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Abstract—In this study, natural frequencies of the prismatical 

steel beams with various geometrical characteristics under the 

four different boundary conditions are determined using 

Artificial Neural Network (ANN) technique. In that way, an 

alternative efficient method is aimed to develop for the solution 

of the present problem, which provides avoiding loss of time for 

computing some necessary parameters. In this context, initially, 

first ten frequency parameters of the beam are found, where 

Bernoulli-Euler beam theory was adopted, and then natural 

frequencies are computed theoretically. With the aid of 

theoretically obtained results, the data sets are formed and ANN 

models are constructed. Here, 36 models are developed using 

primary 3 models. The results are found from these models by 

changing the number and properties of the neurons and input 

data. The handiness of the present models is examined by 

comparing the results of these models with theoretically obtained 

results. The effects of the number of neurons, input data and 

training function on the models are investigated. In addition, 

multiple regression models are developed with the data, and 

adjusted R-square is examined for determining the inefficient 

input parameters 
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I. INTRODUCTION 

Every structure in the nature has endless number of 
vibration frequencies and mode shapes, and calculation of 
these frequencies and their mode shapes are important to solve 
the vibration induced engineering problems [1-5]. 

Vibration analyses of structural systems have been 
performed with the aid of different methods [6-15]. However, 
the complex shaped structures may be analyzed with soft 
computing techniques more easily. Soft Computing is a general 
term for a collection of computing techniques [16]. These well-
known techniques constitute artificial neural networks (ANN), 
fuzzy logic, evolutionary computation, machine learning and 
probabilistic reasoning. Soft computing methods differ from 
classical computing methods in that, unlike classical 
computing methods it is tolerant of imprecision, uncertainty, 
partial truth to achieve tractability, approximation, robustness, 
lows solution cost and better rapport with reality [17]. 

Although all above mentioned techniques have been 
adapted to the structural analysis, design and optimization 
problems, especially ANNs have been widely used in many 
fields of science and technology, such as, in vibration problems 
of engineering structures, due to it has an excellent learning 

capacity [18]. Gates et al. [19] presented a method of using 
artificial neural networks stabilizing large flexible space 
structures, in which the neural controller learns the dynamics of 
the structure to be controlled and constructs control signal 
stabilizing structural vibrations. Karlik et al. [20] studied the 
nonlinear vibrations of an Euler-Bernoulli beam with a 
concentrated mass using ANN technique which has a multi-
layer, feed-forward, back propagation algorithm. Mahmoud 
and Kiefa [21] investigated the feasibility of using general 
regression neural networks to solve the inverse vibration 
problem of cracked structures, in which a steel cantilever beam 
with a single edge crack is examined as a case study. Castillo et 
al. [22] presented a general methodology to develop and work 
with functional networks, which is a network based alternative 
to the neural network paradigm. Cevik et al. [23] suggested 
ANN approach for obtaining the natural frequencies of 
suspension bridges. Civalek [24] examined flexural and axial 
vibration of elastic beams with various support conditions 
using ANN, in which the first three natural frequencies of 
beams are obtained using multi-layer neural network based 
back-propagation error learning algorithm.  Hassanpour et al. 
[25] investigated the vibration of the simply-supported beam 
with rotary springs at either ends using a multilayer feed-
forward back-propagation ANN. Bağdatlı et al. [26] studied the 
nonlinear vibrations of stepped beam systems using ANN 
technique which has a multi-layer, feed-forward, back-
propagation algorithm networks. Saeed et al. [27] presented 
various artificial intelligence techniques for crack identification 
in curvilinear beams based on changes in vibration 
characteristics. Jalil et al. [28] presented dynamic model of 
flexible cantilever beam in transverse motion using finite 
difference approach, in which the identification of a flexible 
beam structure was utilized using neural network. 
Mohammadhassani et al. [29] presented comparison of the 
effectiveness of artificial neural network and linear regression 
in the prediction of strain in tie section using experimental data 
from eight high-strength-self-compact concrete deep 
beams.Ding et al. [30] determined locating and quantifying 
damage in beam-type structures using structural dynamics-
guided hierarchical neural-networks scheme. Karimi et al. [31] 
suggested an alternative modeling technique using ANN for 
predicting the effects of different parameters on the natural and 
nonlinear frequencies of the laminated plates. 

