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Abstract—Multi-rate digital signal processing techniques have 

been developed in recent years for a wide range of applications, 

such as speech and image compression, statistical and adaptive 

signal processing and digital audio. Multi-rate statistical and 

adaptive signal processing methods provide solution to original 

signal reconstruction, using observation signals sampled at 

different rates. In this study, a signal reconstruction process by 

using the observation signals which are sampled at different 

sampling rates is presented. The results are compared with the 

least mean squares (LMS) and the normalized least mean 

squares (NLMS) methods. As the results indicate, the signal 

estimation obtained is much more efficient than the previous 

studies. Designed multi-rate scheme provides significant 

advantages in terms of error and estimation accuracy. 
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I. INTRODUCTION 

Multi-rate signal processing is an integral part of the signal 
processing technique and has been developing rapidly during 
the last decade. Multi-rate signal processing methods focus on 
systems which include signals that are sampled at different 
rates. In many communication and signal processing systems 
there are two main fields of study: signals sampled at different 
rates and signals with variable sampling rates. Multi-rate signal 
processing techniques solve these problems efficiently. 
Recently multi-rate signal processing techniques are used in 
image and speech compression, digital audio coding, statistical 
and adaptive signal processing, discrete-time multi-
dimensional signal processing, high-resolution image 
acquisition. In particular, when the developments in the last 
decade are examined, the study of [1] is highlighted.  The 
authors utilize two signals with one having twice the sampling 
rate of the other to detect the coefficients of the random 
process. They show that the optimal filter is a linear filter 
whose coefficients change periodically for this particular 
problem. The authors in [2] study multi-rate signal processing 
and analyze the fundamental themes of cyclic signal processing 
systems. In [3], information measure is determined for multi-
rate linear systems. [4] investigates stationary concept under 
variable rates and multi-rate Wiener filtering. Random signals 
with different sampling rates which involve observations taken 
from several observers are estimated in [5]. The convergence 
analyses of the multi-rate systems are presented in [6]. It is 
observed that if significant increase in rate does not occur than 
the convergence rate can increase. When the multi-rate 

observation sequences are used, an adaptive filtering is 
achieved by LMS algorithm in [7]. 

Authors in [8] found out a solution to the problem of 
reconstructing a high resolution signal from two low-rate 
sensors with time delay by using multi-rate measurements. An 
adaptive filtering is achieved by the help of multi-rate 
observations and LMS algorithm in [9]. Also multi-rate signal 
modeling for target recognition in radar monitor is investigated 
in [10]. Optimum filtering problem for multi channels is solved 
in [11] for the first time. 

According to [12], if the real signal does not exist, the low 
resolution observations of the signal can be used for estimating 
the power spectral density of the stationary random signal. In 
2005, multi rate sensor arrays are also developed in [13]. High 
sample rate signal reconstruction by the use of statistical 
techniques in the presence of low rate sampled noise is 
investigated in [14]. The authors in [15], outline multi-rate 
filters and study progressive sampling rate transformations and 
multi-level filtering. Different possibilities of down-sampling 
and up-sampling are investigated in [16]. They also obtain 
interesting graphical results. 

In 2008, authors develop an algorithm which updates 
adaptive filter coefficients faster in [17]. Their algorithm 
arranges updating speed automatically and relates non-linear 
relevance between minimum error and updating speed. The 
output feedback control of the multi-rate sampled systems with 
output estimator is studied in [18]. An approach which uses 
suitable low resolution samples to estimate power spectral 
density of wide sense stationary random signal is developed in 
[19]. However, in literature combination of adaptive signal 
processing methods with multi-rate schemes is an open issue. 
In this study, I propose to combine adaptive signal processing 
methods with multi-rate signal processing techniques to 
provide more efficient signal reconstruction. My approach 
provides lower mean-square error (MSE) and better estimation 
performance. 

The rest of the paper is organized as follows. Section 2 
presents and summarizes multi-rate systems. The multi-rate 
LMS algorithm and multi-rate NLMS is presented in Section 3 
and 4 respectively. Section 5 describes the proposed estimation 
methods for different input signals. The proposed system and 
the problem statement are presented in Section 6. The 
simulation parameters and simulation environment are 
described in Section 7. Finally, Section 8 discusses the results 
and concludes the article. 
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II. MULTI-RATE SYSTEMS 

The observation signals are sampled at different rates in 
some signal processing applications. These signals should be 
processed together for detection, prediction and classification. 
To solve the problems of multi-rate systems, the single rate 
signal theory should be extended to multi-rate signal theory. 
This theory should be implemented to single-channel, single-
rate or multi-channel, multi-rate problems. In this section, the 
theory which is developed for multi-rate systems is explained 
and the basic processes in multi-rate systems are presented. 

