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Abstract—In cloud infrastructure, accommodating multiple 

virtual networks on a single physical network reduces power 

consumed by physical resources and minimizes cost of operating 

cloud data centers. However, mapping multiple virtual network 

resources to physical network components, called virtual 

network embedding (VNE), is known to be NP-hard. With 

considering energy efficiency, the problem becomes more 

complicated. In this paper, we model energy-aware virtual 

network embedding, devise metrics for evaluating performance 

of energy aware virtual network-embedding algorithms, and 

propose an energy aware virtual network-embedding algorithm 

based on multi-objective particle swarm optimization augmented 

with local search to speed up convergence of the proposed 

algorithm and improve solutions quality. Performance of the 

proposed algorithm is evaluated and compared with existing 

algorithms using extensive simulations, which show that the 

proposed algorithm improves virtual network embedding by 

increasing revenue and decreasing energy consumption. 
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I. INTRODUCTION 

Cloud computing is a model for enabling on-demand 
network access to a shared pool of configurable computing 
resources that can be rapidly provisioned and released with 
minimal management effort [1]. Cloud computing data centers 
are established as large-scale data centers containing 
thousands of servers, switches, and routers that consume 
enormous amounts of electrical energy and release CO2.   

One of the most prominent approaches to address energy 
inefficiency is to leverage the capabilities of the virtualization 
technology, which allows creation of multiple Virtual 
networks on a single physical network [2]. However, mapping 
virtual resources to physical resources is known to be 
nondeterministic polynomial-time hard (NP-hard), even if 
energy efficiency is not considered.   

Main objectives of energy-aware virtual network 
embedding are increasing revenue of substrate network and 
decreasing power consumed by substrate resources. Revenue 

can be maximized by increasing number of accommodated 
virtual networks and decreasing cost of embedding each 
virtual network. Number of accepted and accommodated 
virtual networks can be increased by using suitable search 
technique to find sub-substrate network for accommodating 
virtual network in reasonable time, regardless of virtual 
network size or substrate network size. Furthermore, number 
of accepted virtual networks can be increased by reducing 
substrate resources fragmentation. Substrate resources are 
considered fragmented if there are enough substrate resources 
to achieve virtual network request but virtual network request 
is rejected due to substrate resources scattering. 

Virtual network embedding cost is the total substrate 
resources used to achieve virtual network request. Virtual 
network embedding solution maps each virtual node to a 
substrate node and each virtual link to a loop-free substrate 
path, which is consists of a set of substrate links. Fig. 1 shows 
an example of virtual network embedding. The cost of 
embedding virtual network can be minimized by decreasing 
number of required substrate links. This can be done by 
minimizing the length of required substrate paths or by 
accommodating more than one virtual node from the same 
virtual network on the same substrate node to eliminate the 
cost of embedding virtual links between them.      

Power consumed by substrate network can be reduced by 
minimizing number of substrate nodes that are turned on from 
off to accommodate virtual node or to participate in substrate 
path. Furthermore, power can be minimized by selecting 
substrate nodes that have less power consumption. As shown 
in Fig. 2, different types of servers have different power 
consumption rates. Proposing energy-aware virtual network 
embedding with considering all of the above concerns is a 
very complicated task. 

Multi-objective Particle Swarm Optimization (MOPSO) is 
a heuristic search technique for optimizing multi-objective 
optimization problems, which have more than one objective 
function, such as energy-aware virtual network embedding 
problem. In such problems, there is no single optimal solution. 
Instead, we try to find a set of good solutions that compromise 
among all objective functions. 
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In this paper, we propose a model for energy-aware virtual 
network embedding, devise an energy-aware virtual network 
embedding metrics to compare different algorithms, and 
propose memetic multi-objective particle swarm optimization-
based energy-aware virtual network embedding algorithm, 
called MOPSO-EVNE. Performance of the proposed 
algorithm have been evaluated using extensive simulations, 
which show that the proposed algorithm increases the long-
term average revenue and decreases the power consumption 
compared with some of existing algorithms.  

The remaining of the paper is organized as follows. 
Section 2 introduces the fundamentals of the proposed 
algorithm. In Section 3, we discuss the related work on 
energy-aware virtual network embedding problem. Section 4 
presents the virtual network embedding model and problem 
formulation. Section 5 describes the proposed algorithm. 
Section 6 evaluates the proposed energy aware virtual 
network-embedding algorithm using extensive simulations. 
Finally, in Section 7 we conclude this paper. 

 
 

 

 

 

 

 

 

 

 

 Virtual network empedding example Fig.1.

 Power consumption of different types of servers Fig.2.

II. BACKGROUND 

A. Particle swarm optimization 

Particle swarm optimization (PSO) is a population-based 
stochastic global optimization technique first proposed by 

Kennedy and Eberhart in 1995 [3]. PSO is inspired by the 
sociological behavior associated with bird flocking or fish 
schooling. PSO searches for a possible solution in multiple 
areas simultaneously and can obtain better optimal solution 
quickly in lesser computing time than other population based 
methods. PSO algorithm simultaneously maintains a number 
of particles, which represent candidate solutions in the search 
space. 

