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Abstract—This paper introduces a novel weighted unsuper-
vised learning for object detection using an RGB-D camera. This
technique is feasible for detecting the moving objects in the noisy
environments that are captured by an RGB-D camera. The main
contribution of this paper is a real-time algorithm for detecting
each object using weighted clustering as a separate cluster. In a
preprocessing step, the algorithm calculates the pose 3D position
X, Y, Z and RGB color of each data point and then it calculates
each data point’s normal vector using the point’s neighbor. After
preprocessing, our algorithm calculates k-weights for each data
point; each weight indicates membership. Resulting in clustered
objects of the scene.

Keywords—Weighted Unsupervised Learning, Object Detection,
RGB-D camera, Kinect

I. INTRODUCTION

Object detection for unlabeled and unsegmented data
points [1] is widely studied. In general, visualization and ma-
chine learning are the main issues, which are reviewed in exist-
ing studies. Machine learning is classified into two categories;
supervised and unsupervised learning. In the first case, many
researches have addressed the object detection with supervised
methods [2], [3], [4], [5], [6], [7], [8]. Kevin Lai’s and many
other researchers work on the weighted supervised learning
for object detection [9], [10], [11], [12] using a hierarchical,
multi views, and sparse distance learning. That method can be
useful for known objects intended to be detected. Therefore,
his algorithm is used for object detection of a specific item
that is stored in a database in a preprocessing step such as an
apple, egg, etc. Therefore, when using supervised learning for
object detection, researchers focus on the accuracy of object
detection and detecting known objects. On the other hand, time
is very critical in real-time object detection techniques.

The second category addresses the object detection prob-
lem with unsupervised learning method [2], [13], [14], [15],
[16], [17], [18], [19], [20], [21] using techniques of unsuper-
vised learning such as K-means and spectral clustering. Most
of these techniques are not sufficient for real-time applications
since they do not address time complexity and memory con-
sumption. With regard to accuracy of object detection using
an RGB-D camera, an efficient method for RGB-D camera is
weighted clustering since capturing by this kind of camera has
more noise introduced by moving objects; thus, labels need to
be updated in a few iterations that span less than a second. If

we want to compare the clustering between computer graphics
and other domains; data points are not changing during running
time in most fields such as data mining, but data points in
real-time object detection in the field of computer graphics,
machine vision, and robotics are continuously changing; frame
by frame and second by second. As regards to Liefeng Bo [14]
who uses a dictionary for his work, this technique is very
efficient for synchronized video, and also this method is fast
enough for video processing with around 2 frames per second
(FPS). But, in real-time applications, it needs to be faster than
2 FPS. Weighted Unsupervised Learning such as weighted
k-means [22] or many other methods [23], [24], [25], [26],
[29], [30] are implemented in different domains. Fuzzy object
detection and weighted clustering is addressed and used for
moving objects [15], [27], [28]. In 2010, Maddalena et al. [15]
had worked on fuzzy logics and learning. That work used only
pixel-by-pixel as their features, which can be very efficient
for image processing. Thus, those methods never use other
sensors such as depth information as a specific feature for 3D,
whereas Maddalena’s method has many limitations for indoor
capturing for 3D object detection. Some other researches use
Vicon system as object detection and object controlling for
real-time applications, but this device cannot capture color and
surface of the objects [31], [32], [33], [34], [35] ; thus, Vicon
cannot be implemented as a colorful application; however,
it can be an efficient method for rigid object detection that
could calculate object position as the only feature. Therefore,
an unsupervised and RGB-D camera method that addresses
the accuracy, time-complexity, and memory consumption and
colorful surface capturing simultaneously is unprecedented.

Visualization is an important step in object detection for
evaluating the results. Graphical Processing Unit (GPU) based
application is a powerful method in the computer graphic
domain, but hence not applicable in mobility applications.
In general, GPU-based application needs powerful hardware;
therefore, for mobility application, researchers focus more on
Central Processing Unit (CPU) based applications.

