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Instituto Politécnico Nacional 

SEPI-ESCOM
M´exico, D.F.

Amilcar Meneses Viveros 
Departamento de Computación 

CINVESTAV-IPN
M´exico D.F.

Erika Hernández Rubio 
Instituto Politécnico Nacional 
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Abstract—In High Performance Computing, energy consump-
tion is becoming an important aspect to consider. Due to the high
costs that represent energy production in all countries it holds
an important role and it seek to find ways to save energy. It
is reflected in some efforts to reduce the energy requirements
of hardware components and applications. Some options have
been appearing in order to scale down energy use and, con-
sequently, scale up energy efficiency. One of these strategies
is the multithread programming paradigm, whose purpose is
to produce parallel programs able to use the full amount of
computing resources available in a microprocessor. That energy
saving strategy focuses on efficient use of multicore processors
that are found in various computing devices, like mobile devices.
Actually, as a growing trend, multicore processors are found
as part of various specific purpose computers since 2003, from
High Performance Computing servers to mobile devices. However,
it is not clear how multiprogramming affects energy efficiency.
This paper presents an analysis of different types of multicore-
based architectures used in computing, and then a valid model
is presented. Based on Amdahl’s Law, a model that considers
different scenarios of energy use in multicore architectures it is
proposed. Some interesting results were found from experiments
with the developed algorithm, that it was execute of a parallel
and sequential way. A lower limit of energy consumption was
found in a type of multicore architecture and this behavior was
observed experimentally.

Keywords—Energy Consumption; Multicore Processors; Paral-
lel Programs; Amdahl’s law

I. INTRODUCTION

With the emerging of High Performance Computing, it
was possible to carry out sophisticated calculations that before
used to take a far longer time to be accomplished. This kind
of computing has permitted to generate processes with much
more elaborated and complex operations. Usually, HPC servers
need high quantities of energy per unit time to work, for
example, to implement a machine which execute a billion
operations per second, or, in others words, a machine that
would reach an exaflop, would require a big energy budget,
comparable with the energy requirements of a town. Hence,
energy consumption in data centers and supercomputers, is
a topic which before did not have any importance, but is
currently becoming more important every year.

Since 2004, multicore processors have been the object of
interest of researchers that aim to exploit the potential of a
die with more than one processing unit [1]. Clearly this is not
only a case of study for servers and mainframes, because it is

common to have multicore processors in mobile devices. This
is an indicator that parallel programs are being used in various
computing devices, from servers to smartphones.

A feature that makes a difference between mobile devices
and other computer appliances, is that they are totally energy-
bounded by a battery [2]. Across the years, battery technolo-
gies that feed devices have permitted to increase the capacity
of these batteries without changing the size or weight of
these components. However, mobile software developers often
design and write applications which consider that the energy
supplied is ideal, the battery is completely charged, and that
usually it is not important to be aware of the energy impact
caused by their applications. Neither are they worried enough
by the fact that more hardware components being used and
additional wireless requests will have a significant impact on
the consumption of battery power.

A feasible solution for energy limitations is the introduction
of parallel programming techniques that use efficiently all
the computing resources available into modern smartphones.
Actually, all industry is in fact using processors produced by
companies such as Samsung, Qualcomm, Intel, etc. All these
companies have been changing their hardware paradigms to
offer more computing power into a single die; that includes
the addition of independent processor chips joined by different
mechanisms like shared cache, bridges, etc. In the market, the
minimum number of cores present into a mobile multiproces-
sor is two. The reasons for this change are the constraints found
in the traditional single-core paradigm, such as incremental
heat and power dissipation [1].

The chipset landscape has a variety of multiprocessors
divided by diverse features. Commonly, the designs are sep-
arated by their hardware architecture into symmetric and
asymmetric [3], [4], but some researchers have also found
another classification regarding their energy use features, e.g.
a machine where processors can be turned off individually, or
another machine where that is not possible [5].