Each particle has position vector and velocity vector, 

which can be represented as:    ( )  (  
 ( )   

 ( )      
 ( )) 

and    ( )  (  
 ( )   

 ( )      
 ( )) , where   ( )  is the 

position of particle   at time  ,   ( ) is the velocity of particle   
at time  , and   is the dimensions of the solution space. The 
position and velocity of each particle are updated using the 
following equations:  

  (   )      ( )      (      ( )     ( ))
      (     ( )     ( )) 

  (   )    ( )    (   )   

Where,   and    are two random numbers between 0 and 1. 
The constants             (             
            ) are specified by user.       ( ) is the best 
previous position for the particle   at time   and is known as 
the personal best position.       ( )  is the best position 
among all previous personal best positions at time   and is 
known as the global best position. The constant   is called 
inertia weight and the first term    ( )  is called inertia 
component, which keeps the particle moving forwarding. The 
constant    is called cognitive weight and the first term 

    (      ( )     ( )) is called cognitive component, which 

represents the attraction that a particle has toward its best 
previous position. The constant    is called social weight and 
the first term     (     ( )     ( ))  is called social 
component, which represents the attraction that a particle has 
toward the global best position. The random numbers   and    
cause the particle to move in a semi-random manner. 

B. Multi-objective optimization 

Multi-objective optimization problem can be described as 
following [4]: 

Minimize  ⃗( ⃗)  (  ( ⃗)   ( ⃗)      ( ⃗))    

subject to: 

   ( ⃗)                  

   ( ⃗)                  

Where  ⃗  (            )  ⃗     is a decision vector 

consists of   decision variables,  ⃗  is a decision space, 

 ⃗( ⃗)  (  ( ⃗)   ( ⃗)      ( ⃗))  ⃗⃗    , is an objective 

vector consists of   objective functions,  ⃗⃗  is an objective 
space,   ( ⃗)                 are the objective 
functions,   ( ⃗)                 ,   ( ⃗)         
         are inequality and equality constraints functions of 
the problem. Multi-objective optimization problem tries to 

find the decision vector  ⃗  in the decision space  ⃗  that will 

optimize the objective vector  ⃗( ⃗).   
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Definition 1 (Feasible Solution Set). The set of all decisions 

from a decision space  ⃗ that satisfy all inequality and equality 

constraints is called a feasible solution set, denoted by   
⃗⃗⃗⃗⃗ and 

  
⃗⃗⃗⃗⃗   ⃗. 

Definition 2 (Pareto dominance). Let   ⃗⃗⃗⃗⃗   ⃗⃗⃗⃗⃗     
⃗⃗⃗⃗⃗, we say 

that    ⃗⃗⃗⃗⃗  dominates   ⃗⃗⃗⃗⃗  (denoted by   ⃗⃗⃗⃗⃗      ⃗⃗⃗⃗⃗ ) or   ⃗⃗⃗⃗⃗  is 

dominated by   ⃗⃗⃗⃗⃗  iff   ( 
 ⃗⃗⃗⃗⃗)    ( 

 ⃗⃗⃗⃗⃗ )      *        +  

     *        +     ( 
 ⃗⃗⃗⃗⃗)    ( 

 ⃗⃗⃗⃗⃗ ) 

Definition 3 (Non-domination). We say that a decision 

vector  ⃗   ⃗  is non-dominated with respect to  ⃗ , if     ⃗⃗⃗⃗     ⃗ 

such that   ⃗⃗⃗⃗     ⃗. 

Definition 4 (Pareto optimality). A decision vector   ⃗⃗⃗⃗⃗     
⃗⃗⃗⃗⃗ 

is Pareto optimal if   ⃗⃗⃗⃗⃗ is non-dominated with respect to   
⃗⃗⃗⃗⃗. 

Definition 5 (Pareto optimal set). The set of all Pareto 
optimal decision vectors is called Pareto optimal set and is 
denoted by   . 

Definition 6 (Pareto front). The Pareto front     is defined 

by:     {  ⃗( ⃗) |  ⃗     + 

C. Multi-objective particle swarm optimization 

In multi-objective PSO (MOPSO), instead of finding 
single solution (global best solution), we aim to find a Pareto 
optimal set, which will be stored in an external repository, 
called external archive [5]. Instead of using global best 
solution to guide other solutions, Pareto optimal is selected 
from the external archive to guide each particle. 

III. RELATED WORK 

In the past few years, several researches have been 
proposed for effective virtual network embedding and energy-
aware virtual network embedding. Rodriguez et al. [6] 
proposed an integer linear programming model for VNE 
problem to minimize energy and bandwidth consumption. 
Rodriguez et al. assigned variant weight values to balance 
minimization of energy and bandwidth consumption. Their 
simulation results showed that considering energy 
consumption minimization only could extremely increase 
bandwidth consumption and decrease the quality of service; 
while assigning equal weights to both consumptions 
minimizes the energy consumption near to optimal solution 
without significantly increase the bandwidth consumption. 