In the present study bending natural frequencies of the 
prismatical steel beams with various geometrical characteristics 
under the four different boundary conditions, i.e. Clamped-
Clamped (C-C), Clamped-Free (C-F), Clamped-Simply 
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Supported (C-SS) and Simply Supported-Simply Supported 
(SS-SS)  is determined using ANN technique. Initially, the first 
ten natural frequency parameters of the beam are found 
adopting Bernoulli-Euler beam theory, and then natural 
frequencies are computed theoretically. With the aid of 
theoretically obtained results the data sets are formed and ANN 
models are constructed. Here, 36 models are developed using 
primary 3 models. The results are found from these models by 
changing the number and properties of the neurons and input 
data. The handiness of the present models is examined by 
comparing the results of these models with theoretically 
obtained results. The effects of the number of neurons, input 
data and training function on the models are investigated. In 
addition, multiple regression models are developed with the 
data, and adjusted R

2
 is investigated for determining the 

inefficient input parameters. To the best of authors knowledge, 
although various studies are presented on the free vibration 
analysis of the structures using ANN technique, the effects of 
the number of neurons, input data and training function on the 
models are not investigated in detail, and the inefficient input 
parameters are not determined using multiple regression 
models. In the present work, an attempt is made for addressing 
these issues. 

II. MATHEMATICAL MODELLING OF THE PROBLEM 

Consider an elastic beam of length L , width b, height h, 
Young's modulus E , and mass density   with uniform cross 

section A , as shown in Fig. 1. 

 

Fig. 1. Geometry of the beam 

Using Euler-Bernoulli beam theory, one can obtain the 
equation of motion of a beam with homogeneous material 
properties and constant cross section as follows [1-5] 
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where the following definition apply 
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here I  is the area moment of inertia of the beam cross 
section, w  is the transverse displacement, and t is time. 

The solution of the Eq. (2) is sought by separation of 
variables. Therefore, the displacement is separated into two 
parts: one is depending on the position and the other is 
depending on time: 

)t()x()t,x(w    (3) 

where   and   are independent of time and position, 

respectively. 

Substituting Eq. (3) into Eq. (2) and after some 
mathematical rearrangements, the following equation is 
obtained: 
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Here the each side resulting equation is set to equal a 

constant, denoted
2 , to have simple harmonic motion in the 

beam. 

If the position variable of Eq. (4) is separated 

0)x(
x

)x( 4

4

4





  (5) 

where 
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  (6) 

If the time variable is separated 
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Eq. (5) is solved as follows: 

xcosAxsinAxcoshAxsinhA)x( 4321   (8) 

where 4321 A,A,A,A  are constants, sinh  and cosh  are 

the hyperbolic esin  and ecos  functions, respectively. 

Eq. (7) is solved as follows: 

tcosAtsinA)t( 65                                 (9) 

where 65 AandA  are constants.  

Thus, if Eq. (8) is multiplied by Eq. (9) to obtain )t,x(w , it 

yields eight combined constants as: 
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where the constants 4321 A,A,A,A  can be obtained 

from the boundary conditions, and 65 A,A can be obtained 

from the initial conditions 

The boundary conditions satisfied by a C-C, C-F, C-SS, 
SS-SS beams are as follows, respectively: 

0)L('w)L(w)0('w)0(w    (11) 

0)L('''w)L(''w)0('w)0(w    (12) 

0)L(''w)L(w)0('w)0(w    (13) 

0)L(''w)L(w)0(''w)0(w    (14) 

Substituting boundary conditions given in Eqs (11-14) into 
Eq. (8) separately; and then after some mathematical 
operations, the frequency parameters of the beam, L , are 
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obtained for the first ten modes. Finally, using Eq. (6) the 

natural frequency )Hz(fn  of the beam is found as follows: 






2
fn   (15) 

III. ANN MODELLING OF THE PROBLEM 

A. Structure of ANN 

ANN is a technique that seeks to build an intelligent 
program using models that simulate the working network of the 
neurons in the human brain (Fig. 2). Unlike conventional 
computational programs, the ANN does not have exact data 
and provides outputs with respect to introduced data set. The 
data and the circumstances introduced to the program are put 
into process by the help of various methods of education and 
learnings. With the aid of the outputs of these transactions, the 
program assigns weights between the data and the neurotic 
structures. Afterward, when come up to different situations and 
data, the cases are commented and results are presented in 
accordance with previous learnings [32]. 