Hardware classification separates processors by the com-
puting capacity of their different cores. A sign of this class
of processors is the presence of digital signal processors,
GPU’s and CPU’s working together inside a chip. When
cores have different capabilities, our multiprocessor is named
heterogeneous or asymmetric. Otherwise, when all cores are
similar, the multiprocessor is classified as homogeneous or
symmetric.
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We can distinguish three types of multicore processors if
we consider its energy behavior. The first is a multicore where
all cores are turned on, independently of how many cores a
task needs. When the process is finished, all the cores will
be turned off. This behavior implies that the same amount
of energy is required to operate one or more cores in the
processor. The second case is observed when the energy spent
is proportional to the number of active cores; hence if a
process uses one core the processor consumes a unit n of
energy, if process uses two cores, it consumes 2n units of
energy, and so on. In the third case the processor has two
operational voltages, one per each core, and another that feeds
the entire processor. When all cores are turned off, each one
of them operates in a energy state called idle, in addition a
base voltage that feeds the other components of the processor
is also present. Those different architectures are widespread
in different appliances. In the traditional computing domain,
symmetric architectures clearly dominate most of the market.
But in mobile appliances, thanks to their low-power advantages
that they offer [6], asymmetric chips are widely installed on
them. In fact, asymmetric processors are even being used
in server and mainframe environments due to these energy
efficiency features [7].

Several authors have proposed models of energy consump-
tion for multicore architectures. However, the experimental
results have not matched the models, ie, the analysis of the
models show energy savings [9], [11], [12], while in some
experiments shown that programs on multicore architectures
spend more energy when working with multiple threads [8],
[15]. We believe that this contradiction is due to the models
do not consider the types of processors, concerning the use of
energy. This paper presents an analysis of different types of
multicore-based architectures used in computing, and then a
valid model is presented. Based on Amdahl’s Law, a model
that considers different scenarios of energy use in multicore
architectures it is proposed.

This paper is organized as follows: Section II contains a
brief review of some papers that have studied energy and power
consumption in multiprocessors. Some of these papers deal
with an adequate description of how power is used depending
of many factors. Section III presents a description model based
on the power using the muticore processors. The model has
three stages, the last stage is the general, though the first
two we consider necessary to understand the behavior of the
model. Section IV presents some experimental results. These
experiments are running the benchmark Linkpack in multicore
processors. Finally, in Section V the conclusions of this work
are presented.

II. RELATED WORK

Research over energy enhancements in multicore architec-
tures, particularly about Amdahl’s Law extensions, is focused
on finding energetically sustainable architectures , using op-
tions like a set of rules that conforms a framework [5], or using
techniques of CPU management, such as core offlining [8] and
finding voltage and frequency optimal operating values of a
multicore system [9].

Amdahl’s Law has been used by some authors to model
performance in computing scenarios [10]. Using their ideas

to decide if multithreading programming gives performance
and energy benefits, some of them get optimistic results [9],
[11], [12], and others find pesimistic results when an enhanced
energy consumption by adding threads is expected [8]. A
discussion is centered in the fact of how many cores are needed
to work properly, having in mind that more cores working in
parallel represent execution speed, but require more energy
to function. We pretend to use our model to describe energy
consumption only in symmetric computers for the moment.
This will be the base for our next study that we shall glimpse
as future work.

Cho and Melhem [5] studied the mutual effects of par-
allelization, program performance, and energy consumption.
Their proposed model was tested on a machine that could
apply core offlining. With this work, they predict that more
cores combined with a high percentage of parallel code in a
process, helps to reduce energy use.

Basmadjian and de Meer [6] worked in the design of a
software-based model of power consumption for multicores,
and they suggested that it is important to bear in mind that
the presence of more that one processing unit, has a direct
relation in power behavior, because working with multiple
cores implies computing sharing. They also mentioned that
a hardware-level measure is not trivial, when the presence
of a high quantity of circuits inside every multiprocessor is
considered.

Hill and Marty [11] studied Amdahl’s Law impact over
various processors chip distributions, using homogeneous and
heterogeneous dies. They suggested the idea of designing
a chip that gives priority to global chip performance over
individual core efficience. Even if a chip is composed of
several cores, some of these could work together in order to
offer a higher sequential performance; they concluded that an
asymmetric multicore has better performance results against a
symmetric multicore.

Sun and Chen [13] showed that multicore architectures
are not limited properly by Amdahl’s predictions, but a real
drawback would be the disparity of technology improvements
between CPU speed and memory latency. Thus, they conclude
that there are not significant limitations in scalability in number
of cores, but more research is needed to overcome memory
limitations.

