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Abstract—This paper presents a constrained least mean
squared (LMS) algorithm for MIMO CDMA linear equalizer is
presented, which is constrained on spreading sequence length,
number of subscribers, variances of the Gaussian noise and
the multiple access interference (MAI) plus the additive noise
(introduced as a new constraint). The novelty of the proposed
algorithm is that MAI and MAI plus noise variance has never
been used as a constraint in MIMO CDMA systems. Convergence
analysis is performed for the proposed algorithm in case when
statistics of MAI and MAI plus noise are available. Simulation
results are presented to compare the performance of the proposed
constrained algorithm with other constrained algorithms and it
is proved that the new algorithm has outperformed the existing
constrained algorithms.

Index Terms—Least mean squared (LMS), multiple input,
multiple output (MIMO), linear equalizer, multiple access in-
terference (MAI), Variance, AWGN, adaptive algorithm

I. INTRODUCTION
It is shown in the literature that performance of an adaptive

algorithm may be enhanced if partial knowledge of a particular
channel is blended in the algorithm design[1], [2]. Based on
this idea, [1] presented an algorithm (Noise-constrained LMS)
for identification and tracking of finite impulse response (FIR)
channels using the variance of the receiver noise. An advantage
of the noise constrained least mean squared (NCLMS) is that
it outperforms the LMS algorithm while keeping the same
computational complexity. A complementary pair LMS (CP-
LMS) [3] was initiated by using constrained optimization
technique named augmented Lagrangian (AL) which can be
utilized to solve the problem of selecting an appropriate update
step-size in LMS algorithm. This technique was utilized in [4],
in which the knowledge of the variance of MAI plus noise was
incorporated to develop what is called the constrained LMS
algorithm (MNCLMS) for CDMA systems.

Since MAI and the additive white Gaussian noise (AWGN)
effect performance of CDMA multi user, multi-antenna en-
vironment, it is imperative to design a receiver architecture
which will negate the effect of MAI and additive noise. This
requires a MIMO implementation of the MNCLMS algorithm
presented in [4]. The proposed constrained algorithm is de-
veloped by incorporating MIMO MAI and noise variances
thus resulting in a generalized MIMO MAI plus noise con-
strained LMS (MIMO-MNCLMS) adaptive algorithm. As it is

generalized, we can deduce MAI constrained algorithm, noise
constrained algorithm and zero constrained noise algorithm as
special cases.

This paper is organized as follows. After introductory
remarks, section 2 presents the motivation for the algorithm
development. Algorithm development is presented in section
3 whereas section 4 deals with the convergence analysis.
Computational complexity of the algorithm is given in section
6. In order to find the theoretical findings, simulation results
are presented in Section 7 . Concluding remarks are shown in
section 8.

II. MOTIVATION

Adaptive algorithms such as LMS and RLS do not use
models for channel coefficients and/or noise, whereas model
based algorithms utilize various types of models such as
random walk, auto-regressive etc. for coefficients and AWGN.
Model parameters are either known or jointly estimated with
a channel. Adaptive algorithms can be inferred to as model
based algorithms with model parameters’ choice dependent on
data [5]. It has been reported in the literature that practically
it is possible to enhance the performance of an adaptive
algorithm if partial knowledge of the channel is available
provided that the computational cost of an algorithm is not
increased tremendously. According to the noise constrained
LMS algorithm [6]

(1)wn+1 = wn + µ
l
nenXn

(2)µn+1 = 2µ
l
n(1 + γλn)

(3)λn+1 = λn + β

[
(

1
2

e2
n − σ

2
ν l

m
)− λn

]
Where λ , α and β are positive constants. This is a variable

step size (LMS) algorithm because step size rule is applicable
due to the constraint on the noise variance. The computational
cost of the aforementioned algorithm is the same as of LMS
but the convergence rate of the noise constrained LMS algo-
rithm is much faster than the LMS due to its three independent
parameters.
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MAI is the major limiting factor in the system performance
of a multiuser environment, it is required to design a multi
receiver scheme which will negate the effect of MAI and
the additive noise. Previous research work treated MAI as a
part of interfering noise. This assumption is not practically
correct which led this work to use MAI as an additional
constraint by using structured information contained in it. We
also believe that by using the combined information of MAI
and the interfering noise to form into a single constraint would
result in an algorithm which would outperform the noise only
constrained algorithm. It is worth mentioning here that by
using MAI alone as a constraint is not a viable choice since
noise is an undeniable physical constraint and may not be
ignored while developing such algorithms.

