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Abstract—We present an approach for verifying Statecharts
including infinite data spaces. We devise a technique for checking
that a formula of the universal fragment of CTL is satisfied by
a specification written as a Statechart. The approach is based
on a property-preserving abstraction technique that additionally
preserves structure. It is prototypically implemented in a logic-
based framework using a theorem prover and a model checker.
This paper reports on the following results. (1) We present
a proof infra-structure for Statecharts in the theorem prover
Isabelle/HOL, which constitutes a basis for defining a mechanised
data abstraction process. The formalisation is based on Hierar-
chical Automata (HA) which allow a structural decomposition of
Statecharts into Sequential Automata. (2) Based on this theory
we introduce a data abstraction technique, which can be used to
abstract the data space of a HA for a given abstraction function.
The technique is based on constructing over-approximations.
It is structure-preserving and is designed in a compositional
way. (3) For reasons of practicability, we finally present two
tactics supporting the abstraction that we have implemented in
Isabelle/HOL. To make proofs more efficient, these tactics use the
model checker SMV checking abstract models automatically.

Keywords—Statecharts; CTL; Data Abstraction; Model Check-
ing; Theorem Proving

I. INTRODUCTION

The Statecharts formalism [1] combines a state based
automata formalism with intuitive behaviour and hierarchical
and parallel state composition. In addition, each state of a state
chart contains data for the modeling of real world systems.
This data can be naturally changed in transitions. Thus, the
Statecharts formalism supports a concise and natural presen-
tation of large models of reactive and embedded systems. It
meets high acceptance in industry in particular compared to
other formal methods like Z [2] or CSP [3]. The benefits of
structured state and data contained in a Statechart come at a
price. The validation of properties of Statecharts is a complex
endeavor. The hierarchical state structure produces intricate
semantic decision problems if several state transitions are
enabled simultaneously at different hierarchical levels and in
several parallel states. Moreover, the presence of data in states
inherits a classical problem from concurrent programming:
data races, i.e. successor states are ambiguous if parallel writes
happen on one state variable since it is unclear which write
occurs before the other.

These issues raised by the complexity of the formalism
make a mechanical support for the development of Statecharts
models imperative. A natural choice for verification tools for
Statecharts are model checker [4] since they implicitly address
state based models of transition systems. Frameworks for

Fig. 1: Verification of Statecharts including infinite data spaces

model checking Statecharts exist, e.g. [5], but from our point
of view they do not support the modeling of Statecharts well
enough. One apparent reason is that many of these approaches
omit the data contained in Statecharts to avoid the well-
known state-explosion problem: since data domains may be
infinite, e.g. integers, the state graph becomes infinite and
model checking fails because it attempts a complete traversal.
We propose a framework addressing this issue in our work that
uses abstraction techniques making model checking applicable.

However from the point of view of a modeler, the use of
Statecharts poses more pressing practical problems. Abstract-
ing data from a Statechart adds behaviour since it omits detail
about concrete decisions between transitions. This behaviour
created in such an overapproximation is called spurious be-
haviour. It is necessary to include in order to produce faithful
abstractions that allow checking the abstraction reliably while
producing check results that are valid for the concrete model.
The concrete models are flattened in this abstraction process
and become unreadable for the model designer who does
not recognise the original data conditions. For example, if a
counterexample is found that is based on spurious behaviour,
this is hard to understand for the user since it is behaviour that
has not been there in the concrete model.

We counter this problem by proposing abstractions that are
again Statecharts with readable data conditions (for example,
as conditions on transitions). To retain the convenience of
model checking while still supporting a realistic Statecharts
formalism that contains real data, we employ Higher Order
Logic theorem proving with Isabelle/HOL [6] in combination
with model checking. As illustrated in Fig. 1, we input a full
data containing Statechart and a property to verify on this chart
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into Isabelle (1). We then apply data abstraction to enable a
representation in the model checker SMV (2). Applying SMV
we either find a counterexample to the property to be verified
– in which case we test for spurious behaviour (4) – or SMV
accepts the model and property – which means the original
Statechart has the required property since we use a property
preserving abstraction (3).

The additional use of a Statecharts formalisation in
Isabelle/HOL provides a rigorous quality assurance: no hand-
made abstraction – commonly used when model checking
Statecharts – can endanger soundness of verification results.
Moreover, we conservatively embed the theory of abstraction
itself in Isabelle/HOL whereby the actual abstraction process
guarantees property preservation. It is not practical (though
perfectly possible) to abstract a data containing Statechart in
Isabelle/HOL using the logical theory. Therefore, we offer
additional tactic support for abstraction that automatically
produces – given suitable abstraction predicates – the abstract
Statechart’s representation plus the proof obligations that must
be provided by the user to guarantee wellformedness (naturally
being assisted by Isabelle’s powerful automated proof proce-
dures).

We use a description of Statecharts by Hierarchical Au-
tomata (HA) an established representation of Statecharts [7],
[5]. HA enable the structural decomposition of Statecharts
into so-called Sequential Automata (SA). This structural de-
composition makes efficient and concise proofs possible but
also supports data modelling. The data modelling is the cen-
tral aspect of our proposed framework. The accompanying
abstraction needs to be structure-preserving – i.e. it must
preserve the Statechart’s structure. This implies that the data
abstraction must be respected as well by the abstraction of the
Statechart. Abstraction has thus a compositional aspect: inde-
pendent abstraction of the single SAs must be transferable to
the abstraction of the HA containing these SAs. For example,
the correctness condition AbsCorrect (see Definition 3.1
in Sec. III-D2) is a prerequisite for application of the model
checking abstraction.

In this paper, after a detailed description of related work,
we first present a motivating example of a safety injection
system for nuclear power plants. We then give an overview
of the formalisation of the abstract syntax and semantics of
Statecharts in Isabelle/HOL (Sec. II). We next introduce in de-
tail the formalisation of the abstraction theory in Isabelle/HOL
(Sec. III). The abstraction theory is naturally divided in two
parts: the abstraction process for a single SA (Sec. III-B) and
how it is composed into an abstraction for the composite HA
(Sec. III-D). Finally, we present the practical working with
the framework for model checking Statecharts (Sec. IV). We
introduce the tactic support and illustrate it on the running
example. The Isabelle/HOL formalisation is part of the Archive
of Formal Proof [8] and can be downloaded from there. The
paper closes with conclusions and ideas for future work in
Sec. V.