Tarutani et al. [7] studied the energy consumption of the 
data centers network, which are constructed of optical cross 
connects and electronic switches (called top-of rack). Tarutani 
et al. proposed a virtual network topology called Generalized 
Flattened Butterfly to achieve sufficient bandwidth and to 
minimize the energy consumption. The energy consumption is 
minimized by reducing the number of ports of electronic 
switches used in the virtual network topology. 

Sun et al. [8] modeled the energy-aware VNE problem 
using mixed-integer programming and proposed a heuristic 
algorithm to solve the proposed model with efficient power 
consumption and with minimal violation of service level 

agreements (SLAs). The proposed algorithm minimizes the 
energy consumption by consolidating virtual network 
resources into few substrate resources as possible. 

Chang et al. [9] proposed virtual network architecture with 
virtual network components such as routers and switches. The 
proposed architecture provides communication functions for 
virtual resources in Cloud data centers. The authors designed 
an energy aware routing algorithm for the proposed 
architecture. 

Fischer et al. [10] extended the VNE algorithm proposed 
by Lischka and Karl in [11] to be energy-aware VNE 
algorithm. Fischer et al. minimized energy consumption by 
allowing more than one virtual node from the same virtual 
network to coexist on the same substrate node. Furthermore, 
Fischer et al. considered active nodes and nodes that consume 
less power during node and link mapping to minimize energy 
consumption. 

Beloglazov et al. [12, 13] studied the single VM migration 
and dynamic VM consolidation problems and they proved the 
competitive ratios of optimal online deterministic algorithms 
for energy and performance efficient dynamic VM 
consolidation. Beloglazov et al. proposed heuristic algorithms 
for dynamic adaption of VM allocation at run-time based on 
an analysis of historical data on the resource usage. However, 
the proposed algorithms do not consider the communication 
between VMs in allocating or in reallocating VMs. 

Cheng et al. [14] proposed topology-aware node ranking 
technique, called NodeRank, to reflect the topological 
structure of the VNs and the SN. Based on the proposed 
ranking technique, Cheng et al. proposed two stage virtual 
network embedding algorithm called RW-MaxMatch. 
However, mapping nodes and links in two independent stages 
without coordination between them leads to high consumption 
of the underlying SN’s resources. To solve this problem, 
Cheng et al. [14] proposed RW-BFS algorithm. RW-BFS 
algorithm is a backtracking one-stage VN embedding 
algorithm, which maps nodes and links at the same stage.  

Zhang et al. [15] proposed two VN embedding models: an 
integer linear programming model and a mixed integer-
programming model. Furthermore, Zhang et al. proposed a 
discrete particle swarm optimization based VNE algorithm, 
called RW–PSO, to solve the proposed models. RW–PSO 
algorithm is an enhanced version of RW-MaxMatch [15] 
algorithm to find near optimal node mapping solutions in 
large-scale substrate networks. After nodes mapping, Zhang et 
al. map links using shortest paths algorithm and greedy k-
shortest paths algorithm. Cheng et al. [16] proposed discrete 
Particle Swarm Optimization based virtual network 
embedding algorithm similar to the proposed algorithm in [15] 
but they ranked nodes using topology-aware node ranking 
technique proposed in [14]. 

Su et al. [17] formulated an energy consumption model for 
substrate network infrastructures and proposed an extended 
version of RW-BFS [14] algorithm, called EA-VNE, for 
energy-aware virtual network embedding. Su et al. minimized 
the energy consumption by mapping virtual nodes to Best-fit 
substrate node according to the required and available CPU to 
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minimize number of active substrate nodes. Virtual links are 
mapped to shortest loop-free substrate path with minimal 
number of substrate nodes that are turned on from off. 

IV. VIRTUAL NETWORK EMBEDDING MODEL AND PROBLEM 

FORMULATION  

Substrate network (SN): as in our previous work [18, 19], 
we modeled the substrate network as a weighted undirected 
graph    (     ), where    is the set of substrate nodes and 
   is the set of substrate links. Each substrate node       is 
weighted by the CPU capacity, and each substrate link       
is weighted by the bandwidth capacity. Fig. 1(b) shows a 
simple SN example, where the available CPU resources are 
represented by numbers in rectangles and the available 
bandwidths are represented by numbers over the links. 

Virtual network (VN): virtual network     is modeled as a 

weighted undirected graph    
 (   

    
), where    

 is the 

set of virtual nodes and    
 is the set of virtual links. Virtual 

nodes and virtual links are weighted by the required CPU and 
bandwidth, respectively. Fig. 1(a) shows an example of VN 
with required CPU and bandwidth. 