This paper is an extension of the authors’ prior work
in [13] where we used RGB-D camera and studied the Boolean
version of clustering. The color space from RGB was improved
to Hunter-Lab color space [36], [37] where the Hunter-Lab
color space gave smoother result of clustering in real-time
application. In this paper, we use the RGB color space. We
improved the clustering part by adding k weights to each
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Fig. 1: a) Kinect color frame (RGB) with resolution of 1920 X 1080; b) Kinect depth frame with resolution of 512 X 424;
c) Proposed method object detection using k= 15 clusters, and after 15 iterations.

data point. This improvement affects frame rate, accuracy, and
memory consumption in the real-time application. We propose
a real-time object detection algorithm using k weighted clusters
with memory consumption that is useful for mobility applica-
tion. The maximum memory needed for this algorithm is 650
MB for 50 clusters, less than one GB for 100 clusters, and we
use multi-thread processing to improve frame rate.

In short, new contributions and unique features of the
proposed method in this paper are as follows. 1. Weighted
unsupervised learning is presented, which reduces noise for
moving and small objects, has better time complexity, lower
memory consumption, and higher accuracy than previous
methods, 2. CPU-based implementation is offered to make
our method capable of mobility usage, and 3. A segmentation
technique is proposed to detect a user defined object.

II. PIPELINE AND METHODS

The pipeline of weighed unsupervised object detection
algorithm presented in this paper is illustrated in Figure 2 and
composed of 8 steps as follows:

1) Capturing RGB color and depth information;
2) Mapping RGB and depth information;
3) Applying back-projection for generating cloud points

in the 3D world coordinate system;
4) Calculating data points normal vectors based on each

point neighbors;
5) Segmenting and removing the background to limit the

area where we want to detect the objects;
6) Calculating distance between each point and the k-

centers of the clusters;
7) Updating the k-weights of each cloud point; and
8) Assigning color to each data point by using the

point’s k-weights.

This paper is organized as follows: preprocessing is pre-
sented in section II-A followed by clustering step in section
II-B. Section II-C talks about visualization. Finally, numerical
and experimental results are presented in section III. Followed
by discussion in section IV and finally the conclusion and
future work is in section V.

A. Preprocessing

Preprocessing is used for generating the 3D cloud points
from input data that is captured by an RGB-D camera and
needed for clustering steps; thus, in preprocessing steps, the
algorithm generates cloud points by pose-the 3D as XYZ, color
as RGB, and normal as nx, ny , nz . In this research paper, we
use Kinect for Windows V2 as an RGB-D camera. In short,
preprocessing steps are: get input, perform frames mapping,
back projection, and normal calculation.

1) Get Input: The Kinect camera was designed as a hands-
free game controller. It has two input sensors, which include
an RGB camera with a resolution of 1920 X 1080 pixels, and
a depth sensor with the resolution of 512 X 424 pixels. Field
of View (FOV) is 84.1 X 53.8 for RGB color space and 70.6 X
60 degree for depth sensor information. The resulting average
is about 22 X 20 pixels per degree for RGB and 7 X 7 pixels
per degree of depth data [40], [41]. Kinect can capture depth
information of objects displaced up to 4.5-5 meters from the
camera, but we can limit it manually between a and b meters
for indoor object detection [38], [39].

2) Frames Mapping: The two inputs’ frames of Kinect
have dissimilar resolutions. The mapping is needed for match-
ing color space and depth information in the same space. Our
approach is like other studies [42], [43] for generating colored
cloud points. After mapping, we have aligned frames with
information about the position x, y, z; and color R, G, and
B for each data point. These data points will be ready for the
next step, back-projection [42], [43].

3) Back Projection: n this step we convert the cloud points
into 3D world coordinate system. The Kinect input from
mapping step includes x, y, and z parameters. We follow
equations 10 through 14 that are demonstrated in the appendix
to back-project the points into the world coordinate System.
In summary, to generate an accurate 3D position of each data
point in the color frame, the 2D position is back-projected
using the depth data from the depth frame as z and the Kinect
camera intrinsic parameters to obtain the correct 3D position
of each cloud point in the real world coordinate system.
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Fig. 2: Pipeline of 3D Object detection using RGB-D camera has two main parts: 1) Preprocessing including Mapping, Back-
Projection, Normal Generating, Background removal and 2) Clustering including assigned initial weight, distance calculation,
update weight and assign color, and finally visualization to illustrate the results.