As NCLMS algorithm is noise constrained only, a new
constrained algorithm is established, by incorporating MAI
variance as well as the noise variance, thus resulting in a gener-
alized MAI plus noise constrained LMS (MNCLMS) adaptive
algorithm. Since this proposed algorithm is generalized, this
algorithm is able to deduce MAI constrained, noise constrained
and zero constrained noise algorithms as special cases.

III. ALGORITHM DEVELOPMENT
In MIMO-CDMA system with N transmitting and M receiv-

ing antennas, output of mth matched-filter, matched to intended
subscriber’s (subscriber 1) spreading sequence consists of the
desired user’s component, bl

m, MIMO-MAI, U l
m and the white

Gaussian noise, ν l
m as

(4)yl
m = bl

m +U l
m + ν

l
m

= bl
m + Zl

m

where yl
m is the output of the matched filter and Zl

m is the
MIMO MAI and noise at the mth receiving antenna with
variance σ2

Zm
. The statistical characterization (variance) of

MIMO CDMA MAI and noise is given in [7]. The MIMO
CDMA MAI is given by

(5)Zl
m =

N

∑
n=1

K

∑
K=2

AKbl,k
n ρ

K,1hl
mn + ν

l
m

= U l
m + ν

l
m

In 5, K is the number of subscribers, whereas sl,k
n (t)

represents the rectangular signature waveform with a random
signature sequence of kth subscriber defined as (l−1)Tb ≤
t ≤ lTb, whereas Tb and Tc represent bit period and the chip
intervals respectively related by Nc = Tb/Tc. bl,k

n is the input
bit stream of the kth subscriber, hl

mn is the lth channel tap
between the nth transmitter and the mth receiver, Ak is the
transmitted amplitude of the kth subscriber and νm is the AWG
noise having zero mean and variance σ2

ν at the mth receiver.
The cross-correlation between the signature sequences of
subscriber j and k for the lth symbol is given as

(6)
ρ

k, j
l =

∫ lTb

(l−1)Tb

sk
n (t)s j

n (t)dt

=
Nc

∑
i=1

ck
l,ic

j
l,i

where ck
l,i is the normalized spreading sequence of the sub-

scriber k for the lth symbol.
The MIMO CDMA MAI consists of two random variables

given as

(7)
U l

m =
N

∑
n=1

K

∑
K=2

AKbl,K
ρ

K,1hl
mn

=
N

∑
n=1

C hl
mn,

where C is MAI in AWGN environment [8]. The desired
subscriber’s component is written as

bl
m =

[(
hl

m1

)T (
hl

m2

)T
. . .
(

hl
mn

)T
]
×[(

xl
1

)T (
xl

2

)T
. . .
(

xl
N

)T
]T

(8)

In (8), hl
m1 =

[
hl

m1 hl−1
m1 . . . hl−L+1

m1

]T
is the time varying

impulse response (TVIR) of the channels and is an L× 1
vector. xl

n =
[
xl

n xl−1
n . . .xl−L+1

n
]T is an L×1 vector. The filter

impulse response (FIR) of the LE which consists of an FFF
is given by

(9)wl
n =

[(
F l

n

)T
]

In (9), F l
n is the nth multiple input, single output (MISO)

FFF with dimension of ML× 1, where L is the taps of FFF
and M is the number of receivers.

The mean-squared error MSE) to be minimized is

(10)J
(

wl
n

)
=
[
el

n

]2

where el
n is the error between output of a matched filter and

an adaptive filter and is shown to be

(11)el
n = x̂n − wl

nDl
n

here, Dl
n is the combined input to the LE and is given by

(12)Dl
n =

[(
yl

n

)T
]

and is of the order of (ML×1).