 
Fig. 2. A biologic nerve cell structure 

The basic unit of ANN is called as a process element or a 
node. Although the artificial nerve elements are simpler than 
the biological nerves, it can simulate the 4 main functions of 
biological nerves (Fig. 3). 

 
Fig. 3. Artificial neural network sample 

There are plenty of neural network models in the existing 
literature. However, the most preferred neural network model 
is back propagation model. It is experienced that this model 
gives pretty good results in the estimation and classification 
processes [33]. Back propagation neural network is the mostly 
preferred model because of its capability and excellence to 
solve problems which are nonlinear and have very complicated 
structures. Back propagation neural network is a multi-layer 
and feed-forward neural network trained by the Back 
Propagation algorithms [7]. This model makes weight 
assignment processing the inputs and the outputs again and 
again, and the model tries to minimize the least square errors 
using this operation. The mathematical expression of this 
model is as follows [34] 
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Here, w  is a value of assigned weight between any two 

neurons, nW and 1nW   are respectively the changes of 

weightings for n and n-1 values, a  is the coefficient of 

momentum, Tb  is the ratio of training, F  is the calculated 

error 
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here iT  is the actual output or namely target and iP  is the 

estimated output value. The working principle of the ANN 
model is shown in Fig. 4, the inputs are included into the 
model after weight adjustment. The data are forwarded to the 
activation function being processed in each neural network 
with the weights. The results are compared with the actual 
results in order to determine error. The errors found are 
transferred to initial weights with the help of Back Propagation 
and this process is repeated for a number of times which is 
called as Epoch. Once the process is completed, the results 
with minimum errors are found [35]. 

 
Fig. 4. Neuron weight adjustments 

B. Normalizing the data 

The input and output values are required to be restricted in 
some certain rules for artificial neural network models. This 
process is called as normalization. The most used 
normalization functions are Min Rule, Max Rule, Median, 
Sigmoid and Z-Score [32]. In this study, Min-Max 
normalization rule is applied as below: 

minmax

mini

ZZ

ZZ
'Z




                                                  (18) 

Here, 'Z  is the normalized data, iZ is the actual data, 

maxZ  is the maximum data and minZ  is the minimum data. 

Through this equation, all the data are normalized in the range 
of [0-1]. Hereby, both the error distribution is done in a 
narrower range and model runs more quickly. 

C. Multiple regression analysis 

Multiple regression analysis is applied for evaluating the 
effect of multiple independent variables (x) on a dependent 
variable (y). In multiple linear regression analysis, it is 
assumed that each independent variable has a relationship with 
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the dependent variable [36]. This relationship is expressed as 
below: 

nn2211 xb...xbxbcy    (19) 

Here, c  is a constant number, ib are the coefficient of the 

variables.  

To calculate the coefficients in the Eq. (19), the mean 
square method is used. The difference between the actual y and 
the theoretical y is minimized as follow 

 nini22i11

n

1i
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

  (20) 

In order to evaluate the accuracy of multiple regression 
model, the regression coefficient is required to be determined. 
Besides, multiple regression is applied with respect to Stepwise 
Selection Method for determining the necessity of the 
parameters. 

IV. RESULTS AND DISCUSSION 

In this section, natural frequencies, )Hz(fn , of prismatical 

steel beams under four different boundary conditions are 
examined. For this aim, at first natural frequency parameters 

are obtained, then natural frequencies, )Hz(fn , of prismatical 

steel beams are found theoretically. Afterward, from obtained 
these results data sets are constructed. Here, a total of 8640 
data sets are used in training stage, and a total of 1920 data sets 
are used in the testing stage. By this way, 3 main models and a 
total of 36 sub-models created by changing the number of 
neurons of the main models. The sizes, moment of inertia and 
boundary conditions are used as input data parameters. The 
natural frequency values are employed as outputs. Input data 
parameters and their intervals and mechanical parameters of 
steel are given in Table 1 and Table 2, respectively. 