Virtual network requests (VNR): the     VN request       
in the set of all VN requests     is modeled as (   

    
    ), 

where    
 is the required VN to be embedded,    

 is the arrival 

time, and     is the lifetime. When      arrives, substrate 

nodes’ CPU and substrate links’ bandwidth are allocated to 
achieve the     . If the substrate network does not have 
enough resources to achieve     ,      is rejected. At the end 
of      lifetime, all allocated resources to      are released.  

Virtual Network Embedding (VNE): embedding     on SN 

is defined as a map       
 (  

    
 ) , where   

    , and 

  
        , where       is the set of all loop free substrate 

paths in   . Embedding     can be decomposed into node and 
link mapping as follows: 

   Node mapping:       
   

  

   Link mapping:       
   

  

Virtual Network Embedding Revenue: the revenue of 
embedding      at time   is defined as the sum of all required 
substrate CPU and substrate bandwidth by      at time  . 

 (       )      (      ) (∑    (   
)   

    
 

 ∑   (   
)   

    
)                   (1) 

Where    (   
)  is the required CPU for the virtual 

node    
,   (   

) is the required bandwidth for the virtual 

link     
, and     (      )    if      is in its lifetime and 

substrate resources are allocated to it, 

otherwise     (   
  )   .  

Substrate resources fragmentation (SNF): substrate 
resources fragmentation is one of the most important factors 
that have high impact on VNE revenue and cost. Substrate 
resources are considered fragmented if there are enough 
substrate resources to embed VN but the available substrate 
resources are scattered. VNR will be rejected, because it 

cannot be allocated to connected substrate resources while 
there are sufficient substrate resources to achieve this VNR.  

Substrate network is considered fragmented if there are 
two sub-graphs     

    
    , such that    

    
   and 

    
 
    

  connects two substrate nodes from    
and     

, 

where   
  is the set of all loop free substrate paths in    that 

have available bandwidth greater than or equal a pre-specified 
lower bound bandwidth and have path length less than or 
equal a pre-specified maximum path length. 

To measure substrate network fragmentation (SNF) at time 
 , we use the following formula: 

   ( )    
∑ (        (   

  ))
 

 
   

( ∑         (   
  ) 

   )
                           (2) 

Where   is the number of fragments in the SN,   is a 
positive integer number greater than 1  to reduce the influence 
of the small negligible fragments  as long as one large 
fragment exits, and          (   

  )  is the total residual 

substrate resources in sub-substrate network    
 at time  . 

        (   
  ) is calculated as following: 

        (   
  )  ∑            (   

  )   
    

 

 ∑           (   
  )       

,  

Where    
 (   

    
) 

The substrate network fragmentation formula in equation 
(1) is inspired by the fragmentation measure proposed by Gehr 
and Schneider in [20]. 

Virtual Network Embedding Cost: as in [18, 19], the cost 
of embedding      at time   is defined as the sum of all 
allocated substrate CPU and substrate bandwidth to      at 
time  . 

    (       )      (      ) (∑    (   
)   

    
 

 ∑   (   
)   

    
       (    

(   
)))       (3) 

Where       (    
(   

))  is the length of the substrate 

path that the virtual link    
 is mapped to.  

Power consumption modeling: Substrate nodes are turned 
on from off to accommodate virtual nodes or to work as 
intermediate nodes in substrate paths. Recently, there is a new 
trend to deploy routing cards in data center networks to 
function as IP routers. Like commercial routers, routing cards 
handles all packet-processing tasks in hardware with high 
processing rate and low latency. The power consumption of 
the routing cards is nearly constant. As shown in [21], fully 
loading routing card increases its power consumption by 
around 5% over being idle. As any PCI-based cards, routing 
card has two states: enabled state, which consumes constant 
power, denoted by   , and disabled state, which does not 
consume any power.  

To model power consumed by substrate nodes to 
accommodate virtual nodes, we studied the power 
consumption rates of different types of servers, which are 
collected using SPEC power benchmark

1
 and is depicted in 
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Fig. 2. Fig. 2 shows that each server has a baseline power, 
which is the power consumed in idle state, and the remaining 
power consumption is proportional to CPU utilization. Now, 
we can model the power consumed by an active substrate node 
   at time   as: 

  (     )    (  )   (  (  )     (  ))    (     )  

   (  )              (  )  

Where   (  ) is the baseline power of the substrate node 
  ,   (  )  is the maximum power consumption for the 
substrate node   ,    (     ) is the total CPU utilization for 
the substrate node    at time  ,   (  ) is the power consumed 
by active routing card, and             (  ) is equal to 1 if 
the routing card is enabled and equal to 0 if the routing card is 
disabled. 

Total power consumed by substrate network at time t is 
defined as the sum of all power consumed by all substrate 
nodes at time t. 