(13)yl
n =

[(
yl

1

)T (
yl

2

)T (
yl
M

)T
]T

is the input to the FFF of dimension ML×1 and is a collection
of vectors consisting of yl

m given by

(14)yl
m =

[
yl

m yl−1
m yl−L+1

m

]T

.
and

(15)x̂n = wT
o Dl

n

= xl
n + ν̄

l
n

or

(16)xl
n = wT

o Dl
n − ν̄

l
n
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ν̄ l
n is the filtered noise which passes through FFF and is

composed of MAI and noise.
Minimizing cost function in (10) over wl

n will give an
appropriate value at time l. In other words, wopt = H l

mn(of size
1×NL matrix) with Ĵ(opt) = σ2

ν̄ l
n

represents MSE. It is known
that knowledge of σ2

ν̄ l
n

[6] is helpful in selecting the search
direction for an adaptive algorithm in multisubscriber case
which is quite similar to the MNCLMS algorithm in single
subscriber environment.

To minimize J(wl
n) over wl

n subject to the constraint
J(wl

n) = σ2
ν̄ l

n
,the Lagrangian of this is given by

(17)J1(wl
n,λ

l
n) = J(wl

n) + λ
l
n

[
J(wl

n)− σ
2
ν̄ l

n

]
Since critical values of λ l

n are not unique in this case so we
are using an augmented Lagrangian to get rid of this issue by
defining the under mentioned cost function

(18)J2(wl
n,λ

l
n) = J(wl

n + γλ
l
n

[
J(wl

n)− σ
2
ν̄ l

n

]
− γnλ

2
n

Solution to (18) is given by using the method used in [6]
and is shown to be

(19)wl+1
n = wl

n + µ
l
nel

nDl
n

where µ l
n is the positive step size and is given by

µ
l
n = µn

(
1+ γnλ

l
n

)
,

m = 1,2, . . . ,M (20)

λ
l+1
n = λn +βn

[
1
2
(el2

n −σ
2
ν̄ l

n
)−λ

l
n

]
,

m = 1,2, , . . . ,M (21)

Since channel taps are independent of spreading sequence
as well as data sequence, the interferer’s components are also
independent of one another having zero mean.

The variance of MAI for an equal power can be written as

(22)U l
m = A2

(
K − 1

NC

) N

∑
n=1

E
[
h2

mn
]

whereas the variance of MAI in the unequal transmitted
power is given by

(23)U l
m =

k

∑
k=2

(Ak)2

NC

N

∑
n=1

E
[
h2

mn
]

In (22) and (23), E
[
h2

mn
]

is the second moment of E [hmn].

IV. CONVERGENCE ANALYSIS

In this section, convergence behavior of our proposed algo-
rithm in the presence of MAI and noise for an LE receiver is
analyzed. Following independent assumptions have been used
while performing the convergence analysis [9].

Assumption 1: The input process
{

xl
n
}

is an independent
and identically distributed (i.i.d) random variable with auto
correlation matrix of Rxx = E

[
xT

n xn
]
.

Assumption 2: The noise sequence is a zero mean i.i.d.
sequence, Gaussian random variable having variance σ2

νn . This
sequence is independent of the input process.

Assumption 3: MAI in AWGN environment represented by
U l

m is zero mean Gaussian random variable with variance σ2
Um

.
It is is independent of the input process as well as the noise.

Assumption 4: For any fixed time. say l, step size µ l
n and

weight vector vl
n (defined later) are statistically independent

of each another.

The above mentioned assumptions are justified as follows

Although assumption 1 is not true in reality but is commonly
used in literature and it has been shown in the literature that
simulation results under this condition closely match with the
analytical results.

Assumption 2 termed as independent assumption, is also
commonly used in the literature and could be justified in many
cases.

Gaussian appropriation of MAI in AWGN is extensively
used in the adaptive filtering literature [10]. Since MAI is in-
dependent of the noise process, assumption 3 can be validated.
In this way, MAI and noise is independent of the input process
as well.