About using benchmark, Oi and Niboshi [14] made a
study using two different CPUs and platforms. They did,
in particular, a power measure for individual instruction and
complete workload level. They studied the power behavior
of a server, varying the operating clock frequency. The other
interesting area that they tackled was performance, reflected
in parameters like transaction response time and so on.

Isidro, Meneses and Hernández [15] showed previously
to this paper that an energy-study design depends of many
more factors such as hardware components that participate
in application execution. They also proved that is possible to
model and predict energy usage for an application, knowing
the quantity of parallel and sequential code portions that a
program has. This paper is process-oriented, as opposed to
other studies which give more emphasis to hardware-oriented
strategies. Finally, in this paper, we explain that there exist
two different multicore architectures and three different energy
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usage models in multicore. Based on this affirmation, from
Section 3 to Section 6, mathematical models of each one are
explained.

III. ENERGY CONSUMPTION MODEL

In this paper the model of energy consumption for mul-
ticore processes is proposed. This model is an extension of
Amdahl’s law considering the types of processors for its energy
behavior. It is well known that the relationship between power
(Watts) and energy (Joules) is Joules = Watts × Seconds.
So, the idea is to have the power model and combine it with
Amdahl’s time model.

From [10][16], the speedup of a program to solve a
problem of size N over p processing units ψ(N, p) is divide
the time to solve the problem of size n in a processor T (N, 1),
between the time the same problem in p processors T (N, p).

ψ(N, p) =
T (N, 1)

T (N, p)
.

Such that, the time to solve a problem of size n by a processor,
T (N, 1) or simply T (N), can be split into the inherently
sequential part σ(N) and potentially parallel part ρ(N).

T (N, 1) = σ(N) + ρ(N). (1)

And, the time to solve a problem of size N over p processing
units is represented by

T (N, p) = σ(N) +
ρ(N)

p
+ κ(N, p), (2)

where κ(N, p) is the overhead obtained by dividing the poten-
tially parallel part in p processing units.

Consider a multiprocessor with n cores. Then CPU power
is represented by WCPU , and measured in Watts. Indepen-
dently of the power usage architecture of a processor, it is
possible to represent the entire power consumption by the
addition of three parameters: base power, power of active
cores, and idle power for all cores. Thus, the power of a
processor with N cores with active cores p is:

WCPU (N, p) = Wbase + pWactive + nWidle, (3)

where p < n. Depending on the distribution of the process
resources into a multiprocessor, these parameters could be
significant or not. For example, (4) represents power required
by a sequential program in a processor with n cores.

WCPU (N, 1) = Wbase +Wactive + nWidle. (4)

Now, having time and power expressions, it is possible
to model energy consumption in Joules(J). Depending if the
program is sequential (one thread), or parallel with p threads,
two cases are presented.

The energy required to solve a problem of size N on a
single core, J(N, 1), can be split into the inherently sequential
part Jσ(N, 1) and potentially parallel part Jρ(N, 1):

J(N, 1) = Jσ(N, 1) + Jρ(N, 1). (5)

The energy required for the sequential and parallel portions
are modeled with (6) and (7) respectively:

Jσ(N, 1) = Jσ(N) = σ(N) (Wbase +Wactive + nWidle) ,(6)
Jρ(N, 1) = Jρ(N) = ρ(N) (Wbase +Wactive + nWidle) ,(7)

Now, the energy required to solve a problem of size N on p
cores in a processor with n cores, where p < n, is represented
in (8):

J(N, p) = Jσ(N, 1) + Jρ(N, p) + Jκ(N, p). (8)

The sequential part is the same that (6). The energy required
to execute the parallel portion over p cores is:

Jρ(N, p) =
ρ(N)

p
(Wbase + pWactive + nWidle) . (9)

The next step for the model is to represent the energy
speedup, ψJ(N, p), that a parallel program will reach against
their sequential version.