      (  )  ∑   (     )

     

 

Power consumption to accommodate virtual node    in 
substrate node    can be calculated as following: 

   (     )  

{
 
 

 
   (  )   (  (  )     (  ))    (  ) 

         (    )   

(  (  )     (  ))    (  )                  

           (    )   

 

Where       (    )  is the state of substrate node    at 
time t.       (    ) equal to 1 if    is on and equal to 0 if    
is off.    (  ) is the required CPU for the virtual node   . 

Power consumption to embed virtual link    on substrate 
path       can be calculated as following: 

   (     )  ∑

{
 
 
 

 
 
 

  (  )     (  )                            

         (    )        

            (  )        

                 (    )            

             (  )   
                                             

  

      

 

Where     is the set of all substrate nodes participate in 
substrate path      . 

Total power consumption to embed virtual network 
request      at time   is defined as the sum of all power 
consumption to embed its virtual nodes and virtual links.  

      (       )  ∑    (   
   )   

    
 ∑    (   

  )   
    

                                         

         (4) 

 
1
First Quarter 2011 SPECpower_ssj2008 Results available 

online at 
(http://www.spec.org/power_ssj2008/results/res2011q1/) 

Objectives: the main objectives are to increase the revenue 
of VNE, decrease the cost of VNE, decrease the power 
consumed by substrate nodes, and decrease substrate resources 

fragmentation in the long run. To evaluate the achievement of 
these objectives, we use the following metrics:  

- The long-term average revenue, which is defined by 

      (
∑ ∑   (       )

 
   

 
   

 
)                   (5)              

Where        , and   is the total time. 

- The VNR acceptance ratio, which is defined by    

‖    ‖

‖   ‖
                                   (6) 

Where      is the set of all accepted virtual network 
requests. 

- The long term R/Cost ratio, which is defined by  

      (
∑ ∑   (       )

 
   

 
   

∑ ∑      (       )
 
   

 
   

)                (7) 

- The long-term average substrate network fragmentation, 
which is defined by 

      (
∑    ( ) 

   

 
)                                 (8)              

- The long-term average substrate network power 
consumption, which is defined by 

      (
∑       (  ) 

   

 
)                                 (9)                   

V. THE PROPOSED ALGORITHM  

In this section, we redefine the parameters and operations 
of the particles in PSO and describe the details of the proposed 
MOPSO-EVNE algorithm  

A. Redefining PSO particles operations 

We redefined the parameters and operations of the 
particles in PSO as following: 

Position (X): the position vector 

  ( )  (  
 ( )   

 ( )      
 ( ))  of a particle i at time t 

represents virtual node mappings of a VNE solution.   is the 
number of virtual nodes in the virtual network. All virtual 
nodes and substrate nodes are ordered and each node has an 
order number.   

 ( ) is the order number of substrate node 
that contains virtual node with order number  .  

Velocity (V): The velocity vector 

  ( )  (  
 ( )   

 ( )      
 ( ))  guides VNE solution 

(particle) to modifications that enhance current solution. 
  

 ( )  is a substrate path specifies a sequence of substrate 
nodes in which a virtual node with the order number   will be 
mapped to.  

Subtraction (  ):   ( )     ( )  (       
 ( )  

        
 ( )           

 ( )) , where        
 ( )  is a shortest 

loop free substrate path from substrate node with the order 
number   

 ( ) to substrate node with the order number   
 ( ). 

Addition ( ):     ( )      ( ) indicates that substrate 

paths are kept from   ( )with probability    and kept from 
  ( ) with probability   , where        . 

Multiplication (  ):   ( )   (   ) , where   ( )  
(  

 ( )   
 ( )       

 ( )     
 ( )) , and   (   )  
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(  
 (   )   

 (   )      
 (   )      

 (   ))  indicates 
that the virtual node number  , which is currently mapped to 
the substrate node number   

 ( ), will be mapped to the first 

substrate node in the substrate path   
 (   ) with enough 

CPU. If substrate node number   
 ( ) already participates in 

the substrate path   
 (   ), the virtual node number   will 

be mapped to the first substrate node after the substrate node 
number   

 ( ) with enough CPU if found.  

Finally, position and velocity updating equations are 
redefined as following:  

  (   )      ( )       (      ( )     ( ))   

      (       ( )     ( ))               (10) 

  (   )    ( )     (   )                                          (11) 

Where                 , and        ( )  is the 
position vector of the particle (VNE solution) that is used to 
guide another particle towards better areas in the solution 

space. According to the redefined operations,  (      ( )  

   ( )) is a set of substrate paths from current position   ( ) 

to the personal best position       ( ) , and (       ( )  
   ( )) is a set of substrate paths from current position   ( ) 
to the leader position        ( ). As a result,   (   ) is a set 
of substrate paths that guide particle to its personal best 
position or to position of Pareto optimal solution.The 
multiplication operation in equation (11) moves each 
dimension in the position vector   ( )   one step toward 
personal best position or toward Pareto optimal solution. 