A. Related Work

The first formalisation of Statecharts in a theorem prover
has been provided, to our knowledge, by Nancy Day in
1993 [9]. In this Master’s project, she translated Statemate
Statecharts into the input language of the HOL-Voss tool [10].
The HOL-Voss system is an integrated tool consisting of the

theorem prover HOL [11] and a symbolic model checker.
The focus of Day’s work is not so much on the efficient
formalisation within the HOL-system; rather, she aims at
providing a front end for the verification of CTL formulas
using the model checker that has been integrated into HOL-
Voss. Although this formalisation of Statecharts does not use
HA, there is a strong connection to our work. In particular,
Day’s approach supports the handling of data variables. The
resulting effects – for example racing – are also touched
on in the formalisation. However, the formalisation of data
spaces has been addressed much more thoroughly in our work.
By contrast, the work of Nancy Day contains no description
of how temporal formula can be interpreted semantically
with respect to a Statecharts specification. Day also fails to
address data-abstraction concepts for Statecharts, for which our
formalisation paves the way.

We are also familiar with a work on the formalisation
of Statemate Statecharts in the proof assistant KIV [12].
KIV (Karlsruhe Interactive Verifier) [13] is an interactive theo-
rem prover based on the Logic of Computable Functions (LCF)
[14]. The authors define a sequent calculus for the verification
of Statecharts specifications with infinite data spaces. However,
unlike our work, the data spaces are described by a separate
algebraic specification. Moreover, the approach differs in that
an asynchronous macro-step semantics has been formalised for
Statecharts, which differs from the synchronous step semantics
used in our work.

Formalisations for UML Statecharts also exist for the
theorem prover PVS [15]. In 2000, for example, Issa Traore
presented a formalisation for UML Statecharts that was ex-
pressed in the input language of PVS [16]. In particular,
he documents in his work how UML Statecharts can be
verified using a model checker available in PVS. Based on
this work, Demissie B. Aredo developed a similar – but more
elaborated – formalisation [17]. In contrast to our work, this
is a formalisation of UML Statecharts, which is not based on
HA.

Concerning the model checking of Statecharts, we have to
distinguish existing approaches according to which Statecharts
semantics they use. We focus here on related work mostly with
respect to the Statemate-Statecharts – for detailed information
on how it relates to verification of UML state machines see
[18]. However we discuss one recent work that addresses
model checking of UML models, since it is fairly close to
our work [19]. The authors present a CEGAR-like method for
abstraction and refinement of behavioural UML systems. The
behaviour of a system is there represented by the communi-
cation of a finite number of UML state machines. To verify
properties effectively and automatically they use a so called
model-to-model transformation, which means that - simliar to
our approach - the result of abstractions and refinements can
be again an UML model. However the main difference to our
work is that they abstract and refine the interfaces of the state
machines only, which does not work for Statemate-Statecharts.
Further they use a “don’t-know” value for data variables, which
changes the semantics of UML state machines slightly.

Our approach to the model checking of Statecharts is much
in the tradition of the work of Erich Mikk. He proposes in
his work a semantics for Statecharts based on Extended HA
[5] and uses this as a basis for model checking. He defines
and implements one translation to the input language of the
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CTL model checker SMV and a second one to the input
language Promela [20] of the LTL model checker SPIN [21]. In
contrast to our work, Mikk’s work does not address Statecharts
containing data.

Jan-Juan Hiemer suggests in his dissertation [22] to verify
Statemate-Statecharts with the CSP model checker FDR [3].
In a work by Bill Roscoe and Zhenzhong Wu, the translation
of Statemate-Statecharts to CSP is optimised – amongst other
things – by a simple treatment of data [23]. However, this
approach is restricted to finite data domains. Conflicts caused
by concurrent write to the data space is represented by a special
error-event unlike our solution with an interleaving semantics.

Udo Brockmeyer and Gunnar Wittich use a symbolic model
checker produced by Siemens for the verification of Statemate
models [24], [25]. They emphasise in their work the treatment
of time-constraints specified in Timed CTL – an extension of
CTL by discrete time. They do not support data spaces.

B. Relation to our Previous Work

Some parts of this journal paper have been published at
two conferences [26], [27] and a workshop [28]. However,
apart from the doctoral dissertation [18], which is written in
German, there is no publication that presents these parts in an
overall context. Furthermore, in this paper we give not only
an idea on how single items can be related, we revisit our
previous work and present our improved concepts based on a
reworked formalisation [8].

A first formalisation of Statecharts by HA was presented in
[26] and relates to Sec. II. Note, that this formalisation includes
no data spaces. Further, this conference paper is focused on the
comparison between the traditional set-based encoding of HA
and an alternative optimised variant which exploits the tree-
like structure of HA using Isabelle’s datatypes and primitive
recursive functions. This optimised version should only be
used if the main focus is on proving Statecharts properties
completely within Isabelle (and not outsourcing them to other
automated tools). For practical applications of Statecharts we
do not recommend this.

A first idea how to formalise data spaces of HAs was
given in [28]. This workshop paper deals with the challenge
how to formalise a partial update on a single data partition
without influencing the rest of the data space. This is realised
by so called generic update function that abstract over other
partitions using a lambda abstraction. However from today’s
perspective we believe that this encoding is too technical and
is solved more elegantly by a special type for partial update-
functions [8]. Note, that only this new formalisation allows us
to define the properties of an abstraction function in precise
manner (cf. Definition 3.1), which we did not achieve before.

Finally a first version of our abstraction theory on HA is
sketched in [27]. This paper introduces the so called abstraction
operators to build a structure- and property-preserving abstrac-
tion of an HA inside of Isabelle. In this journal paper we omit
the detailed description of the operators. Instead, for practical
reasons we focus on constructing the abstraction outside of
Isabelle using more efficient algorithms, which is only very
roughly described in [27].

C. Example Specification: Safety Injection System

In this section we introduce a short example specification
to model the behaviour of a safety-critical system. We consider

Fig. 2: Construction of a cooling system in a nuclear power
plant

a reactive cooling system, which can be installed in a nuclear
power plant. In the following sections we reuse this example
to illustrate the verification technique.

Fig. 2 shows the construction of the system: on the upper
left is the global system operator capable of starting or
blocking the system. The control unit, depicted below, once
started, observes the actual cooling loop on the right via four
sensors and can manipulate it via two valves. Depending on
the pressure in the loop of the cooling system the valves have
to be opened by the control software. The sensors Lower and
Higher detect big changes in pressure whereas LowerS and
HigherS detect small changes. For example, in case that the
water pressure is falling under a limit (TooLow), the control
software must generate an event (Inject) that causes the upper
valve of Fig. 2 to open. Thereby, new cooling water comes into
the loop. Similarly, the lower valve of Fig. 2 must be activated
by an event (Damp) if overpressure occurs.

A first description of this application was published by
David L. Parnas [29]. The functionality there is restricted to
injecting cooling fluid into the loop. After some years, this
description was rendered more precise in an SCR requirements
specification [30]. Furthermore, Bultan et al. have extended
the example by reducing steam in the case of overpressure
[31]. Based on this work, we have developed a Statecharts
specification as depicted in Fig. 3. On the top level, the
specification consists of three states, which are composed in
parallel. In the following, we describe the behaviour for each
of these parallel states. The specification contains a data space,
which consists of the single integer variable pressure.