4) Normal Calculation: In this step, normal vector of each
cloud point is calculated as new feature indicated by nx, ny ,
nz . The normal of each data point is calculated using its
neighbors.

pi = (x y z r g b nx ny nz)
T . (1)

B. Clustering step

The aim of this paper is object detection using weighted un-
supervised learning. In our approach, we use k-means cluster-
ing algorithm with k-weights for each data point, where k is the
number of clusters that is defined by use. The clustering step
is divided into two main parts; initial seeding, and updating
the weights. First part in the first iteration is initialization of k-
seeds for the k-means algorithm, and initialization of k-weights
for each data point. We use k-means++ [44], [49] algorithm to
obtain the initial seeds of the k-means clustering, while the k-
weights for each data point are initialized to zero. The second
part is updating the k-weights [22]. Weights are going to be
updated at each of the following iterations. At each iteration,
each data point will have k values which indicate a membership

for one of the k clusters. At the end of each iteration, each
point will belong to the cluster that has the highest weight.
The algorithm details are given in equation 1, where Ci is the
color of each cluster that is assigned at the beginning as unique
color for all clusters. The µi is k weights of each point, and
will continually be changing by each iteration and getting new
values. Clustering step includes the labeling, updating the k
weights for each data point, and finally visualization is utilized
to illustrate the results.

1) Labeling: In the adopted weighted unsupervised learn-
ing, each data point has a k-values. At beginning of the
running time, all weights (µp) values are equal to zero for
all data points. After the first iteration, the algorithm starts to
update the k weights of each data point using the formula in
equation 2. According to equation 2, δi is the previous weight
of the cluster i resulting from the previous frame, which will
be updated using scale of weight Ψ to update all memberships.

δi = δi + Ψ where 0 < Ψ ≤ 1. (2)
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Fig. 3: a) Kinect color frame (RGB) with resolution of 1920 X 1080; b) Kinect depth frame with resolution of 512 X 424;
c) Proposed method object detection using k= 7 clusters, and after 10 iterations. Memory consumption is 320 MB and frame
rate is 8.1 ±0.2 FPS.

Fig. 4: a) Kinect color frame (RGB) with resolution of 1920 X 1080; b) Kinect depth frame with resolution of 512 X 424;
c) Proposed method object detection using k=10 clusters, and after10 iterations. Memory consumption is 340 MB and frame
rate is 6.5±0.2 FPS.

For each iteration, we update the weights of a data point by
equations 2 and 3 where δi is weigh before normalization,
and τ is the number of iterations. The increasing rate of τ
depends on frame rate that is addressed in section III and
Figure 7. Therefore, iteration number is increasing around fpst
per second.

τ =
t∑

s=1

fpst (3)

Equation 4 presents a distance function of the cluster-
ing step, Euclidean distance between data points is used as
similarity measure in many clustering algorithms including k-
means. To consider the color difference of these points while
clustering the data point of each frame, the RGB value is
incorporated in the Euclidean distance between any two point’s
vi and vc as addressed in the following equation 4, where
the scales α and δ insure that geometric distance and the
color distance between two points are in the same order of
magnitude. Experimentally, the best value of α is between

0.002 and 0.1. The scale of position is denoted by δ that is
calculated from α using equation 5. By this equation, we define
our new hybrid similarity measure as a function f of two terms;
one in the Euclidean distance, dist, between two points vi and
vc which are data point and centroid information, respectively.

dist(vi, vc) =

√√√√√√√√√√√


δ2

(Xi −Xc)
2+

(Yi − Yc)2+
(Zi − Zc)2

+

α2

(Ri −Rc)2+
(Gi −Gc)2+
(Bi −Bc)2



 , (4)

δ + α ≤ 1 where 0 < α < 1. (5)

After calculating the distance between a point and a cluster
centroid using their position and color as two different features,
we need to incorporate the effect of normal vectors difference
between them; thus, for the Euclidean distance, dist, between
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Fig. 5: a) Shows clustered output after 10 iterations and using k=13 clusters; b) Shows a moving object entering the scene. After
several iterations the algorithm succeeded in distinguishing the moving object as new object; c) Shows moving hand, where the
algorithm successfully detected the moving object; d) Shows a moving object going out of the scene and how the weight of that
object was reduced only after one iteration, and finally; e) Shows clustered output after several iterations as detected objects.

two points vi and vc which denoted each data point and cen-
troid respectively. The angle between normal of the centroid
and normal of each data point is denoted by θ. γ indicates the
scale of normal for distance function. The best value of scale of
normal, γ, in our experiment was found to be between 0.0001
and 0.01. The final similarity measure between the data points
and the centroids that examine the similarity between their
positions, colors and normal vectors is given by the following
equation 6.

f(vi, vc) = dist(vi, vc) + γ(1− cos(θ(ni − nc))). (6)

2) Update weight: the algorithm updates the weights ac-
cording to equation 2 and normalizes them for each data point
according to equations 7 and 8. Then, the algorithm assigns
each data point the label of the cluster with the highest weight.
With regard to equations 7 and 8, (µpi) denotes the weight
of cluster i of data point p and τ is the number of iterations
which are calculated by the equation 3. The summation of k
weights of each data point after normalization could be less
than or equal to one.