TABLE I.  THE INPUT DATA PARAMETERS AND THEIR INTERVALS 

Parameter Minimum Maximum 

b (m) 0.10 0.15 

h (m) 0.10 0.15 

L(m) 3 3.5 

I (m4) 610333.8   
510219.4   

n 1 10 

Case 1 4 

Here, IandL,h,b  denote width, height, length and 

moment of inertia of the beam, and n  denotes mode number, 
Case 1,2,3,4 denoted in C-C, C-F, C-SS and SS-SS boundary 
conditions, respectively.  

TABLE II.  THE MECHANICAL PARAMETERS OF STEEL 

Parameter Description 

Young’s Modulus (E) 211 m/N101.2   

Passion Ratio ( 3.0  

Density ( 3m/kg7850  

A. Numerical examples 

Example 1: In this example, a comparative study is 
performed to validate the present numerical results. For this 
purpose, theoretically obtained exact results of natural 
frequency of the prismatical beams under the four different 
boundary conditions versus mode number (n) are compared 
with those obtained using ANN, in Table 3. It is found that the 
numerical results of both methods are consistent, which show 
the accuracy of the present ANN model. The absolute errors 

are calculated as follows: 100
f

ff

nExact

nExactnANN 


. Besides, the 

variations of absolute errors in the natural frequencies, )Hz(fn

, are illustrated in Fig. 5.  

  

TABLE III.  VARIATIONS OF NATURAL FREQUENCIES OF THE PRISMATICAL STEEL BEAMS UNDER THE FOUR DIFFERENT BOUNDARY CONDITIONS VERSUS 

MODE NUMBER (N) ( m3L;m14.0h;m14.0b  ) 

n 

fn(Hz) 

Case 1 Case 2 Case 3 Case 4 

Exact ANN Exact ANN Exact ANN Exact ANN 

1 80.71 81.11 12.68 12.27 55.62 56.14 35.60 35.65 

2 222.47 224.35 79.48 77.56 180.24 183.16 142.41 140.96 

3 436.14 436.24 222.47 222.18 376.06 377.06 320.43 318.73 

4 720.97 719.61 436.14 433.72 643.09 642.07 569.65 567.22 

5 1077.01 1075.64 720.97 718.09 981.33 979.88 890.09 887.23 

6 1504.26 1503.92 1077.01 1076.40 1390.77 1390.24 1281.73 1282.26 

7 2002.71 2003.94 1504.26 1503.87 1871.42 1872.75 1744.58 1743.41 

8 2572.37 2572.38 2002.71 2000.87 2423.28 2424.99 2278.64 2278.86 

9 3213.23 3209.13 2572.37 2573.64 3046.34 3041.29 2883.90 2884.54 

10 3925.31 3933.66 3213.23 3210.43 3740.61 3749.58 3560.37 3557.60 
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Fig. 5. Variations of error in the natural frequencies of the prismatical steel beams under the four different boundary conditions versus mode number (n)

Example 2: Table 4 shows the Model 1, in which 6 inputs, 
1 hidden layer and 1 output (see Fig. 6) are used for obtaining 
the natural frequencies, of the prismatical steel beams under the 
four different boundary conditions. 

 

Fig. 6. Schematic architecture of Model 1 (6-1-1) 

As with all models, feed-forward back propagation 
algorithm is used in the network type. The tangent and 
logarithmic sigmoid transfer functions are employed. The 
number of hidden layer is determined as 1, and 12 separate 
sub-models are created using the models having 1 to 9 neurons. 
Actual output values of the natural frequencies are compared 
with those obtained from training. The results are found with 
the very small errors, especially for the models with 5 and 
more neurons. 

TABLE IV.  TRAINING AND TEST RESULTS FOR MODEL 1 

Transfer Function Number of Neurons 
Training Data Test Data 

R² Equation sets MSE % R² Equation sets MSE % 

Tan Sig. 

1  0.996 y=0.9961x 25.66 0.9913 y=0.9364x 31.23 

3  0.9998 y=0.9998x 6.18 0.9933 y=0.938x 12.05 

5 1 y=0.9999x 1.80 0.9932 y=0.946x 6.81 

7  1 y=0.9999x 1.75 0.9932 y=0.9442x 7.16 

8  1 y=x 0.71 0.9931 y=0.9428x 6.71 

9  1 y=0.9999x 1.67 0.9929 y=0.9423x 8.04 

Log Sig. 