B. MOPSO-EVNE algorithm 

The steps of the proposed multi-objective particle swarm 
optimization energy aware virtual network-embedding 
algorithm (MOPSO-EVNE), are shown in Algorithm 1.  

Particle swarm  ( )  is initialized by collecting a set of 
VNE feasible solutions. MOPSO-EVNE algorithm initializes 
 ( ) by creating a candidate substrate node list for the virtual 
node with the largest resources. Candidate substrate nodes list 
is created by collecting all substrate nodes with enough 
resources to embed virtual node. Candidate substrate nodes 
list is sorted in ascending order according to the power 
consumption rate for each node. Active substrate nodes with 
lower power consumption are selected first before activating 
inactive nodes. MOPSO-EVNE visits candidate substrate 
nodes in the created list sequentially and maps virtual network 
(starting from the virtual node with the largest resources). 
Virtual link mappings are performed during the node mapping 
process in breadth-first search manner to find shortest loop 
free substrate path with minimum number of activated 
substrate nodes. MOPSO-EVNE algorithm incrementally 
increases the maximum allowed substrate path length to visit 
large number of candidate substrate nodes and maximize the 
spread of solutions found. 

If the                    () function failed in creating 
new VNE feasible solution from the current candidate 

substrate node, we move to the next candidate node. After 
initializing particle swarm  ( ), each position vector for each 
particle is improved by using        (), which applies local 
search. Each dimension in the particle position vector is 
remapped to another substrate node, if this mapping improves 
position vector. New substrate node is specified by creating 
breadth first search trees from all substrate nodes contains 
neighbor of the current virtual node. All trees are increased 
concurrently and the first common substrate node is used as 
optimization position. Dimensions in the particle position are 
visited in a round robin fashion until no further improves are 
reached.     

In line 29, each particle position vector is evaluated using 
objective functions specified by equations 1, 2, 3, and 4. 
Velocity vectors are initialized randomly for each particle. In 
line 30,  ( )  is sorted into a hierarchy of non-dominated 
Pareto fronts by applying Fast Nondominated Sorting 
approach proposed in [22]. Each particle is assigned a rank 
value based on its dominance level and crowding distance 
value. 

External archive   ( )  is used to keep the non-
dominated solutions found during the search process. 
External archive solutions will be used as leaders to update 
velocity vectors of the particles of the swarm. Furthermore, 
the final output of the MOPSO-EVNE algorithm will be 
selected from the solutions contained in external archive. In 
line 32, initial external archive   ( )  is created and the 
non-dominated solution of the particle swarm  ( )  are 
copied into the external archive   ( ). 

Lines from 33 to 47 describe details of each iteration. In 
each iteration, one of the non-dominated particles is selected 
from   ( ) to be used as leader. Velocity vector and position 
vector are updated using equations (10) and (11).To avoid 
swarm stagnation, position vector is mutated with mutation 
probability       . Without mutation, the proposed algorithm 
might stop or converge to a local optimum. Mutation is 
performed by remapping mutated dimension in the position 
vector to substrate node with enough substrate resources. 
Virtual links are remapped without considering the maximum 
substrate path length.        () Function is used to optimize 
the new position vector to become visible solution. Each 
particle is evaluated using objective functions and its pBest is 
updated accordingly. 

At the end of each iteration, external archive   ( ) must 
be updated to add new non-dominated solutions found during 
this iteration. Solutions in external archive   ( )  are 
combined with the updated solutions in swarm  (   ) , 
sorted into non-dominated Pareto fronts, and sorted in 
descending order according to their Crowding-distance values. 
External archive   (   )  is updated by selecting the first 
          solutions.  

After a certain number of iterations, the MOPSO-EVNE 
algorithm selects best Pareto optimal front from the external 
archive   ( ) and returns it as suggested solution. 
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ALGORITHM 1: The details of the MOPSO-VNE algorithm       

INPUTS: 

   (     ): VN to be embed 

   (     ): SN to embed on 

             : maximum number of iterations 

         : swarm size 
         : maximum size of the external archive  
             : upper bound of nodes re-mapping operation 

       : maximum allowed substrate path length  

OUTPUTS: 

 (  ): map VN nodes and links to SN’s resources 

     : VN embedding success flag 

Begin 

1: Build breadth-first searching tree of    from virtual node with largest 

resources.  

2: Sort all nodes in each level in the created breadth-first tree in 

descending order according to their required resources. 