ψJ(N, p) =
J(N, 1)

J(N, p)
=

Jσ(N) + Jρ(N)

Jσ(N) + Jρ(N, p) + Jκ(N, p)
(10)

We can consider three general scenarios for the power of
a multicore processor. Equation (3) is a general schema of
power consumption was presented, showing the three parts that
generally compose the entire CPU power consumption. Now,
specific formulae for each architecture will appear. The first
scenario consists in a machine model where all cores are turned
on, independently of the task size and number of threads used.
In this case, CPU power uses only a base power value, and idle
and active states are discarded, as show in (11). The second
scenario works with just the necessary cores that a process
needs, the rest of cores remain turned off. Hence, CPU power
usage is represented by p times the active power of a unitary
core, as show in (12). The last architecture is found when a
processor has baseline power and also an individual operation
power per core. In that case, the CPU power is the sum of
base power, idle power and active power, as show in (13).

WCPU = Wbase, (11)
WCPU = pWactive, (12)
WCPU = Wbase + pWactive + nWidle. (13)

A. Model applied to constant power usage multicore

The first scenario in our classification that we have ob-
served is any multicore architecture where energy consumption
is directly proportional to the number of cores that are turned
on (from one to n), i.e. when the power using the multicore
processor is constant. Its means that the WCPU is described
in (11)

J(N, 1)

J(N, p)
=

Jσ(N, 1) + Jρ(N, 1)

Jσ(N, 1) + Jρ(N, p) + Jκ(N, p)

≤ Jσ(N, 1) + Jρ(N, 1)

Jσ(N, 1) + Jρ(N, p)

≤ σ(N)Wc + ρ(N)Wc

σ(N)Wc + ρ(N)
p Wc

≤ Wc(σ(N) + ρ(N))

Wc(σ(N) + ρ(N)
p )

≤ σ(N) + ρ(N)

σ(N) + ρ(N)
p

(14)
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If we consider f as the percentage of inherently sequential
execution time [10][16]:

f =
σ(N)

σ(N) + ρ(N)
. (15)

And if we substitute (15) in (14), then we obtain

J(N, 1)

J(N, p)
≤ 1

f + 1−f
p

. (16)

We can see that the resulting inequality (16) is Amdahl’s Law.
Where f represents the percentage of inherently sequential
execution time [10][16].

For this case, the model of constant energy, and based
on (3), it is only necessary a base level power for each
core, since an idle power is non existent here. Equation
(13) describes adequately this multicore behavior. Figure 1
represents the speedup curves depending of the quantity of
sequential code f that a process contains. The graph illustrates
that speedup increases as a combination of high potential
parallel code and a large amount of cores. The acceleration
shown in Figure 1 for f < 0.2 means that you can have energy
savings when more cores are used in a multicore processor to
solve a parallel process.

Fig. 1: Energy speedup for a constant energy usage, depending
of the number of cores and the sequential portion f of the
process

B. Model applied to offlining multicore

In the second scenario, it is not considered the base power
or idle power, ie, power is proportional to the number of
active cores. This scenario is an offlining energy architecture.
If an offlining energy architecture is present in the energy
architecture, then only the active power for each used core
exists. The total power is modeled with (12), and then, the

speedup is given by:

J(N, 1)

J(N, p)
=

Jσ(N, 1) + Jρ(N, 1)

Jσ(N, 1) + Jρ(N, p) + Jκ(N, p)

≤ Jσ(N, 1) + Jρ(N, 1)

Jσ(N, 1) + Jρ(N, p)

≤ σ(N)Wcpu(1) + ρ(N)Wcpu(1)

σ(N)Wcpu(1) + ρ(N)
p Wcpu(p)

≤ σ(N)Wactive + ρ(N)Wactive

σ(N)Wactive + ρ(N)
p pWactive

≤ 1.

Hence, the behavior of this scenario tells us that the lower
bound for the energy used in a process with this kind of
multicore, corresponds always with the energy used by a
sequential execution, expressed in (18):

ψJ(N, p) =
J(N, 1)

J(N, p)
≤ 1, (17)

J(N, 1) ≤ J(N, p). (18)

Therefore, in this scenario no energy savings when parallel
programs running on multicore processors. However, having
a lower limit can be referenced to find the best energy
performance of a parallel program.

C. General case: Model applied to multicores with base and
individual core power

The third energy scenario corresponds to all multicores
when there exists a base power that feeds the entire chip, and
adds more power depending of the number of cores that a
process requests. Additional to these power values, each core
has an idle power that must be taken into account. Consider
that all cores are symmetric for this model.