1  0.9959 y=0.9964x 25.66 0.9913 y=0.9364x 31.23 

3  0.9997 y=0.9997x 8.01 0.9933 y=0.938x 11.40 

5  0.9999 y=0.9999x 2.53 0.9932 y=0.946x 7.81 

7  0.9999 y=0.9999x 1.68 0.9932 y=0.9442x 7.74 

8  0.9999 y=x 0.83 0.9929 y=0.9419x 6.88 

9  0.9999 y=0.9999x 1.74 0.9929 y=0.9423x 7.40 

To eliminate the possibility of rote learning of these results, 
1920 data sets, which are allocated for test, are also included 
into the model and the obtained results are compared with the 
exact values. The test data shows that, the interval of error is 

nearly 6-8%, and regression coefficient takes values very close 
to 1 for the models with 5 and more neurons. In addition, the 
best agreement is observed in the model with 8 neurons and 
plotted in Fig. 7. 

 

 

Fig. 7. Scatter diagrams of Model 1 for tangent sigmoid transfer function with 8 neurons a) training b) test 
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Example 3: Table 5 shows the Model 2, in which 5 inputs, 
1 hidden layer and 1 output are used for obtaining the natural 
frequencies of the prismatical steel beams under the four 
different boundary conditions. In this model, moments of 

inertia, (I), is removed from input parameters and a model with 
5 input is created (5-1-1). In the training process of the model 
for all models of 5 neurons and higher, the error seems to fall 
below 1%. 

TABLE V.  TRAINING AND TEST RESULTS FOR MODEL 2 

Transfer Function Number of Neurons 
Training Data Test Data 

R² Equation sets MSE % R² Equation sets MSE % 

Tan Sig. 

1  0.9959 y=0.9961x 12.93 0.9912 y=0.9393x 31.22 

3  0.9998 y=0.9997x 1.81 0.9932 y=0.9424x 11.67 

5  0.9998 y=0.9999x 0.87 0.9930 y=0.9425x 8.11 

7  0.9999 y=0.9999x 0.35 0.9937 y=0.9435x 6.80 

8  0.9999 y=0.9999x 0.43 0.9930 y=0.9428x 6.83 

9  0.9999 y=0.9999x 0.53 0.9912 y=0.9425x 7.34 

Log Sig. 

1  0.9958 y=0.9960x 12.93 0.9922 y=0.9398x 29.22 

3  0.9999 y=0.9998x 1.72 0.9935 y=0.9429x 11.56 

5  0.9999 y=0.9999x 1.04 0.9936 y=0.9437x 8.95 

7  0.9999 y=0.9999x 0.61 0.9940 y=0.9437x 6.65 

8  0.9999 y=0.9999x 0.61 0.9943 y=0.9442x 6.59 

9  0.9999 y=0.9999x 0.96 0.9935 y=0.9435x 6.79 

Considering the errors, the model for logarithmic sigmoid 
transfer function with 8 neurons is found the best and 
illustrated in Fig. 8. 

It should be noted that, although having one missing input 
parameter in comparison with the Model 1, the present model 
does not show serious differences in error rates for both 
training and test results. 

 
Fig. 8. Scatter diagrams of Model 2 for logarithmic sigmoid transfer function with 8 neurons a) training b) test 

Example 4: Table 6 shows the Model 3. Here parameters 
are tried to be identified with numbers from 1 to 10 instead of 
calculations of frequency parameter value. Therefore, the 
natural frequency parameters are aimed to be determined with 
ANN model without any calculation in advance. As the model 
results are examined, it is found that the results are worse than 
the results of previous ANN models in terms of both training 
and test. However, in other models, either moment of inertia or 
natural frequency parameters are included into the model with 
pre-calculating.  

For this model, all the inputs are introduced to the model 
with simple numeric expressions and the outputs are obtained. 
As a result, the errors are found very minimal as being 8.93% 
for the test of the model for logarithmic sigmoid transfer 
function with 9 neurons and plotted in Fig. 9. 