The controller for both valves is represented by State
DeviceCTRL. Initially, the system is blocked. Event Start indi-
cates that the controller has to be activated. At any time, this
activation can be canceled by Event Block. Initially, the system
is situated in Substate Idle. Depending on the activated substate
in State PressureMode, the contoller changes into Substate
Damp or Substate Safety-Injection. If the water pressure is
in a regular segment, we still are in State Idle. If the event
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Fig. 3: Statecharts Specification of a Safety Injection System

DampOff occurs, State Damp must be left. Similarly, State
Safety-Injection must be left, if Event InjOff occurs.

In the middle of Fig. 3, we model State PressureMode.
Depending on the constants permit and low, we determine
whether the value of the data variable pressure is in the regular
segment (Permitted) or in a critical segment. Critical segments
can be an overpressure (TooHigh) or a too low pressure
(TooLow). Whenever a critical situation can be averted, the
value of pressure returns to the regular segment. This effect
comes along with generating Event DampOff or Event InjOff
in order to re-close the appropriate valves.

Finally we describe State Measuring, which is depicted
at the bottom of Fig. 3. In this state we determine the
value of the data variable pressure. First, we consider the
measuring procedure for the regular mode. This means that
the data variable is in the regular segment and State Normal
is activated. The pressure change is discovered by sensors
of the environment. If the pressure has increased, Event
higher is generated by an appropriate sensor. Consequently, the

Fig. 4: Hierarchical Automaton of the Safety Injection System

data variable must be changed by the operator INC . Similar
Event lower is generated for a decreased pressure and the
variable must be changed by the operator DEC . Whenever
pressure values outside of the regular segment are reached,
the measuring becomes more sensitive. This is modeled by
the state transition between State Normal and State Sensitive.
In contrast to the measuring procedure of the regular mode,
the pressure change is discovered by more sensitive sensors.
In the model, this is reflected by the Event highers and the
Event lowers. Consequently the data variable must be changed
by the operators INCs and DECs .

II. FORMALISING STATECHARTS IN ISABELLE/HOL

A Statecharts specification can be adequately represented
by a Hierarchical Automaton1 which consists of a finite set
of Sequential Automata. The Hierarchical Automaton of the
safety injection system in Fig. 4 gives a basic impression of
this representation. We have thus decomposed the Statecharts
into five Sequential Automata, which are connected by arrows
in order to represent the hierarchy of the specification. In
this section, we describe a formalisation of Statecharts using
Hierarchical Automata in Isabelle/HOL.

We begin by introducing the definition of Hierarchical
Automata. To this end, we provide a type for the description
of Hierarchical Automata by building the type abstraction
over a set. In Definition 2.1, we represent the composition
of Sequential Automata as a partial function by the type
constructor 7→. Sequential Automata are basically labelled
transition systems; to keep the exposition concise we omit its
definition here; for the full definitions see [8].

1Note, we support a subset of Statechart’s syntax only, e.g. an inter-
level transition cannot be described by an ordinary HA and would need the
expressive power of EHA (Extended Hierarchical Automata). However, Mikk
et. al have shown[7], [5] that such an extension is straightforward and does not
imply any fundamental restrictions, because this coding is structure-preserving
as well.
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Definition 2.1 (Hierarchical Automata (HA)): Let σ be a
type of state identifiers, ε a type of event identifiers, and δ a
type for the data space. Then a Hierarchical Automaton HA
over (σ, ε, δ ) is represented by a quadruple (SA,E,FComp,D),
where

– SA is the set of sequential automata
– E is the set of events
– FComp is the composition function, and
– D is the initial assignment of the data space

of the Hierarchical Automaton HA. These components
must fulfil the internal consistency condition
HierAutoCorrect on Hierarchical Automata. The type
(σ, ε, δ )hierauto consists of all Hierarchical Automata
over (σ, ε, δ ).

(σ, ε, δ )hierauto ≡T { (SA,E,FComp,D) |
(SA :: ((σ, ε, δ )seqautoset))

(E :: εset)

(FComp :: (σ 7→ ((σ, ε, δ )seqautoset)))

(D :: δ data).

HierAutoCorrect SA E FComp D }
justified by HierAutoNonEmpty

The above definition is an example of an Isabelle/HOL
type definition. Type definitions are the basic building block
for so-called conservative extensions of HOL. A new type
is defined by a defining predicate (in the above case
HierAutoCorrect) over an existing type. The new type
is then given as a disjoint copy of all elements of the old
type that fulfil the defining predicate. This predicate becomes
a well-formedness condition for all elements of the new type.
Two internally created bijections between the new type and
the elements of the old type identified by the predicate – in
the example Abs hierauto and Rep hierauto – enable
a translation between old and new type. A type extension is
conservative because new predicates and operators over the
new type may only be defined based on the operators of the
base type implicitly assuming the well-formedness predicate
for elements of the domain of new functions.

For the above example, we omit the actual definition of
HierAutoCorrect (see [8] for a complete presentation of
all definitions). It essentially encodes that FComp is a well-
formed composition with respect to SA as defined in the
following Definition 2.2.

Definition 2.2 (Well-Formed Composition): Let SA be a
set of Sequential Automata and FComp a composition function.
The predicate IsCompFun describes the internal consistency
for these components.

IsCompFun ::C [ (σ, ε, δ )seqautoset,

σ 7→ ((σ, ε, δ )seqautoset) ]→ bool

IsCompFun SA FComp ≡C

dom FComp = (
⋃

A ∈ SA.States A) ∧

(
⋃

ran FComp) = (F − {Root SA FComp} ) ∧
RootExists SA FComp ∧
OneAncestor SA FComp ∧
NoCycles SA FComp

The predicate RootExists SA FComp guarantees that there
exists an unique root automaton called Root SA FComp. The
predicate OneAncestor SA FComp reflects that each Sequen-

tial Automaton of SA except the root automaton has exactly
one ancestor state. The last predicate NoCycles ensures that
the composition function does not contain any cycles.

NoCycles SA FComp ≡C

∀S : P (
⋃

A : SA.States A).

S 6= ∅ =⇒
∃s : S.S ∩ (

⋃
A : the (FComp s).States A)= ∅

A. Optimisation

When applying the formalisation introduced in the previous
section, we frequently need selection theorems for a Hierar-
chical Automaton HA to obtain its constituents, e.g. all its
defining Sequential Automata. We must provide such selection
theorems in Isabelle/HOL by proving them. For these proofs,
we need a special theorem, that reflects the well-formedness
property of Hierarchical Automata (essentially Definition 2.2).
Deriving a well-formedness property is expensive. For exam-
ple, the check that there are no cycles in the composition
function involves checking a predicate for each non-empty
subset of the state set of HA. We thus obtain 2 #(States HA)

different proof obligations. Clearly, this proof is inefficient
even for small Hierarchical Automata.