The changing of the sampling frequency caused problems 
in many digital signal processing systems. For example, CD 
players, digital audio tapes and digital broadcasting have 
different sampling frequencies. Especially, sampling rates of 
many voice signals should be convertible to each other. Also in 
some systems, the discrete-time signals with different sampling 
rates should be made compatible with each other. Separation of 
wide-band digital signal for transmitting in narrow-band 
channels is an example for multi-rate systems. 

The method of multi-rate signal processing includes 
decimation and inter leaver. Decimation which includes 
filtering and down-sampling decreases sampling rate of the 
signal. Inter leaver which includes up-sampling and filtering 
increases sampling rate of the signal. There is also 
transformation of sampling rate process which includes 
cascade connection of decimation and inter leaver. 

For optimal filtering, the estimated signal and observed 
signal are considered wide-sense-stationary. The sampling 
rates are equal for both signals and the filter is linear time-
invariant filter (LTI). LTI filter preserves stationarity. However 
for multi-rate systems, the situation is different. The periodicity 
is discussed in multi-rate systems because down and up 
sampling processes vary with time and they do not preserve 
stationarity. So wide-sense-stationarity becomes crucial. 

III. MULTI-RATE LEAST MEAN SQUARES (LMS) 

ALGORITHM 

The least mean square optimum filtering is related to 
observed data. Desired data sequence and observed data 
sequence are measured, saved and used for designing the filter 
in this method. The criterion in least mean square (LMS) 
algorithm is to minimize the sum of the squares of error 
function. Multi-rate least mean square filter is designed in [7]. 
By this filter, using two observation sequences provide lower 
mean square error than using one high-rated or low-rated 
observation sequences. 

Multi-rate LMS algorithm is designed for several input 
signals with different sampling rates. The equations are more 
complex than traditional LMS algorithm. (1) and (2) show the 
high-rated observation vector and low-rated observation vector 
respectively. 

 x[n] x[n] x[n-1] … x[n-(P-1)]
T
 

 y[m] y[m] y[m-1] … y[m-(Q-1)]
T
 

The filter coefficients are periodic and coefficient vectors 
are updated in each iteration in multi-rate LMS algorithm. The 
filter coefficient updates is expressed in (3) and (4). 

 hk[m+1]hk[m] +μxe[n]x[n] 

 gk[m+1]gk[m] +μye[n]y[m] 

IV. MULTI-RATE NORMALIZED LEAST MEAN SQUARES 

(NLMS) ALGORITHM 

Multi-rate NLMS algorithm is designed for several input 
signals with different sampling rates. The equations are more 
complex than traditional NLMS algorithm. (5) and (6) show 
the high-rated observation vector and low-rated observation 
vector respectively. 

 x[n] x[n] x[n-1] … x[n-(P-1)]
T
 

 y[m] y[m] y[m-1] … y[m-(Q-1)]
T
 

The filter coefficients are periodic and coefficient vectors 
are updated in each iteration in multi-rate NLMS algorithm. 
The filter coefficient updates is expressed in (7) and (8). Note 
that in here α>0 coefficient is used for preventing divide by 
zero error. 
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V. PROPOSED ESTIMATION METHODS FOR INPUT SIGNALS 

In this study, the input signals are derived from first-order 
auto regressive process. It can be defined as in (9). 

 x[n]c+αx[n-1] +u[n] 

In the above equation, x[n] shows the value at n th 
moment, x[n-1] corresponds to the value at a previous moment, 
c is a constant, α is used for model parameter and u[n]  

 
corresponds to White Gaussian Noise. The u[n] is assumed as 
zero mean and having σ

2
u[n] variance. For |α|<1 the process 

becomes wide-sense stationary (WSS). If α=1, x[n] has infinite 
variance and becomes not WSS. For c=0 the process becomes 
zero mean process. The signal-to-noise ratio can be defined as 
in (10). 

 noise

signal

P

P
SNR             (10) 

SNR defines the ratio between signal and noise.  In here, 
Psignal is the average power of the signal. Both signal and noise 
power should be measured at the same points in the system. 
Traditionally in many applications, SNR is used in logarithmic 
decibel scale. It can be defined as in (11). 
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VI. PROPOSED SYSTEM 

The proposed system is shown in Fig. 1. The random input 
signal is derived from first order autoregressive process. Then 
this input signal is passed through two different filters which 
are a low pass filter (LPF) and a band pass filter (BPF). The 
obtained signals are passed through a down sampler after the 
filtering process. The measurement noise is added to the 
observation signals and finally this noisy signal is passed 
through up sampler. After these processes, the observation 
signals are compared with input signal by the use of LMS and 
NLMS algorithms. The mean square error (MSE) is minimized 
and thus the reconstruction of the input signal is completed. 