Example 5: Table 7 shows Model 4, in which the training 
inputs are implanted to the model step by step and adjusted 

2R values are investigated. The step in which the adjusted R
2
 

values decrease or remain constant; the included parameters 
are excluded from the model. 

According to the steps of the process of Table 7, the input 
of moment of inertia is excluded and a multiple regression 
model is constructed with the remaining 5 input parameters in 
Table 8. 

As shown in Fig. 10, the results found in the regression 
models are remarkably incorrect for both training and test data 
in comparison with the results obtained from three ANN 
models. And these results show that the constructed three ANN 
models give more efficient results for the present problem. 
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TABLE VI.  TRAINING AND TEST RESULTS FOR MODEL 3 

Transfer Function Number of Neurons 
Training Data Test Data 

R² Equation sets MSE % R² Equation sets MSE % 

Tan. Sig. 

1  0.9784 y=0.9890x 17.72 0.9731 y=0.9321x 38.97 

3  0.9934 y=0.9955x 7.00 0.9867 y=0.9407x 18.75 

5  0.9995 y=0.9992x 2.39 0.9930 y=0.9417x 11.06 

7  0.9998 y=0.9987x 3.24 0.9930 y=0.9418x 12.20 

8  0.9998 y=0.9989x 3.22 0.9930 y=0.9418x 10.31 

9  0.9999 y=0.9999x 1.68 0.9930 y=0.9424x 9.64 

Log. Sig. 

1  0.9784 y=1.0288x 16.63 0.9731 y=0.9507x 39.18 

3  0.9934 y=1.0189x 7.32 0.9867 y=0.9598x 18.50 

5  0.9995 y=1.0159x 3.43 0.9930 y=0.9602x 10.32 

7  0.9998 y=1.0175x 4.32 0.9930 y=0.9586x 11.47 

8  0.9998 y=1.0179x 4.46 0.9930 y=0.9605x 9.49 

9  0.9999 y=1.0118x 3.06 0.9930 y=0.9612x 8.93 

 

Fig. 9. Scatter diagrams of Model 3 for logarithmic sigmoid transfer function with 9 neurons a) Training b) Test 

TABLE VII.  ADJUSTED R² ANALYSIS RESULTS 

Model R R2 Adjusted R2 Std. Error of the Estimate 

1 0.966 0.932 0.932 259.46804 

TABLE VIII.  MULTIPLE REGRESSION ANALYSIS RESULTS 

 

Unstandardized  

Coefficients 

Standardized  

Coefficients 

95.0% Confidence  

Interval for B 

B Std. Error Beta Lower Bound Upper Bound 

Constant -728.779 106.944  -938.414 -519.144 

Case -2.113 2.498 -0.002 -7.010 2.783 

B 0.100 163.450 0.000 -163.350 163.550 

H 9238.788 163.450 0.158 8918.388 9559.188 

L -156.070 32.735 -0.013 -220.239 -91.901 

  325.397 .960 0.952 323.517 327.278 
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Fig. 10. Scatter diagrams of multiple regression model a) Training b) Test 

V. CONCLUSION 

In this study, bending natural frequencies of the prismatical 
steel beams with various geometrical characteristics under the 
four different boundary conditions are determined using ANN 
technique. In that way, an alternative efficient method is aimed 
to develop for the solution of the existing problem, which 
provides avoiding loss of time for computing some necessary 
parameters. 

Briefly the following results are obtained: 

1) The tangent sigmoid transfer function shows better 

performance in Model 1 with 8 neurons 

2) The logarithmic sigmoid transfer function shows better 

performance in Model 2 with 8 neurons 

3) When the first two models are considered it is 

concluded that ANN models do not need  moment of inertia 

parameter in the training 

4) The logarithmic sigmoid transfer function provides 

better results in Model 3 with 9 neurons 

5) It is found from Model 4 that the moment of inertia has 

not any efficiency. This finding also supports the results found 

by the Models 1 and 2 

6) The errors of the models having 5 or more neurons are 

lower, and  this prove at least 5 neurons should be used for 

the reliably of the model 

7) The two transfer functions have quite similar errors, 

and so both of them can be used 

8) The constructed  ANN models give more efficient 

results than the multiple regression model 
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