J(N, 1)

J(N, p)
=

Jσ(N, 1) + Jρ(N, 1)

Jσ(N, 1) + Jρ(N, p) + Jκ(N, p)

≤ Jσ(N, 1) + Jρ(N, 1)

Jσ(N, 1) + Jρ(N, p)

≤ σ(N)Wcpu(1) + ρ(N)Wcpu(1)

σ(N)Wcpu(1) + ρ(N)
p Wcpu(p)

,

if WCPU (p) = Wbase + pWactive + nWidle,

ΨJ =
J(N, 1)

J(N, p)
≤ 1

f + (1− f)(
Wcpu(p)
pWcpu(1)

)
(19)

The energy speedup of this case depends on the power used
in the execution of sequential process and power used in the
execution of parallel processing, as show in (19).

Observe that depending on the values of power, the speedup
graphics present variations. We can predict in an example with
low values of base, idle and active power, a behavior like the
one shown in Figures 2 and 3:

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 6, 2015 

255 | P a g e
www.ijacsa.thesai.org 



Fig. 2: Energy speedup for the third scenario, with Wactive =
10w, Wbase = 1w, Widle = 1w and n from 0 to 12

Fig. 3: Energy speedup for the third scenario, with Wactive =
2w, Wbase = 40w, Widle = 2w and n from 0 to 12

IV. EXPERIMENTAL RESULTS

To test the model, the benchmark Linpack was used to
stress the multicore processor [17], [18]. Linpack is a mea-
sure of a computer’s floating point rate of execution, that
is determined by running a computer program that solves a
dense system of linear equations. Despite the existence of other
benchmarks that are focused on measuring diverse aspects of
interest in software such as peak-use, complexity, cost per
performance, among other aspects, Linpack was implemented
because the issue of interest in this research is to stress the
entire processor, including the floating-point unit.

In order to perform measurements, two devices were used
to make the respective tests, these devices are listed below:

• Tablet Samsung Galaxy Tab 2 10.1, version GT-
P5110, with Android OS 4.0 and 1.0 GHz OMAP4430
dual-core 45 nm ARM Cortex-A9.

This device correspond to mobile environment. However
the device has multiple cores and it is possible to make an
analysis based on execution time of an algorithm that could
employ a variable quantity of resources, running in a parallel or
a sequential mode. Also Linpack benchmark has been used in a
server environment, but with few changes, it was programmed
by us for a mobile scenario also.

Linpack in mobile version is able to execute vector-vector,
vector-matrix and matrix-matrix products, and was developed
under various multicore platforms. We made several imple-
mentations using POSIX threads and Android Java threads

to generate parallel code. In this work, Linpack benchmark
implementations were used over Android.

A. Working with Android

The tests were conducted in low-level Android libraries
written in C and Java libraries used. The purpose of these
comparisons is to detect the same energy behavior of the model
regardless of whether the program is working layer, that is, if
you work with programs that run directly on multicore or go
through a virtual machine.

Inside every Android device there is a special implemen-
tation of VM named Dalvik VM, whose goal is to run Java
applications on mobiles. The Dalvik VM is well suited for a
portable scenario, offering a reduced energy consumption and a
better performance, compared with Java Virtual Machine [19].
Other features of DVM that mobile devices are capable to use
are low-memory requirements and delegation of tasks for the
operating system, like memory and threads management.

However, we programmed Linpack, writing all the logic in
Java Native Code or pthreads as a JNI module1. Remember
that there are two C/C++ libraries, one of them is bionic,
present in Android based systems, while the other set of
functions is glibc, present in Linux based systems. The most
profound characteristics that have permitted the use of bionic
instead glibc in Android are the limited storage and a lower
CPU speed. Actually, bionic is a lightweight library that comes
with some bounds, compared with the GNU version.

Another issue to consider is that many operating systems
are ruled by policies named CPU frequency schedulers, that
scale the chip frequency up or down in order to save power.
Operating frequency can be: Scaled automatically depending
on the systems loads, chosen by the user, or managed in
response to ACPI events. This point is crucial in mobile
devices, because a daemon that puts our device in an idle
state our device if unused is convenient. Some devices can
even support more than one governor if it is permitted in a list
defined by the manufacturer. The common feature in mobile
governors is that usually they seek the least possible CPU
usage and, as a consequence, they try to sleep the processor
cores as much as possible.