The second input signal is a stereo voice signal. This signal 
is recorded along 2.02 seconds, it is sampled at 22.05 kHz 
sampling frequency. Stereo signal has two channels and the 
component of one of the channels is taken as input signal. This 
voice signal approximately has 100,000 components, thus 
instead of processing single bit sequence, the data is processed 
in terms of data blocks. Then the above mentioned processes 
are applied to the voice signal and the input signal 
reconstruction for this signal is obtained. 

 
Fig. 1. Multi-Rate Estimator System 

VII. SIMULATION PARAMETERS 

The random signal is obtained from the first order auto 
regressive process which is given below. 

 x[n]0.97x[n-1] +u[n] 

Here, u[n] is selected as a white noise signal which has 
zero mean and has a variance of 0.0591. The input signal is 
selected with zero mean and unit variance. To provide 10 dB 
SNR, the noise variance is taken 0.1 since the input signal has 
unit variance. In simulations, the 20 dB SNR is also taken into 
consideration and results are also obtained for this value. Note 
that, to achieve 20 dB SNR, the noise variance is taken 0.01. 
The second input signal can be seen in Fig. 2.  

According to the calculations in MATLAB, the variance of 
voice signal is 0.0416. Thus, it is determined that the noise 
variance should be 0.00416 to achieve 10 dB SNR. 

 
Fig. 2. Input Stereo Voice Signal 

Then the filtering process is realized by using below filters 
(13) and (14) which show the coefficients of LPF and BPF 
respectively. 

 hLPF[0.2357  0.9428  0.2357] 

 hBPF[0.4950 - 0.8098 - 0.3148] 

In here filtering causes bandwidth restriction. Using two 
different filters ensure diversity.  As shown in Fig. 3, X2[n] 
shows the observation signal which is output of LPF and X3[n]   
shows the observation signal which is output of BPF. These 
signals are passed through down samplers which have orders 2   
and 3 respectively. Then measurement noise is added to these 
signals. Finally, to obtain estimator signals, up sampling 
process is implemented. Note that, the main goal of down 
sampling is limiting sampling frequency. Up sampling also 
provides index mapping in simulations. In adaptive filtering 
scheme, the estimator signals are multiplied by filter 
coefficients in terms of sixtet blocks because the least common 
multiple of down sampling ratio is equal to six. In both LMS 
and NLMS algorithms, the initial values of filter coefficients 
are chosen zero at the beginning of the simulations. To provide 
best estimation, the LMS and NLMS coefficients should vary 
periodically in time. The estimation error is calculated using 
(15). 

 e[n]x[n]-xe[n] 

The adaptive filter coefficients of LMS and NLMS 
algorithms are updated using step-size parameter μ for each 
step. The step-size parameter is chosen experimentally in 
algorithms. Hundred iterations are realized to obtain MSE 
alteration graphic. Note that, for random input signal, in each 
iteration, the input signal is generated and error between 
generated signal and estimated signal is calculated. Finally the 
sum of these error values is divided by iteration number to 
calculate MSE. 
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VIII. RESULTS AND DISCUSSION 

The simulations are realized by using MATLAB.  Results 
are obtained for two different input signals by adding different 
measurement noises. 

 
Fig. 3. The MSE of LMS algorithm in SNR=20 dB for the random input 

signal 

The convergence of LMS algorithm is obtained 
approximately at iteration 200 as seen from figure 3. At the 
minimum MSE value, stable learning curve can be obtained. 
This figure is attained when step size parameter μ=0.005.   To 
prevent instability, the step-size parameter (SSP) is chosen big 
enough. If SSP becomes very small, each step causes small 
changes on coefficient vector thus algorithm will work slower. 
If we choose SSP as very high, then the algorithm may become 
instable. 

Fig. 4 shows the success of the prediction. The estimated 
signal follows the original signal as close as possible. In here, 
down-sampling prevents full prediction because after down-
sampling, the number of samples of data sequence decreases, 
in other words down-sampling causes data loss. Additive noise 
also affects the performance of prediction negatively. 

 

Fig. 4. The LMS estimation graph of random input signal at SNR=20 dB 

The MSE and estimation performance results of the random 
input signal under NLMS algorithm for the same parameters 
are shown in Fig. 5 and 6 respectively. 

 
Fig. 5. The MSE of NLMS algorithm in SNR=20 dB for the random input 

signal 

The convergence of NLMS algorithm is obtained 
approximately at iteration 100 as seen from Fig. 5. At the 
minimum MSE value, stable learning curve can be obtained. 
This figure is attained when step size parameter μ=0.5. 