Generally µ l
n and vl

n are dependent but if the parameters are
chosen in such a way that steady-state variance of µ l

n and or
vl

n is small, assumption 4 can be justified.
xk and xn are also independent as both are uncorrelated for

n 6= k. Thus the input vector xn and the weight error vector
(defined later)vl

n are also independent [11].
Weight update equation of the proposed algorithm is written

as
(24)wl+1

n = wl
n + µ

l
nel

nDl
n

Where n = 1,2........,N represents the nth stream.
If wn(opt) is said to be the optimum value of weight

according to the Wiener solution then weight error vector vl
n

can be defined as

(25)vl
n = wn(opt) − wl

n

Subtracting wn(opt) from both sides of (19) results in

vl+1
n + wn(opt) = −wl

n + wn(opt) − µ
l
nel

nDl
n

(26)vl+1
n = vl

n − µ
l
nel

nDl
n

The desired response of the decision device
(
x̃l

n
)
can be

expressed as
(27)x̃l

n = wT
(opt)D

l
n

By using 27, it can be shown in case of system identification
scenario, el

n could be setup as below:

(28)el
n = wT

(opt) − (wl
n)

T

For n = 1,2, . . .N.
(28) can be compactly written as

(29)
el

n =
(

vl
n

)T
Dl

n

=
(

Dl
n

)T
vl

n
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Now the recursion of weight error vector can be shown as

(30)vl+1
n = vl

n − µ
l
nDl

n

(
Dl

n

)T
vl

n

(31)vl+1
n = {I− µ

l
nDl

n

(
Dl

n

)T
}vl

n

Taking expectation on both sides of (31) with the assump-
tions made earlier, will yield

(32)v̄l
n =

[
I− µ̄ l

nE
{

Dl
n

(
Dl

n

)T
}]

v̄l
n

µ̄ l
n = E

[
µ l

n
]

is the mean step size and v̄l
n = E

[
vl

n
]

is the
weight error vector in the equation above. Whereas

E
[

Dl
n

(
Dl

n

)T
]
= E

[(
yl

n

)T
][(

yl
n

)T
]T

or

(33)R̃ = E
[(

yl
n

)T
]T [(

yl
n

)T
]

or

(34)R̃ = E
[

Dl
n

(
Dl

n

)T
]

where R̃ is the correlation matrix of input process

A. Auto-correlation Structure of MIMO-CDMA Linear Equal-
izer (LE)

The correlation matrix R̃ is given by

(35)R̃ = RDl
nDl

n

B. Eigenvalues of Linear Equalizer (LE)
If ϒ1 , ϒ2 , ϒ3 . . .ϒN represent the eigenvalues of R̃, then

the an important condition for the convergence in the mean is
given as ∣∣∣1− µ̄

l
nϒN

∣∣∣ < 1,

The value of µ̄ l
n is bounded in the range

(36)
0 < µ̄

l
n

<
2

ϒmax

where ϒmax is the maximum eigenvalue of R̃. By using a
strong and a much simpler condition for convergence of
mean weight error vector [12] can be given as

(37)µmax <
2

ϒmax

V. TRANSIENT ANALYSIS OF THE PROPOSED ALGORITHM

Transient analysis of an adaptive algorithm is very important
to observe the convergence behavior of an adaptive algorithm
and to derive steady-state expressions for different error per-
formance measures, such as EMSE and mean-square deviation
(MSD). Basically, transient analysis is the observation of
the time-evolution of the adaptive algorithms when there are
variations in the signal statistics; or in other words to study
the learning mechanism of an adaptive algorithm. Energy
conservation method is used to carry out the transient analysis
[9].

A. Error Measures

Transient analysis of an adaptive algorithm deals with the
time evaluation of of E

[∣∣el
n
∣∣2]and E

[
‖vl

n‖2
]

, where vl
n is the

weight error vector and is given by

(38)vl
n = wl

n(opt) − wl
n

For some symmetric positive definite weighting matrix Ω ,We
define, weighted a priori and a posteriori estimation errors as

(39)eΩ
an =

(
vl

n

)T
ΩDl

n

and

(40)eΩ
pn =

(
vl+1

n

)T
ΩDl

n

For the case when, Ω = I, the weighted a priori and a
posteriori estimation errors defined above will be reduced
to a standard a priori and a posteriori estimation errors,
respectively, i.e

(41)el
an =

(
Dl

n

)T
vl

n

and

(42)el
pn =

(
Dl

n

)T
vl+1

n

It will be elaborated later in that different choices of Ω will
yield different performance measures for the evaluation of an
adaptive filter.