µp =

∑τ
i=0 (δi)

‖
∑τ
i=0 (δi)‖

, (7)

where
k∑
i=0

µip ≤ 1. (8)

C. Visualization

After calculating all k weights for all data points at each
iteration, we illustrate the results as an object detection or
segmentation by assigning each cluster a unique color Ci.
Equation 9 indicates assigning one of the k colors to each
data point based on its weight µ. According to equation 8, the
summation of all weights for data point is less than or equal
to one, where µ is the weight of each cluster in a data point.
That means, if we have a data point with k different weighted
labels, the color of it is assigned by following equation:

Cp =
k∑
i=0

(Ci ? µi) (9)

As regards to Algorithm 1, it has one main loop that contains
the iteration of our system, the second loop contains clustering
step that calculate and update weights. For each data points, the
algorithm calculates its distance with respect to all centroids
using RGB as color space, XYZ as points point position and
nx, ny , nz as normal vector. After that algorithm updates the
k weights of each data points after each iteration. Initially in
the first iteration, k seeds are obtained by k-means++ and
all weights labels are initialized equal to zero. For color
assignment, all k weight of each point are used to give the
point a label.
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Fig. 6: Results of segmenting scene objects using proposed algorithm; a) Segmentation of small duck; b) Segmentation and
detection of piece of red paper; c) Object detection of a box; d) Shows handy bag; e) Segmentation of box, the border of the
box has lower weight and it will be completed after several iteration; f ) Representation of moving object, segmentation of a
person; g) Segmentation of basketball.
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Algorithm 1:
while main// This is main loop that is starting at the binging and each iteration

representing one frame
do

while all of data points// this loop represents the number of data points we have in
each frame

do
if Is it the first iteration // for the first iteration only we need to initialize the

seeds
then

Assign centroid by using K-means++ // calculating the all centroid using K-means++
Assign first weighted using regular labels
// calculating the first label for each data point

else
while all of clusters// this loop start from 1 to k
do

dist(vi, vc) =

√√√√√√√√√√√


δ2

(Xi −Xc)
2+

(Yi − Yc)2+
(Zi − Zc)2

+

α2

(Ri −Rc)2+
(Gi −Gc)2+
(Bi −Bc)2




/* calculating distance between each data point and centroid using
position and color of each data point */

f(vi, vc) = dist(vi, vc) + γ(1− cos(θ(ni − nc)))

/* incorporate the differences between angle of normal vectors of each
data point and centroid */

if f(vi) > f(Vi+1) // condition of distance between previous frame and current
frame

then
update labeled weights δi = δi + Ψ where 0 < Ψ ≤ 1

/* updating the weight of data point by scale of weights (one in
our experiment) */

µp =

∑τ
i=0 (δi)

‖
∑τ
i=0 (δi)‖

k∑
i=0

µip ≤ 1

/* normalize all weights for each data point where the summation of
all weights should be less or equal than one */

while all of data points // assigning color to each data point for visualization
do

Cp =
k∑
i=0

(ci ? µi)
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Fig. 7: Left: Chart indicates the memory consumption for different number of clusters where x-axis represents the number of
clusters, k, value and y-axis show the memory consumption in MB. The larger the k value the more memory needed to process
all scene points. Right: The frame rate is given in the right chart where x-axis is number of clusters, k, and y-axis is frame per
second. The larger the k value the less frames per second evaluated.