Galaxy Tab 2 has implemented Interactive governor, other
available governors for most of the Android devices are:
OnDemand, Performance, Userspace, Powersave, Conserva-
tive, among others. The differences among them reside in
the time lapse that one keeps working the multicore, and the
performance requirements of the user or application executed.
In this paper, we did not consider the effects of each one of
these schedulers, and the experiments worked with the original
governor installed by default.

The results of the experiments are shown next, where
Linpack matrix products with one and two threads were
executed. This operation has an O(n3) complexity, enough to
obtain processor usage values near to 100% of processor use.

Both experiments were executed in the same platform. In
order to compare energy behavior between Android JNI and
pure Java, we prepared two applications that perform the same

1In this paper, we use JNI module as the code section that runs with pthreads
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function, but were developed differently. The first application
is an Android version that makes the heavier computing in a
native language, and the second version does the entire job
over Java.

Table I illustrates time and power required to execute
the entire program, and the quantity of resources used for
sequential and parallel sections of the program when it runs
over one thread. Table II shows the same information for a
program that runs in two parallel threads.

Problem size Sequential
section time

Parallel
section time

Total time Sequential
section
energy

Parallel
section
energy

Total en-
ergy

500x500 0.0173 10.649 10.66 0.067 6.207 6.275
1000x1000 0.0474 110.223 110.2 0.084 61.631 61.71
1500x1500 0.0848 427.094 427.1 0.078 236.12 236.2
2000x2000 0.1585 1065.523 1065.6 0.058 593.34 593.4

TABLE I: Time (in seconds) and energy (in Joules) values
obtained with single precision matrix-matrix product, using
JNI and Android with one thread.

Problem size Sequential
section time

Parallel
section time

Total time Sequential
section
energy

Parallel
section
energy

Total en-
ergy

500x500 0.0173 5.295 5.312 0.067 6.207 6.275
1000x1000 0.0484 55.737 55.78 0.085 61.854 61.94
1500x1500 0.0849 228.781 228.8 0.088 253.133 253.2
2000x2000 0.1298 611.147 611.27 0.144 670.552 670.6

TABLE II: Time (in seconds) and energy (in Joules) values
obtained with single precision matrix-matrix product, using
JNI and Android with two threads.

Table I and Table II show better performance when the
program has been built in parallel. On the other hand, energy
consumption has not the same effect, because the energy
required grows if the program is multithreading.

The second experiment executes the same matrix-matrix
algorithm but discarding the use of a native language. Hence,
we only use Java to generate all the workload.

Problem size Sequential
section time

Parallel
section time

Total time Sequential
section
energy

Parallel
section
energy

Total en-
ergy

500x500 0.032 15.968 16.0 0.015 7.386 7.401
1000x1000 0.058 193.782 193.8 0.024 83.175 83.2
1500x1500 0.234 751.166 751.4 0.126 315.274 315.4
2000x2000 0.406 2028.374 2028.8 0.191 851.409 851.6

TABLE III: Time (in seconds) and energy (in Joules) values
obtained with single precision matrix-matrix product, using
pure Java with one thread.

Table III shows the execution time and energy used for
matrix multiplication operations of different sizes, but using
only one thread for all the work. Table IV shows also the
time needed and energy consumed for the same program, but
executed with two threads instead.

From Table I and III, we can see that the time and
energy used to execute the task is lower for the JNI version
of the program. Also, the potentially parallel section of the

Problem size Sequential
section time

Parallel
section time

Total time Sequential
section
energy

Parallel
section
energy

Total en-
ergy

500x500 0.036 7.9824 8.018 0.016 7.501 7.517
1000x1000 0.056 98.04 98.09 0.022 86.048 86.07
1500x1500 0.201 400.959 401.1 0.137 337.563 337.7
2000x2000 0.407 1173.365 1173.7 0.203 962.097 962.3

TABLE IV: Time (in seconds) and energy (in Joules) values
obtained with single precision matrix-matrix product, using
pure Java with two threads.

multiplication matrix algorithm is by far, the heaviest section
of the program.

From Tables II and IV, one may verify that parallelism
gives benefits in both versions of the program, independently
of the mechanism used to generate the code. Also, energy
consumption for both programs is still lower when we use one
thread to execute the program. Finally, while the performance
gets speedups from 1.7x for 2000x2000 matrix product, to 2.0x
for 500x500 matrix, we observe an opposite effect in energy
consumption.