To solve this problem, we propose a stepwise procedure to
construct Hierarchical Automata from their defining Sequential
Automata. Here, we need to exploit the tree-like structure
of Hierarchical Automata. We define two constructors: one
to build a pseudo Hierarchical Automaton from a given Se-
quential Automaton, and another to add a given Sequential
Automaton at a specified state position to a Hierarchical
Automaton extending the constituents of the Hierarchical Au-
tomaton. The idea is that this construction process guarantees
wellformedness thus reducing the cost of proof. We start with
the definition of a pseudo HA. The result of this construction
does not contain a hierarchy and represents in fact a Sequential
Automaton, which is wrapped up as a Hierarchical Automaton.

PseudoHA SA D ≡C Abs hierauto ({SA },Events SA,

EmptyMap (States SA),D)

The above used operator EmptyMap defines a composition
function, in which each state in the set of states of an SA is
mapped onto the empty set. The operator ensures that a pseudo
HA contains only simple states.

Using the following construction operator �, we extend
a Hierarchical Automaton by a Sequential Automaton at a
specified state position.

Definition 2.3 (Extension of a HA by a SA): Let HA be a
Hierarchical Automaton, S a state and SA a Sequential Au-
tomaton. Then the extension of HA by SA in the state S is
defined as follows.

� ::C [ (σ, ε, δ )hierauto, σ ∗ (σ, ε, δ )seqauto ]
→ (σ, ε, δ )hierauto

� ≡C (λHA (S,SA).

let SA
’ = {SA } ∪ (SAs HA);

E’ = Events HA ∪ Events SA;

FComp
’ = CompFun HA ⊕ (S,SA)

D’ = InitData HA

in Abs hierauto (SA
’,E’,FComp

’ ,D’))

In Definition 2.3, we use the operator ⊕ to extend the com-
position function FComp by a Sequential Automaton SA on
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SafetyInjectionSystem ::C (string,string,ds)hierauto

SafetyInjectionSystem ≡C

(PseudoHA RootCTRL (LiftInitData [V0 15 ] ))

� (“SafetyInjectionCTRL” ,DeviceCTRL)
� (“SafetyInjectionCTRL” ,PressureMode)
� (“SafetyInjectionCTRL” ,Measuring)
� (“UnBlocked”,UnBlockedCTRL)

Fig. 5: Stepwise construction for the model of the Safety
Injection System

a state S. The extension is well-formed if and only if two
conditions hold. First, S must be contained in the domain
of FComp, and second, S must not be a state of SA. These
conditions ensure that the construction using the operator ⊕
yields a cycle-free composition function.

In Fig. 5 we present the definition of the running example
of the safety injection system using construction operators. The
operator InitDS represents an initial data space assignment.
Pressure is there assigned to 15.

The benefit of such a construction is that we can derive
theorems automatically reflecting selection theorems of con-
structed Hierarchical Automata. To achieve such automation,
we have implemented a tactic in Isabelle/HOL. The tactic
decomposes a constructed Hierarchical Automaton into its
components and derives for each component a selection the-
orem, e.g for the selection of Sequential Automata. These
selection theorems are subsequently reused to derive one
selection theorem of the whole Hierarchical Automaton. To
decompose a constructed Hierarchical Automaton, we use the-
orems reflecting the well-formedness property of Hierarchical
Automata under construction.

A pseudo HA is always well formed.

HierAutoCorrect {SA } Events SA EmptyMap (States SA) D

Accordingly, we have derived for the construction operator �
a theorem of well-formedness. However, this property is not
always satisfied. We have framed the conditions, which have
to be proved.

Theorem 2.4 (Well-Formed � - Construction):

States SA ∩ States HA = ∅ S ∈ States HA

SA
’ = {SA } ∪ (SAs HA) E’ = EventsHA ∪ Events SA

FComp
’ = CompFun HA ⊕ (S,SA) D’ = InitData HA

HierAutoCorrect SA
’ E’FComp

’ D’

The well-formedness theorems help to identify and construct
the conditions used in the construction of elements of the type
of Hierarchical Automata. To round off the smooth construc-
tion with the optimised constructor operators we only need
the following set of theorems that helps to lift the selection
operators to constructed HAs. To access the SA contained in
a pseudo HA we use the following initial theorem.

SAs (PseudoHA SA D ) = {SA }

For the general case, the previously identified well-formedness
assumptions (see Theorem 2.4) help to select SA in a con-
structed HA.

Fig. 6: Galois Connections based on predicate transformers

Theorem 2.5 (Selecting SA of a HA Construction):
States SA ∩ States HA = ∅ S ∈ States HA

SAs (HA � (S,SA)) = {SA }∪SAs HA

With the formalisation of these original construction oper-
ators we end here the presentation of the basic formalisation of
Statecharts in Isabelle/HOL omitting the semantics. It follows
– as the basic syntax – quite closely the work by Mikk [5].
Its Isabelle/HOL representation is detailed in [8]. We next
consider the abstraction process of Statecharts as a preparation
for model checking.

III. DATA ABSTRACTION

Our formalisation in Isabelle/HOL [8] contains a theory
of the temporal logic CTL and a theory of the specification
language Statecharts. Both theories are integrated semanti-
cally. In principle, this formalisation enables the derivation of
CTL properties on a Statecharts specification. However, the
drawback is that the user has to prove these properties in an
interactive way. Our approach combines Isabelle/HOL with the
model checker SMV to automate the reasoning. The core of
this combination is a data abstraction theory for Statecharts,
which we introduce in this section.

A. Property Preserving Abstraction

We investigate property preserving data abstraction for
Statecharts to preserve CTL formulas. In the literature we
find two major approaches for transition systems: over- and
underapproximation.

In an overapproximation the abstract model can contain
new behaviour, but old behaviour cannot be lost. That is,
properties of the universal fragment of CTL (∀CTL), that are
valid on all paths of the overapproximated abstract model,
must hold on the paths of the concrete model. By contrast
in an underapproximation, new behaviour cannot be added,
but old behaviour can be lost. Accordingly, properties of
the existential fragment of CTL (∃CTL) are preserved by
underapproximated abstract models. In the work of Dams [32]
two automata representing these different kinds of abstractions
are generated. Depending on the property that has to be verified
the appropriate model has to be chosen.