III. RESULTS

We test our algorithm using different number of clusters,
k, and evaluate memory consumption and frame rate. Figure 7
indicates the frame rate experiments with k between 2 and 100
along with the memory consumption of each experiment. The
frame rate and memory consumption are tightly affected by the
number of clusters. When we have large number of clusters, the
algorithm needs more memory, and frame rate will be reduced.
Figure 3 shows the result of weighted supervised learning with
k = 7 clusters after several iterations; the memory consumption
for seven clusters is 322 MB, and frame rate is 7 ±0.2 frame
per second. The figure 4 shows the result of k=10 clusters
where memory consumption is 344 MB, and frame rate is
6.5 ±0.2 frame per second. The algorithm implementation
consumes multi-thread programming in Visual Studio 2015,
to implement parallel processing for the prepossessing and
clustering parts. All of the loops use the parallel computational
model introduced by Microsoft API [45] assign including for
each data point back-projection, normal calculation, mapping,
and assigning color along with calculating the weights of each
data point [46]. The used hardware running our algorithm plays
another factor for evaluating the system. The used CPU is
capable of multi-thread programming and parallel processing,
which is dual Xeon E5 family 2.29 GHz speed. It has 12
core and 24 logical processors. We do not use GPU in this
application, but the GPU of the system is Nvidia Quadro
K5000 with 4 GB GDDR5 speed [47] with 32 GB memory and
having a speed of 1333 MHz. In addition, we use Universal
Serial Bus (USB) version 3.0 for Kinect connection. Our input
camera is Kinect V2 for Windows [39].

IV. DISCUSSION

With regard to our results, this algorithm provides a unique
output that can be useful for researchers in computer graph-
ics, computer vision, robotics, and other related fields. The
weighted unsupervised learning for object detection proposed
in this paper shows its capabilities to the smooth the output
in noisy environments in real-time producing scene objects.
The results shown in Figure 7 indicate that this model can be
real-time and has the capability for mobility applications with
low memory consumption without the need for an expensive
GPU. Using three features in clustering step, position, color
and normal, gives us the capability to group similar data points
to objects with accurate results. Our results show that the use
of the weight to indicate the membership for each data point to
a cluster and then for object detection is sufficient for detecting
moving objects in noise environment, which was captured by
an RGB-D camera.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a weighted unsupervised learn-
ing for object detection framework using a single RGB-D
camera. In the proposed method, we use CPU-based program-
ming and multi-thread processing. The results are provided
in real-time. In preprocessing step, we generate 3D data
points, and after preprocessing, clustering step is applied by
initialization of seeds and updating the weights of each data
point. Finally assigning colors is used to illustrate object
detection results. Another distinct contribution of this paper
is segmentation of a particular object, particularly for moving
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objects that can be updated by each frame. The frame rate
of this work is between 1 and 12 frame per second, and
memory consumption of this algorithm is between 280 MB
and 1 GB for different values of clusters. This algorithm can
be applied in any object detection and segmentation application
in the fields of computer graphics, robotics, vision, or for
surveillance and object controlling. Future directions of this
work can be summarized in extending this method to GPU
based programming, increasing the performance and frame rate
simultaneously.
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VI. APPENDIX

Converting the projective 3D position to real world with re-
spect to camera is done by following equations 10, 11, 12, 13,
and 14, where field of view is denoted by fov, Wx, Wy and
Wz is world coordinate system of X, Y, and Z respectively,
and Px, Py , and Pz shows the projection parameters.

scale
x

= 2 ? tan(
fovx

2
) (10)

Scaley = 2 ? tan(
fovy

2
) (11)

Wx = Pz ? Scalex ? (
Px
Rw
− 0.5) (12)

Wy = Pz ? Scaley ? (
Py
Rw
− 0.5) (13)

Wz = Pz (14)

fovx for Kinect 1is equal to 1.014468 and fovy is equal to
0.7898094 [48], and in many researches, people use these
numbers that reduced the field of view, but as new resolution
of Kinect V2 we use 1.22173047 for fovx and 1.0471975511
by changing degree to radian Radian = Degree?π

180 . The weight
of each data point can be equal or bigger than zero, µi > 0
where i ∈ [0, k − 1] and k is the number of clusters. The
distance which is calculated in equation 4 and 6 and shown
as f(vi, vc), can be zero if and only if centroid and data point i
are equal to each other, i = c. The scale of color and position
as shown δ and α, both are positive number and cannot be
zero, and as we mention to that, summation of them is less
than one. All results are calculated by sampling of one, so
if we increase the sampling to more than one our resolution,
and memory consumption will decrease and frame rate will be
increased.
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