In Figure 4, observe that the least execution time is
obtained with parallel applications, regardless if we use Java
or JNI, and making a comparison among 4 program versions,
a JNI implementation with 2 threads results the fastest of all.

Fig. 4: Time values obtained with Linpack, using Java and JNI.

Figure 5 shows that both sequential programs (Java and
JNI) produce energy savings, compared with parallel versions
of the same program; this is in agreement with (18) about
offlining multicores. Finally, both Figures highlight the gap
between parallel and sequential results, which increases de-
pending on the size of the problem.

The tool used to measure energy consumption and execu-
tion time was an application called PowerTutor [20], which
estimates power usage by reading parameters available in
Linux-based systems, like Android. For example, knowing
the energy used by the processor is possible thanks to the
parameters /proc/stat and /proc/cpuinfo that reveal
the operating frequency of the chip and determine the power
used during a task execution. Furthermore, one advantage of
using this method to estimate power and energy usage resides
in the difficulty to obtain power readings using a power meter
in a very reduced environment. The other fact that supports this
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Fig. 5: Energy values obtained with Linpack, using Java and
JNI.

method for our experiments is the low error rate of PowerTutor,
ca. 6.27% [21].

V. CONCLUSION

One of the main contributions of this model, is the possibil-
ity of offering an explanation for the apparently contradictory
results reported by several authors, because while some of
them show energy savings using parallel programming in
multicore processor [9], [11], [12], there is work which shows
that energy consumption is punished by parallel techniques [8],
[15].

Energy consumption contradictions exist because those
models do not consider the existence of different power usage
scenarios in multicore processors. It is very likely that the
reason why authors finds energy savings with parallel appli-
cations is a processor that works with the first energy usage
scenario exposed, where the multicore has a constant energy
usage, independently of the number of turned on cores.

The model works for parallel programs running on multi-
core architectures. The model is tuned so that the number of
processes that are used are less than or equal to the number
of processor cores. However, with a number of threads higher
than the number of cores n, it behaves as if working with n
cores.

The model considers three main scenarios based on the
power using the muticore processors. In the first scenario,
where the processor uses the same power regardless of the
number of active cores, Amdahl’s law is obtained. Acceleration
performance is proportional to the acceleration in energy
consumption, which results in energy savings. In fact it is
proposed in [6] that there is an energy benefit when computing
resources are shared. In our model that behavior is reflected
in the first scenario, where a constant power feeds the entire
chip. This is to say that when a multicore processor has
energy savings with a multithreading program, it is because
all computing resources are shared in the processor.

In case where offlining scenario is present, we can observe
the existence of a lower bound of energy consumption ex-
plained in this work, present when the sequential version of a
program runs over the processor. When the number of threads
of a parallel program increases, a reduction in execution time

is obtained, while an increase in energy consumption will take
place at the same time. Such behavior is seen in Figures 4 and
5, where we show that the lower bound in energy consumption
corresponds to a totally sequential execution program. In this
scenario no energy savings when parallel programs running
on multicore processors. However, having a lower limit can
be referenced to find the best energy performance of a parallel
program.

In particular, in our experiment in android, the behavior
of the lower bound of energy of the sequential version re-
mains. With these experiments, we demonstrate that there is
a notable improvement using native methods over Java, in
performance and energy consumption, independently of the
number of threads occupied. So, we claim that reducing virtual
machine usage, gives a better performance in a high demanding
computing application within the mobile scenario. We can infer
that the behavior of power that has this processor is similar to
the offlining scenario.

The third scenario is the most general and energy savings
depend on the amount of resources that the multicore proces-
sor (19). The

Wcpu(p)

pWcpu(1)

ratio that appears in (19), and CPU power (3) are the keys
to our model to explain the behavior of parallel execution in
different architectures of multicore processors. For example
when Wcpu(p) = Wcpu(1), general model (19) exhibits the
behavior of the first scenario. And when Wbase + nWidle is
near to zero, general model (19) describes the behavior of the
second scenario.

As future work, we will develop measurements in other
computing environments, such as servers, laptops and desktop
computers to verify the pattern of energy consumption.
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