The theoretical basis for over- and underapproximations
are Galois connections [33]. For complete lattices, C and A, a
pair of monotone maps, α ::C C→A and γ ::C A→C define
a Galois connection, written GaloisCorrect A C α γ, iff
α ◦ γ ≤A idA and id C ≤C γ ◦α. Fig. 6 represents two instan-
tiated Galois connections relating predicates on an abstract (δA)
and a concrete ( δC) data space. Since they are predicates, these
elements are ordered by implication.
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Fig. 7: Implicit behaviour of a SA

On the left side we define the Galois connection
GaloisCorrect (δA pred) (δC pred) α

+γ

for overapproximation to weaken a concrete predicate pc by
the abstraction α+as is reflected in the Galois property pc =⇒
γ(α+pc). Correspondingly on the right, the Galois connection

GaloisCorrect (δC pred) (δA pred) γ α
-

for underapproximation strengthens concrete predicates. This
is reflected in the Galois property γ(α- pc) =⇒ pc .

Given an abstraction function R ::C δC → δA mapping
elements of the concrete data space into the abstract data space,
we can generally define α+, α- and γ. The following definitions
of strongest post- and weakest precondition form two Galois
connections for any such R (cf. Fig. 6).

SP R P ≡C λ a . ∃ c . (Rc )=a ∧ Pc
WP R P ≡C λ c . ∀ a . (Rc )=a =⇒ Pa

SP -1 R P ≡C λ c . ∃ a . (Rc )=a ∧ Pa
WP -1 R P ≡C λ a . ∀ c . (Rc )=a =⇒ Pc

In our theory, the abstraction function is total. Hence, the
weakest precondition coincides with the inverse strongest
postcondition (WP R = SP -1 R). Furthermore, a Galois
connection includes that α+ can be expressed by α- which is
reflected by the property SP R (¬ P ) = ¬ (WP -1 R P ).

To avoid the detailed definitions of the abstraction func-
tions, we use in the next section an abbreviation. Analogous
to the depiction of Fig. 6, we abbreviate SP R and WP -1 R
by α+and α- omiting the parameter R.

B. Overapproximation of SA

Statecharts, HA, and accordingly SA belong to the family
of synchronous languages. Synchronous languages build on
a synchronous step semantics, which we have formalised for
HA in Isabelle/HOL [8]. It includes a formalisation of SA. The
semantics of SA is there a special case of the semantics of HA
because an SA can be viewed as an HA without hierarchy (cf.
the definition of a pseudo HA in Sec. II-A). Based on this
decomposition, we present in this section the overapproxima-
tion of SA independently from HA. Reusing this theory, we
introduce in the next section the overapproximation of HA.

One special property of synchronous languages is that in
each semantical status – synchronised by a global clock –
the system performs a defined calculating step. Semantical
statuses of SA, where no transitions fire, perform a trivial
calculating step, in which the data variables are assigned to
the previous value. This effect can be interpreted as comple-
mentation by implicit transitions. On the left side of Fig. 8,
this is depicted by a dashed self-transition, where the guard

Fig. 8: Overapproximation of a SA

¬ GC is constructed as the negated guard of the exiting
transition. The action-part UpdateDefault represents that
the data variables are assigned to the previous value. Note that
UpdateDefault will be an unwanted effect in the case of
writing data variables by a synchronous executed transition,
which must be prioritised. Such synchronous executed tran-
sition could arise from an SA which is composed in parallel
to the considered SA. A more detailed discussion, how the
SAs inside a HA mutually affect each other, can be found in
Sec. III-D.

As a rule, the guard of the implicit transition must be
constructed as the conjunction of negated guards of all exiting
transitions. Overapproximating an SA, we construct an iden-
tical structured SA. We adopt the control states and abstract
the transitions. Abstracting transitions, we abstract guards and
updates separately.

In general, it is impossible to construct an abstracted
guard which exactly describes a concrete guard GC. First,
we propose to weaken GC by α+ using overapproximation.
Building such weaker guards adds new behaviour to the
model but deletes some implicit behaviour simultaneously
caused by the special semantics of synchronous languages.
The reason is that the guard of the implicit transition ¬ α+GC

is automatically stronger. Therefore – secondly – we must
add a suitable self transition, to adjust this unwanted effect.
The guard of this self transition must be constructed by a
conjunction of the overapproximated guard of GC and the
negated underapproximated guards of all exiting transitions.
This procedure is illustrated on the right side of Fig. 8.

Abstracting the example, only one exiting transition has
to be considered. First, we abstract the guard GC by α+ and
introduce a self transition. The guard of this self transition is
constructed by a conjunction of the overapproximated guard
of the exiting transition α+GC and the negation of the un-
derapproximated guard of the exiting transition ¬ α- GC. The
latter can be expressed by α+using the theorem of subsection
III-A, so that finally we obtain the following guard for the self
transition.

[α+GC ∧ α+ ¬ GC]

In Fig. 8, only one exiting transition exists for State S1.
For n transitions, the guard of the self-transition would be
constructed in the following way.

[α+G1
C ∧ ¬ α- G1

C ∧ α+G2
C ∧ ¬ α- G2

C ∧ . . . ∧ α+Gn
C ∧ ¬ α- Gn

C ]

Building traditional overapproximation of updates [34] is com-
patible with SAs because a weaker update adds new behaviour
to the system but old behaviour cannot be lost. Accordingly
on the right side of Fig. 8, the update is overapproximated
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Fig. 9: Implicit behaviour of a HA

by α+. However, in general, abstracting updates results in
non-constructive predicates that violate the action language of
Statecharts. More precisely, for each UC we obtain in general
more than one abstract update by α+.

We must restrict to overapproximation because SAs do not
allow a reduction by underapproximation. This is caused by
the special semantics of synchronous languages, which can
be interpreted as a complementation by implicit transitions.
This complementation restricts the possibility for reducing
behaviour fundamentally. Consider the example in Fig. 8 on
the left side. If we propose to build a stronger guard of GC

by α-, we obtain a weaker guard for the implicit transition.
That is, we add new behaviour to the abstract model, which is
unsound for underapproximation. Hence, for the example on
the left side of Fig. 8 we cannot build an underapproxmiation,
where the abstract model is again a SA. The only way out is
to reduce nondeterministic branches to deterministic ones but
this is not sufficient for a general procedure. Consequently, the
result of an underapproximation cannot usually be expressed
by a SA. Hence our abstraction technique is restricted to
preserve properties of the universal fragment of CTL. If the
overapproximation is too rough, we will obtain undesirable
counterexamples, describing so called spurious behaviour. Be-
cause of the reason described above, we cannot refine the
model directly. Instead in such cases we start from scratch
and apply the well-known counterexample guided abstraction
and refinement loop (CEGAR) [35] generating a new and more
detailed overapproximation.

C. Semantical Characteristics of HAs

We are interested in developing a data abstraction technique
which can be applied in a compositional manner. This means
that we decompose a given HA into its defining SAs. After
that, we abstract each SA independently. Finally, we compose
the abstracted SAs to an abstracted HA.

In this section we decribe such compositional abstraction
techniques for HAs. Because of the rather complex semantics
of HAs this is a challenge: in general, a compositional pro-
cedure does not yield a valid overapproximation for a given
HA.

