, and long-term average power

consumption. For the future work, we plan to extend the
proposed algorithm to consider variant workload and employ
virtual machine migration and virtual link migration to
enhance energy efficiency of the proposed algorithm.

REFERENCES

[1] A. Hameed, A. Khoshkbarforoushha, R. Ranjan, P. Jayaraman,
J. Kolodziej, P. Balaji, S. Zeadally, Q. Malluhi, N. Tziritas, A. Vishnu,
S. Khan, and A. Zomaya, “A survey and taxonomy on energy efficient
resource allocation techniques for cloud computing systems,”
Computing, pp. 1–24, 2014.

[2] I. Fajjari, N. Aitsaadi, and G. Pujolle, “Cloud networking: An overview
of virtual network embedding strategies,” in Global Information
Infrastructure Symposium, 2013, 2013, pp. 1–7.

[3] Y. Qiao, “Modified multi-objective particle swarm optimization
algorithm for multi-objective optimization problems,” in Advances in
Swarm Intelligence, ser. Lecture Notes in Computer Science, Y. Tan,
Y. Shi, and Z. Ji, Eds. Springer Berlin Heidelberg, 2012, vol. 7331, pp.
520–527.

[4] Y. Wang and H. Xu, “Multiobjective particle swarm optimization
without the personal best,” Journal of Shanghai Jiaotong University
(Science), vol. 19, no. 2, pp. 155–159, 2014.

[5] M. Reyes-sierra and C. A. C. Coello, “Multi-objective particle swarm
optimizers: A survey of the state-of-the-art,” International Journal Of
Computational Intelligence Research, vol. 2, no. 3, pp. 287–308, 2006.

[6] E. Rodriguez, G. Alkmim, D. Batista, and N. da Fonseca, “Trade-off
between bandwidth and energy consumption minimization in virtual
network mapping,” in 2012 IEEE Latin-America Conference on
Communications (LATINCOM), 2012, pp. 1–6.

[7] Y. Tarutani, Y. Ohsita, and M. Murata, “A virtual network to achieve
low energy consumption in optical large-scale datacenter,” in 2012 IEEE
International Conference on Communication Systems (ICCS), 2012, pp.
45–49.

[8] G. Sun, V. Anand, D. Liao, C. Lu, X. Zhang, and N.-H. Bao, “Power-
efficient provisioning for online virtual network requests in cloud-based
data centers,” Systems Journal, IEEE, vol. PP, no. 99, pp. 1–15, 2013.

[9] R. Chang and C. Wu, “Green virtual networks for cloud computing,” in
2010 5th International ICST Conference on Communications and
Networking in China (CHINACOM), 2010, pp. 1–7.

[10] A. Fischer, M. Beck, and H. de Meer, “An approach to energy-efficient
virtual network embeddings,” in 2013 IFIP/IEEE International
Symposium on Integrated Network Management (IM 2013), 2013, pp.
1142–1147.

[11] J. Lischka and H. Karl, “A virtual network mapping algorithm based on
subgraph isomorphism detection,” in Proceedings of the 1st ACM
Workshop on Virtualized Infrastructure Systems and Architectures, ser.
VISA ’09. New York, NY, USA: ACM, 2009, pp. 81–88.

[12] A. Beloglazov and R. Buyya, “Energy efficient resource management in
virtualized cloud data centers,” in 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010, pp.
826–831.

[13] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, pp. 1397–
1420, 2012.

[14] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
SIGCOMM Comput. Commun. Rev., vol. 41, no. 2, pp. 38–47, Apr.
2011.

[15] Z. Zhang, X. Cheng, S. Su, Y. Wang, K. Shuang, and Y. Luo, “A
unified enhanced particle swarm optimization-based virtual network
embedding algorithm.” Int. J. Communication Systems, vol. 26, no. 8,
pp. 1054–1073, 2013.

[16] X. Cheng, S. Su, Z. Zhang, K. Shuang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology awareness and
optimization,” Computer Networks, vol. 56, no. 6, pp. 1797 – 1813,
2012.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

46 | P a g e

www.ijacsa.thesai.org

[17] S. Su, Z. Zhang, X. Cheng, Y. Wang, Y. Luo, and J. Wang, “Energy-
aware virtual network embedding through consolidation,” in 2012 IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2012, pp. 127–132.

[18] A. A. Shahin, “Virtual network embedding algorithms based on best-fit
subgraph detection,” Computer and Information Science; Vol. 8, No. 1;
2015 ISSN 1913-8989 E-ISSN 1913-8997 Published by Canadian
Center of Science and Education, vol. 8, No. 1, pp. 62–73, 2015.

[19] A. A. Shahin, “Using heavy clique base coarsening to enhance virtual
network embedding,” International Journal of Advanced Computer
Science and Applications(IJACSA), vol. 6 Issue 1, pp. 125–132, 2015.

[20] J. Gehr and J. Schneider, “Measuring fragmentation of two-dimensional
resources applied to advance reservation grid scheduling,” in 9th
IEEE/ACM International Symposium on Cluster Computing and the
Grid, 2009. CCGRID ’09., May 2009, pp. 276–283.

[21] V. Sivaraman, A. Vishwanath, Z. Zhao, and C. Russell, “Profiling per-
packet and per-byte energy consumption in the netfpga gigabit router,”
in 2011 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), April 2011, pp. 331–336.

[22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr 2002.