3: Create an empty particle swarm  ( ) at     

4:       , where      is the maximum allowed substrate path length 

in current iteration 

5: Build candidate substrate node list    for       
 

6: while          ( )                               

7:    for each substrate node    
     

8:        Create new map   (  )    

9:            ((   
     

)    (  )), where    
       

 

10:                          

11:        if                    (         
   ( )   (  )) then 

12:            ( )   ( )  *  (  )+ 

13:        else 

14:                 ((   
     

)    (  )) 

15:       end if 

16:        if          ( )            then  

17:            break 

18:        end if  

19:    end for  

20:                

21: end while  

22: if          ( )    then 

23:                 

24:     return   

25: else 

26:                        ( ) 

27: end if 
28:        ( ( )) 
29: Evaluate each particle in  ( ) according to the objective functions (1), 

(2), (3), and (4) 

30: Initialize the velocity vector randomly for each particle 
31: Sort swarm  ( ) into different non-domination levels. 
32: create and initialize external archive   ( ) with non-dominated 

particles in  ( )  

33: while                  

34:     for each particle p in  ( ) 
35:           Randomly select a single leader out of   ( )   
36:          Update the particle’s velocity vector and the position vector using 

equations (10) and (11).  
 37:           Perform mutation on particle p with the mutation probability 

        
    38:           locally improve the particle p 

39:           Evaluate the particle p according to the objective functions (1), 
(2), (3), and (4) 

40:           Update pBest of the particle p 
41:     end for 

42:     Sort all particles in   (   )    ( )  into different non-domination 

levels. 

43:     Calculate Crowding-distance for each particle in   (   )    ( )   

44:     Sort in   (   )    ( )  in descending order based on Crowding-
distance values 

45:     Update external archive   (   ) by getting the first           
particles from the sorted  (   )    ( )     

46:          

47: end while  

48:  (  )                           (  ( ) ) 

49:            

50: return   

End 

VI. PERFORMANCE EVALUATION 

To evaluate the performance of the proposed algorithm, 
we have compared its performance with the following 
algorithms: RW-MaxMatch [16], RW-BFS [14], AdvSubgraph-
MM [10], AdvSubgraph-MM-EE [10], and AdvSubgraph-MM-
EE-Link [10]. In the following subsections, we describe the 
evaluation environment settings and discuss the simulations’ 
results. 

A. Evaluation environment settings 

Performance is evaluated using two substrate network 
topologies, which are generated using Waxman generator. 
The first SN topology is configured with 50 nodes and 250 
links. Bandwidth of the substrate links are uniformly 
distributed between 50 and 100 with average 75. The second 
SN topology is configured with 200 nodes and 1000 links. 
Bandwidth of the substrate links are uniformly distributed 
between 50 and 150 with average 100. Each substrate node is 
randomly assigned one of the following server configurations: 
HP ProLiant ML110 G4 (Intel Xeon 3040, 2 cores X 1860 
MHz, 4 GB), or HP ProLiant ML110 G5 (Intel Xeon 3075, 2 
cores X 2660 MHz, 4 GB). 

We generated 1000 Virtual network topologies using 
Waxman generator with average connectivity 50%. The 
number of virtual nodes in each VN is variant from 2 to 20. 
Each virtual node is randomly assigned one of the following 
CPU: 2500 MIPS, 2000 MIPS, 1000 MIPS, and 500 MIPS, 
which are correspond to the CPU of Amazon EC2 instance 
types. Bandwidths of the virtual links are real numbers 
uniformly distributed between 1 and 50. VN’s arrival times 
are generated randomly with arrival rate 10 VNs per 100 time 
units. The lifetimes of the VNRs are generated randomly 
between 300 and 700 time units with average 500 time units. 
Generated SN and VNs topologies are stored in brite format 
and used as inputs for all algorithms. For all algorithms, we 
set the maximum allowed hops (       ) to 2, and the upper 
bound of remapping process (             ) to 3n, where n 
is the number of nodes in each VNR.               and 
          of the MOPSO-EVNE algorithm are set to 5 and 
10. Finally, we compared the results from the implemented 
algorithms. 
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B. Evaluation results 

MOPSO-EVNE algorithm increases VNR acceptance ratio 
as shown in Fig. 3 and Fig. 4. Fig. 3 shows the VNR 
acceptance ratio comparison using the first substrate network, 
which is configured with 50 substrate nodes and 250 virtual 
links. Fig. 4 shows the VNR acceptance ratio comparison 
using the second substrate network, which is configured with 
200 substrate nodes and 1000 virtual links. AdvSubgraph-MM, 
AdvSubgraph-MM-EE, and AdvSubgraph-MM-EE-Link are 
not compared using the second substrate network (200 nodes) 
because they have high complexity (require more than one 
month). 

VNR acceptance ratio is evaluated using equation (6), 
which only considers the number of accepted VNRs without 
considering variations between VNRs’ sizes. In Fig. 5 and Fig. 
6, we compared the ratio of accepted virtual resources (virtual 
CPU and virtual BW) without considering its VNRs. 

Although, MOPSO-EVNE algorithm increases the 
acceptance ratio among other algorithms, it rejects 81% and 
33% of virtual resources (Fig. 7 and Fig. 8). The reason 
behind this rejection is the lack of available substrate 
resources (Fig. 9 and Fig. 10), especially the lack of available 
substrate CPU (Fig. 11 and Fig. 12).  