1) Implicit behaviour of HAs: Implicit behaviour occurs
in synchronous modelling languages whenever a transition
cannot fire at the beginning of a clock cycle. In this situation
the statechart executes a trivial calculation step that restores
the data state. In Sec. III-B the implicit behaviour has been

represented in the model by a dashed arrow (cf. Fig. 8).
This special transition only fires if no other transition of the
model is enabled. As is shown in Fig. 9, we can model the
implicit behaviour of a HA explicitly in a similar fashion. Note,
however, that with respect to compositional abstraction, the
guard of the self-transition depends on context information
that lies outside the SA in which the self-loop is defined.

Considering the SA on the left side of Fig. 9, we observe
that the guard of the implicit self-transition of the control
state S1 holds, if and only if the guard G1

C of the transition
exiting S1 does not hold. In addition a predicate of the
parallelly composed SA must hold. Either the control state
S3 is not active or the guard of the transition exiting S3 is
not valid. More generally, in all composed SAs of a HA there
must not be any transition that is enabled. The modelling of
implicit behaviour of HAs, shown in Fig. 9, becomes more
complicated, because usually we have more than one local
state in a SA. The concept of partial default update functions
– presented in the next subsection – can avoid this effect,
because they abstract from the dependencies between parallelly
composed SAs (see Fig. 10).

2) Partitions on Data Spaces and Partial Updates: In
general, the data space of a HA consists of a finite number
of disjoint partitions. Update-functions can be defined in such
a way that they do not write on all partitions. The semantics
of HAs determines the values of partitions after transition
execution also in cases in which a transition does not write
on the partition.

On the left side of Fig. 10 we have modelled a data
space consisting of two partitions D1

C and D2
C. The update-

function of the transition between the states S1 and S2
assigns D1

C using an auxiliary function U1
PC and does not write

on partition D2
C. Note, the second partition is assigned to

None. This indicates in our formalisation that the partition
is unwritten. That is, the update-function is partial. In one
step of calculation of HA, transitions of several parallel SAs
can be executed synchronously. If a transition does not write
on a partition (e.g. D2

C), the first question is whether there
is another synchronously executed transition writing on this
partition. If this is the case, the value of the synchronously
executed transition is selected. In case of a concurring write
of several transitions on one partition (so-called racing) the
resulting conflict is resolved by introducing a non-determinism
(interleaving semantics). In contrast, if there is no transition
writing on a partition, the semantics assigns to this partition
the value prior to execution of the transition. Note, that we
provide a complete formal semantics of HAs including data
spaces and partial update-functions in Isabelle/HOL [8].

Summarising the above, it is, in general, not possible to
decide locally inside a SA, whether implicit behaviour for
writing a partition on the data space will occur. Hence it is
challenging to define a compositional abstraction technique,
whereby a partial update-function can be abstracted inde-
pendently from synchronously executed updates. In the next
section we propose a procedure abstracting update-functions
only based on local informations available inside a SA.
Therefore, we demand special properties from the abstraction
functions in order to construct overapproximations of HAs in
a compositional manner.
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D. Overapproximation of HA

We present in this section a data abstraction technique for
HA, which is charaterized by three properties. First, it is a
structure-preserving abstraction. This means that the result of
the abstraction is represented by a HA, whose structure is
identical to the input-HA. Second, our abstraction is an over-
approximation preserving properties of the universal fragement
of CTL. Third, the technique can be applied in a compositional
way.

1) Partial Default Update-Functions: First, we adress the
modelling of implicit behaviour inside a SA. Consider again
the example of Fig. 10, which is depicted on the left side.

Applying the technique of Sec. III-B, we obtain the self-
transition on the right side of Fig. 10. Note that in contrast
to the dashed self-transition on the left side of Fig. 10, the
guard of the abstrated self-transition is constructed only using
local informations of the SA. Hence, the guard is weaker than
a precise approximation which could be constructed using
context informations of SAs, that are composed in parallel.
A more precisely approximated guard for our example is the
following predicate.

[α+G1
C ∧ ¬ α- G1

C ∧ (¬ (α+G2
C ∧ ¬ α- G2

C)∨ ¬ IN S3)]

Consequently, locally constructed self-transitions will be more
often executed than self-transitions, which are labeled with
precise approximated guards. Nevertheless, this effect is invis-
ible in our semantics because we have used as action a so-
called partial default update-function (PUpdateDefault).
This update-function has a slightly different effect in com-
parison to UpdateDefault. The partial default update-
function represents that data partitions are only potentially
assigned to the previous value. In the case of writing a data
partition by synchronously executed transitions, the semantics
of PUpdateDefault does not have a writing effect on this
data partition. Consequently, in this case executing the self-
transition is invisible in the semantical states of the abstracted
HA.

2) Data Structure Preserving Abstraction Functions: To
tackle the problem of Sec. III-C2 we propose to use an
abstraction function that preserves the structure of the data
space. Therefore, we demand for each concrete data partition
a unique counterpart in the abstract data space. Furthermore
each concrete partition has to be mapped into the domain
of its abstract counterpart using a given abstraction function.
Note, that this mapping must be done independently from
other partitions of the data space. To ensure this requirement,
we force the user of our abstraction technique to prove some
special properties of the abstraction function.

Again we consider the example of Fig. 10 on the left
side. There we have used a partial update-function writing the
first partition of the data space only. To construct a precise
overapproximation of this update-function inside a SA, we
demand that the binary structure of the data space must be
preserved by the abstraction function. This means that the
concrete data partitions D1

C and D2
C will be mapped into the

abstract data partitions D1
A and D2

A independently, which is
illustrated in the middle of Fig. 10. Assuming that we are
interested in using a predicate abstraction, D1

A and D2
A would be

characterized by boolean variables. In this case, each boolean
variable corresponds exclusively to D1

A or D2
A. Furthermore,

each boolean variable reflects the validity of a predicate on
the corresponding concrete data partition.

Assuming that both data partitions are declared as integers,
we can define an abstraction function for a predicate abstrac-
tion in the following way.

R [D1
C,D

2
C ]≡df [D

1
C ≤ D2

C,D
2
C ≤ 2 ]

In this example, each abstract data partition is represented
by a single boolean variable. For example the partition D1

A
is represented by a boolean variable, which is evaluated by
the predicate D1

C ≤ D2
C. Accordingly, D2

A is represented by a
variable, which is evaluated by D2

C ≤ 2. It is obvious that the
abstraction function does not map the data partition D1

C into
D1
A independently from D2

C. Consequently, it is not possible to
calculate a precise overapproximation of the update-function
U1
PC locally. The reason is that we calculate the abstract update-

function by simulating U1
PC. Therefore, we must map the result

of U1
PC into the abstract data space. However, we have not

much information about D2
C after executing U1

PC because this
partition is locally unwritten. This means that the value of D2

C
can be the previous value of D2

C or any other value, which is
written by a synchronous executed transition. The only way
out would be to construct the simulation using type properties
of D2

C resulting in an unprecise approximation. Hence we have
defined a special type of wellformed abstraction functions in
order to avoid these unprecise approximations.