Fig. 6 shows the success of the prediction. The estimated 
signal follows the original signal much closer. Also in here, 
down-sampling prevents full prediction since after down-
sampling, the number of samples of data sequence decreases, 
in other words down-sampling causes data loss. Additive noise 
also affects negatively the performance of prediction. 

 
Fig. 6. The NLMS estimation graph of random input signal at SNR=20 dB 

Fig. 7 shows the joint MSE results of LMS and NLMS 
algorithms for the random input signal. It is clearly seen from 
the figure, NLMS converges faster than the LMS algorithm. 
NLMS has lower MSE than LMS. The main reason for this 
achievement is that LMS has slow convergence when eigen 
value spread of input signal is fast. NLMS solves the slow 
convergence problem of LMS because in NLMS the value of 
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SSP is normalized by the input signal power. Consequently, the 
dependence of convergence on the input signal is removed in 
NLMS algorithm and thus NLMS is superior than LMS in 
terms of convergence rate and MSE. 

 
Fig. 7. The Comparison of LMS and NLMS algorithm in SNR=20 dB for 

the random input signal 

In addition, when we increase the SNR value to 10 dB, the 
MSE value increases and the prediction performance decreases 
for both LMS and NLMS algorithms. The second input signal 
is stereo voice signal. The LMS and NLMS results are obtained 
separately. At first, voice signal is turned into single data 
sequence and it is applied as input to the system. Then the 
voice signal is separated into data blocks to prevent instability 
since data size is very high. 

The results of MSE and estimation performance of LMS 
algorithm for complete data sequence of voice signal is shown 
in Fig. 8. 

 
Fig. 8. The LMS estimation graph of voice signal at SNR=10 dB 

Fig. 9 shows the results of NLMS algorithm for same voice 
signal. When we examine Fig. 10 and Fig. 11, it is clearly 
observed that NLMS outperforms LMS in terms of MSE and 
estimation performance for voice signal. In MSE graphics, first 
values are very high because at the beginning, the data is 
unstable. 

 

Fig. 9. The NLMS estimation graph of voice signal at SNR=10 dB 

To achieve more stable MSE, we should split data into 
blocks. Data partition also provides easier data processing. 

 
Fig. 10. The MSE of LMS algorithm in SNR=10 dB for voice signal (When 

data partition exists) 

Approximately after iteration 100, convergence is achieved 
which is clearly seen from Fig. 10. This result is obtained when 
the step size parameter μ=0.13 which is chosen experimentally 
to prevent instability. 

Fig. 11 shows the LMS estimation performance of 
partitoned voice signal. Estimation performance increases 
when we use data partition. The performance comparison of 
LMS and NLMS algorithms in terms of MSE for voice signal 
is showed in Fig. 12. 

It is clearly seen from the figure that, NLMS converges 
faster than LMS. NLMS has lower MSE than LMS. The main 
reason for this success is that LMS has slow convergence when 
eigen value spread of input signal is fast. NLMS solves the 
slow convergence problem of LMS because in NLMS the 
value of SSP is normalized by input signal power. 
Consequently, the dependence of convergence on the input 
signal is removed in NLMS algorithm and NLMS is superior 
than LMS in terms of convergence rate and MSE. 
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Fig. 11. The LMS estimation graphic of voice signal at SNR=10 dB (When 

data partition exists) 

 
Fig. 12. The MSE of LMS and NLMS algorithms in SNR=10 dB for voice 

signal (When data partition exists) 

IX. CONCLUSIONS 

In this study, the most popular adaptive filtering techniques 
LMS and NLMS are explained. The adaptation of these 
algorithms to multi-rate systems is presented. The simulation 
results are obtained for two different input signals. The first 
input signal is obtained from a first order autoregressive 
process. The second input signal is a voice signal and its 
simulations are performed for full data sequence and for data 
sequence partition. Simulations are realized in MATLAB and 
detailed graphical results are also obtained and presented. The 
results are discussed for different cases. According to the 
results, NLMS outperforms LMS in terms of MSE and 
estimation performance for all scenarios. 

There are many research topics and open issues in 
statistical signal processing field. For future work, other 
methods or algorithms can be explored to achieve better 
filtering and estimation. Also, my future scope is to implement 
Recursive Least Squares (RLS) method to the same problem 
and to compare performance of RLS to that of  LMS and 
NLMS in multi-rate fashion. In addition, the non-integer 

sampling rates can be used for down sampling and up sampling 
processes for performance comparisons. These approaches can 
also be applied for two dimensional signal processing field. 
Finally, nowadays multi-rate filtering is applied to finite-
impulse-response (FIR) filters, it can be also implemented to 
infinite-impulse-response (IIR) filters and this is also an open 
issue in multi rate signal processing literature. 
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