MOPSO-EVNE algorithm increases the long-term average 
revenue, which is defined by equation (5) (Fig. 13 and Fig. 
14). As shown in Fig. 15 and Fig. 16, MOPSO-EVNE 
algorithm increases the revenue compared with the cost of 
embedding VNRs. In Fig. 15, revenue/cost ratio of MOPSO-
EVNE algorithm exceeds 100%, which means that the cost of 
embedding VNRs is less than gained revenue from embedding 
them. MOPSO-EVNE algorithm increases the revenue by 
increasing substrate resource utilization (Fig. 17 and Fig. 18) 
and reducing substrate resources fragmentation (Fig. 19), 
which is defined by equation 8. 

The long-term average substrate network power 
consumption is compared and depicted in Fig. 20 and Fig. 21. 
Fig. 20 and Fig. 21 show that MOPSO-EVNE algorithm 
consumes more power, but this is due to the large amount of 
accommodated virtual resources. To investigate this point, we 
compared the power consumed by accommodating one unit of 
virtual resources. Fig. 22 and Fig. 23 show the comparison 
results. RW-MaxMatch algorithm is removed from Fig. 22 
because it has a very high power consumption rate. Although, 
MOPSO-EVNE algorithm activated more substrate nodes to 
achieve more VNRs (Fig. 24 and Fig. 25), the power 
consumption rate of the proposed algorithm is similar to the 
power consumption rate of the AdvSubgraph-MM-EE-Link 
algorithm using small substrate network. However, 
AdvSubgraph-MM-EE-Link algorithm is not applicable to 
large substrate networks.  

Although, we run our simulation with small size of particle 
swarm (10 particles) and with small number of iterations (5 

iterations), MOPSO-EVNE algorithm increases the revenue 
and the acceptance ratio in reasonable time. Fig. 26 and Fig. 
27 show the average VNE time consumed by each algorithm. 

 
 VNR acceptance ratio comparison using 50 substrate nodes Fig.3.

 

 VNR acceptance ratio comparison using 200 substrate nodes Fig.4.

 

 Virtual resources acceptance ratio comparison using 50 substrate Fig.5.
nodes 

 

 Virtual resources acceptance ratio comparison using 200 substrate Fig.6.

nodes 
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 Rejected virtual resources comparison using 50 substrate nodes Fig.7.

 

 Rejected virtual resources comparison using 200 substrate nodes Fig.8.

 

 Available substrate resources comparison using 50 substrate nodes Fig.9.

 

 Available substrate resources comparison using 200 substrate nodes Fig.10.

 
 Available substrate CPU comparison using 50 substrate nodes Fig.11.

 

 Available substrate CPU comparison using 200 substrate nodes Fig.12.

 
 Revenue comparison using 50 substrate nodes Fig.13.

 
 Revenue comparison using 200 substrate nodes Fig.14.

 
 Revenue/Cost ratio comparison using 50 substrate nodes Fig.15.

 
 Revenue/Cost ratio comparison using 200 substrate nodes Fig.16.
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 Substrate resources utilization comparison using 50 substrate nodes Fig.17.

 
 Substrate resources utilization comparison using 200 substrate nodes Fig.18.

 
 Substrate resources fragmentation comparison using 50 substrate Fig.19.

nodes 

 
 Power consumption comparison using 50 substrate nodes Fig.20.

 
 Power consumption comparison using 200 substrate nodes Fig.21.

 
 Comparing power consumption per virtual resource unit using 50 Fig.22.

substrate nodes 

 
 Comparing power consumption per virtual resource unit using 200 Fig.23.

substrate nodes 

 
 Active substrate nodes comparison using 50 substrate nodes Fig.24.
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 Active substrate nodes comparison using 200 substrate nodes Fig.25.

 
 Average virtual network embedding time comparison using 50 Fig.26.

substrate nodes 

 
 Average virtual network embedding time comparison using 200 Fig.27.

substrate nodes 

VII. CONCLUTION 

Embedding multiple virtual networks on a shared substrate 
network is NP-hard. This complexity is increased by 
considering energy efficiency of virtual network embedding. 
In this paper, we modeled energy-aware virtual network 
embedding problem and proposed an efficient energy aware 
virtual network-embedding algorithm based on multi-
objective particle swarm optimization. The proposed 
algorithm aims to find good “tradeoff” virtual network 
embedding solutions that represent the best possible 
compromises among virtual network embedding revenue, cost, 
fragmentation, acceptance, and power consumption. Local 
search is employed to enhance position vector of each particle 
and to speed up the convergence of the proposed algorithm. 
Elitism is insured by storing best non-dominated virtual 
network embedding solutions into external archive. Extensive 
simulations show that the proposed algorithm outperforms 
previous algorithms in terms of the long-term average 
revenue, long-term average cost, long-term average substrate 
resources fragmentation, and long-term average power 

consumption. For the future work, we plan to extend the 
proposed algorithm to consider variant workload and employ 
virtual machine migration and virtual link migration to 
enhance energy efficiency of the proposed algorithm. 
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