Definition 3.1 (Abstraction Function): Let δC be a type
of the concrete data space and δA a type of the abstract
data space. Then an abstraction function R over (δC, δA) is
represented by a triple (L,D C,D A), where

– L is the list of functions for the abstraction of
data partitions,

– D C is the concrete data space, and
– D A is the abstract data space

of the abstraction function R. These components must
fulfil the internal consistency condition AbsCorrect
on abstraction functions. The type (δC, δA)abs
consists of all abstraction functions over (δC, δA).

(δC, δA)abs ≡T { (L,D C,D A) |
(L :: (δC → δA)list )

(D C :: δC dataspace)

(D A :: δA dataspace).

AbsCorrect L D C D A}
justified by AbsNonEmpty

The predicate AbsCorrect L D C D A guarantees that the
number of concrete data partitions, the number of abstract data
partitions, and the number of elements in the function list are
identical. Furthermore, the predicate requires for each function
of the list that the range of this function is contained in the
domain of its corresponding abstract data partition.

AbsCorrect L D C D A ≡C

#D C = #D A ∧ #D C = #L ∧
∀ i < #D C. ran (L !i) ⊆ dom D A i

Note that the operator ! selects the abstraction function of the
i-th partition from the list L. Furthermore, the operator # gives
the number of partitions for a data space corresponding to the
number of abstraction functions for a list.

Based on this definition of wellformed abstraction func-
tions, we have defined in our Isabelle/HOL-formalisation an
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Fig. 10: Structure-preserving abstraction using partial update-functions

operator AbsBy+HA constructing an overapproximation from
a given HA and a given abstraction function. This operator
implements the ideas of Sec. III-B and Sec. III-D in a compact
manner. Basically, we decompose the HA in its defining SA
and build the overapproximation of each SA independently. In
order to construct the overapproximation of a SA, we have to
abstract guards and update-functions of each transition of the
SA. Additionally, we have to introduce self-transitions in the
abstracted SA if the abstracted guard of a transition becomes
weaker than the original one.

Furthermore, we have defined an operator AbsBy-CTL con-
structing the underapproximation for a given CTL-formula
and a given abstraction function. In comparison to defining
abstracted hierarchical automata, AbsBy-CTL is constructed
directly and straightforwardly. First, the operator traverses a
formula in an inductive manner getting access to all atomic
propositions that are defined on the infinite data space. Second,
the operator constructs underapproximations from these atomic
propositions using the operator α- (cf. Sec. III-A).

IV. MODEL CHECKING STATECHARTS

Based on the abstraction theory of Sec. III we have
designed and implemented two tactics to verify Statecharts
more efficiently. Fig. 11 gives an overview of the framework
describing the architecture at an abstract level2. On the left
side, the theorem prover is depicted including all developed
Isabelle/HOL-theories. In principle, proof obligations on Stat-
echarts can be derived inside Isabelle/HOL based on these
theories. However, proofs are not fully automated in the prover.
They are often complex and exhausting processes involving
many interactive steps. To overcome this, we have developed
two tactics external to Isabelle/HOL that are invoked via
the oracle interface – a specific Isabelle/HOL interface for
plugging in additional support tools. The first tactic can be
used to check CTL-properties for Statecharts that are defined
on finite data spaces. This tactic uses the model checker
SMV [36], [37] checking the properties automatically. The
second tactic can be used to abstract Statecharts that are
defined on infinite data spaces. This tactic implements an au-

2Note, the whole abstraction theory including tactics is not part of [8].
However, interested readers are welcome to request the sources by email to
the authors.

Fig. 11: Framework architecture: Isabelle-theories and con-
nected provers

tomatic predicate abstraction and invokes SVC3[39] evaluating
propositional properties including arithmetic. Note, the second
tactic is limited to formulas of the universal fragment of CTL
because it includes a property-preserving abstraction algorithm
supporting this subclass only.

Applying the first tactic, a user of Isabelle/HOL is able
to check whether a temporal formula F is satisfied by the
behaviour decription of a given HA representing a finite Stat-
echarts specification.

HA �HA F

Therefore, the tactic analyses the internal term structure of
the proof state in Isabelle/HOL and translates the collected
information into the input language of SMV [28]. Of course,
it may happen that SMV will not be able to verify the proof
obligation successfully. Consequently in this case, the tactic
fails. Otherwise the tactic returns true.

If a user is interested in verifying an infinite Statecharts
specification, he has to apply the second tactic. In a first step,
the proof obligation is reduced to the following proof state
assuming that a property-preserving abstraction is used.

(HA AbsBy+HA R ) �HA (F AbsBy-CTL R )

Abstracted counterparts to HA and F are defined using the
operators AbsBy+HA and AbsBy-CTL for a given abstraction

3The current version is ported to Isabelle 2013-2 and uses CVC3 [38],
because SVC will be not longer supported by all plattforms.
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function R (cf. Sec. III-D). If we want to prove the proof state
in Isabelle/HOL, we must exploit these definitions. In contrast
to this, the tactic ignores the definitions and uses an algorithm
external to Isabelle/HOL that constructs the abstraction more
efficiently. Note, the tactic is applicable only if the following
assumptions are satisfied.

1) R respects the structure of the data space satisfying
the wellformedness property of Definition 3.1,

2) R defines a predicate abstraction interpreting the infi-
nite data space as a finite set of atomic propositions
on it, whereby each of them is represented as a
boolean variable inside the abstract data spaces, and

3) F is a formula of ∀CTL.

For the design of the abstraction algorithm, we reuse existing
work for abstracting ordinary transition systems [34] and adapt
this approach to hierarchical state systems. Accordingly, we
also use adjunction theorems of Galois connections defining α+
and α- different to our Isabelle/HOL-definitions of Sec. III-A.

α+PC ≡df

∧
{ PA | PC =⇒ P γ PA }

α- PC ≡df

∨
{ PA | γ PA =⇒ P PC }

The identifier PC and PA represent predicates on the concrete
and abstract data space. An implementation of the overapprox-
imation α+ is sufficient, because α- can be expressed using
α+ (cf. Sec. III-D). To calculate the overapproximation of a
predicate PC , we have to implement two steps. First, we check
the proof obligation PC =⇒ P γ PA for all PA of the abstract
predicate type using SVC. Second, we conjugate all predicates,
where the check was successful.

To implement this procedure, we need an algorithm cal-
culating the predicate transformer γ for a given predicate
efficiently. Thanks to the guaranteed properties of predicate
abstraction, we are able to define γ as a substitution. For
a given abstract predicate we replace a contained boolean
variable by it’s corresponding atomic proposition, which is
defined on the concrete data space only. If we do so for all
contained variables, we obtain a concrete predicate as a result.

We refer to the Safety Injection System (cf. Example I-C)
for an illustration of the substitution. There we have defined a
single integer variable pressure, which is used in both guards
and actions of the Statechart (cf. Fig. 3). Consequently we need
to abstract these predicates algorithmically. Assuming a user of
the tactic likes to interpret pressure by the atomic propositions
pressure < 10 and pressure < 20 we introduce two boolean
variables B1 and B2 for the abstract data space representing,
whether the propositions are satisfied or not.

For example, if we like to determine the overapproximation
of the guard permit ≤ pressure we must check for all elements
of the abstract predicate type, whether they ensure the guard
or not. For example, we must check for the abstract predicate
B1 ∨P B2 the following statement4.

20 ≤ pressure =⇒ P γ (B1 ∨P B2)

First, we replace B1 and B2 by their corresponding predicates.

(B1 ∨P B2) [ pressure < 20/B1, pressure < 10/B2 ]
⇔ ( pressure < 20 ∨P pressure < 10 )

Afterwards, we evaluate the statement above to false. The

4For the sake of simplicity we assume, that 20 is assigned to the constant
permit.

Fig. 12: Abstracted specification of the SA PressureMode

overapproximation of the guard is then built as the conjunction
of all possible predicates that pass the test (cf. adjunction
theorem defining α+ ).

Note, the abstract predicate type represents atomic propo-
sitions only. Consequently, we can use a finite set of formulas
based on the disjunctive normal form to represent the whole
predicate space. Nevertheless, we do not check all predicates
of this set, because the complexity is too high. Assuming k
represents the number of boolean variables used to represent
the propositions inside the abstract data space, we obtain 22

k

proof obligations.
To overcome this problem, we use a qualified strategy

selecting predicates, which was proposed by Saı̈di and Shankar
[34]. They proved that it is sufficient for calculating an
overapproximation, to do the check for all disjunctions of
literals, whereby a literal is a boolean variable or the negation
of it. So the complexity can be reduced to at most 3k − 1
proof obligations. Fig. 13 shows the selection for a set of
atomic propositions, which are constructed using two boolean
variables.

To sum up, this selection strategy helps to calculate the
overapproximation of a predicate more efficiently. For exam-
ple, to overapproximate a guard G, we build the conjunction
of all possible disjunctions of literals that pass the test for
G. Afterwards, we simplify the result and convert it into
disjunctive normal form.

So far, we have introduced how propositional predicates
defined on an infinite data space can be abstracted using a
predicate abstraction. For the abstraction of a whole HA, we
replicate the idea of Sec. III-D2 of decomposing the HA in it’s
defining SA. Subsequently we abstract each SA independently.
In contrast to defining AbsBy+HA , we calculate overapproxima-
tions in both guards and action predicates algorithmically.

Fig. 12 shows the abstracted SA PressureMode of the
Safety Injection System. Inside the original SA PressureMode
(cf. Fig. 3), the data variable pressure is used for guards only.
Hence, we transfer actions into the abstract model without
changing them. Furthermore, all guards can be precisely ex-
pressed using the boolean variables B1 and B2. Accordingly,
we are not introducing self-transitions to represent implicit
behaviour. Such behaviour must be modeled explicitly only
if the abstracted guard is weaker than the original counterpart.

To calculate the abstraction of the SA Measuring, we
need to abstract all actions of the self-transitions (cf. Fig. 3).
The only part of an action, that involves data variables, is
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the update-function. Consequently, we have to abstract the
update-functions INC pressure and DEC pressure. Therefore,
we interpret an update-function as a binary predicate defined
over the pre and post state. Following common notational
conventions, we write the post state of (boolean) variable B1

as B1′. Unfortunately in this particular example, we are not
able to determine a precise overapproximation of the update-
functions because the preceded guards give no information
on the data variable pressure. Consequently, incrementing or
decrementing pressure maps into the whole abstract data space.
The only effect, which we omit here, is B1′ ∧¬ B2′ because
this configuration is obviously not satisfiable. Accordingly,
the abstraction of an update-function results in the following
predicate.

(B1
′ ∧B2′) ∨ (¬ B1

′ ∧B2′) ∨ (¬ B1
′ ∧¬ B2

′)

The predicate is a disjunction with three disjoint parts. We
represent each part as an abstract update-functions. Note,
that the notation of Statecharts allows one update-function
per transition only. Consequently, we have to duplicate the
self-transitions in the example obtaining three abstracted self-
transitions for each (cf. Fig. 14).

V. CONCLUSIONS

We have presented here an approach to model checking
of Statecharts with data that combines a full formalisation of
the original Statmate semantics of Statecharts in Isabelle/HOL
with abstraction techniques, also formalised in Isabelle/HOL,
to finally check the abstracted Statecharts in the model checker
SMV and additionally use an integration with the SVC validity
checker to solve proof obligations resulting from the abstrac-
tion process. The main issue of this paper is to give an overall
impression of this project that is the core of Steffen Helke’s
PhD thesis [18].

We finalise this paper with a few concluding remarks
concerning the presented parts. The formalisation of the syntax
and semantics of Statecharts in Isabelle/HOL has only been
reported on partially in this paper; the semantics has been
left out. We only wanted to give a gist of the level of
explicitness we have used to represent Statecharts in Higher
Order Logic. We used type definitions for SA and HA thereby
making wellformedness conditions implicit. More importantly,
we used explicit polymorphic HOL types to represent the
data contained in a Statechart. This makes the representation
very concise and also very efficient. Since the data types
of our object (the Statecharts) are (generic data) types of
the logic HOL, we can exploit a lot of the existing proof
infrastructure for proving about Statecharts. On the other hand,
explicit formalisations about types become quite tricky. We
have, however, illustrated in this work that it is just about
possible to formalise notions of partitions of data space in this
model.

At the same time, the above described – slightly “shal-
low” – embedding of data containing Statecharts, is ideally
suited for the design of automated tactics. We have here,
thus, presented the abstraction techniques we employ to use
the type information efficiently to produce proof obligations
rising from abstracting Statecharts. Although fairly shallow,
the formalisation of Statecharts is deep enough to enable meta
theoretical proofs. We have omitted those as they are not in

the centre of interest here.
Finally, we showed how we integrate, on the practical

side, model checkers and validity checkers to round off the
verification process.

In our current research we try to further extend the practi-
cality of model checking Statecharts. Two current projects that
show the emphasis of our current and future work are a front-
end tool for lay-outing Statecharts before they are fed into the
verification process and another project build on MDD (Model
Driven Development) to integrate the tool chain for Statecharts.
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