Since,

el
n = xl

n −
(

wl
n

)T
Dl

n

=
(
w(opt)

)T − ν̄ l
n −

(
wl

n

)T
Dl

n

(43)el
n =

(
vl

n

)T
Dl

n − ν
l
n

= el
an − ν̄ l

n

Also, by using (40) and and (26) it can be shown that

(44)eΩ,l
pn = eΩ,l

an − µ
l
n‖Dl

n‖2
Ωel

n

B. Performance Measures

The EMSE of the proposed algorithm is given by

(45)EMSE = E
[∣∣∣el

an

∣∣∣2]
and steady state EMSE is

(46)E
[∣∣∣el

an

∣∣∣2] = ξ∞
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C. Fundamental Weighted Energy Relation

The fundamental weighted-energy conservation relation [9]
is used in this section to develop the framework for the
transient analysis of the proposed MNCLMS algorithm. (44)
can be expressed as

(47)eΩ,l
n =

eΩ,n
n − eΩ,l

pn

µ l
n ‖Dl

n‖
2
Ω

By using (26) and (47) ,the following equation can be
established

(48)v̄l+1
n = vl

n −
Dl

n

‖Dl
n‖

2
Ω

[
eΩ,l

an − eΩ,l
n

]
The fundamental weighted-energy conservation relation can

be shown as

(49)vl+1
n +

1

‖Dl
n‖

2
Ω

∣∣∣eΩ
an

∣∣∣2 =
∥∥∥vl

n

∥∥∥2

Ω

+
1

‖Dl
n‖

2
Ω

∣∣∣el,Ω
pn

∣∣∣2
49 describes, how the weighted energies of the error quan-

tities evolve with time. Different choices of Ω will yield dif-
ferent performance measures for the evaluation of an adaptive
filter[9].

D. Time Evolution of the Weighted Variance

This section deals with derivation of time evolution of the
weighted variance for the proposed MNCLMS algorithm using
the fundamental weighted-energy conservation relation equa-
tion (49). Substituting (44) into (49) and taking expectation
on both sides will result in

E
[∥∥∥vl+1

n

∥∥∥2

Ω

]
= E

[∥∥∥vl
n

∥∥∥2

Ω

]
−

2µ̄ l
nE
[
el,Ω

an en

]
+(µ l

n)
2E
[∥∥∥Dl

n

∥∥∥2

Ω

e2
n

]
(50)

where (µ l
n)

2 is E[
(
µ l

n
)2
]. Next, the expectations in the

second and third terms on the right hand side of equation
(50) is evaluated by using the following assumption

A5): For any constant matrix Ω and for all l, el
an and eΩ

an
are jointly Gaussian.

This assumption seems reasonable for longer filters using
the central limit theorem [13], [14], [4]. So, E

[
e

l,Ω
an en

]
can be

simplified as

E
[
el,Ω

an en

]
= E

[(
Dl

n

)T
Ωvl

n

(
Dl

n

)T
Ivl

n

]
=

E
[(

vl
n

)T
(

Ω

(
Dl

n

)(
Dl

n

)T
I
)

vl
n

]
= E

[∥∥∥vl
n

∥∥∥2

ΩE
[
(Dl

n)(Dl
n)

T
]
]
= E

[∥∥∥vl
n

∥∥∥2

ΩR̃

]
(51)

Now, E
[∥∥Dl

n
∥∥2

Ω
e2

n

]
is being solved by using the following

assumption
A6): The adaptive filter is long enough so that

∥∥Dl
n
∥∥2

Ω
and

e2
n are uncorrelated [9].

This assumption is more realistic when the filter length
gets longer[9]. As MAI plus noise is independent of Dl

n,
expectation E

[∥∥Dl
n
∥∥2

Ω
e2

n

]
can be simplified as

E
[∥∥∥Dl

n

∥∥∥2

Ω

e2
n

]
= E

[∥∥∥Dl
n

∥∥∥2

Ω

]
E
[
e2

n
]
=

E
[∥∥∥Dl

n

∥∥∥2
](

E
[(

el
an

)2
]
−σ

2
ν̄ l

n

)
(52)

Now using (51) and (52) and, (50) can be written as

E
[∥∥∥vl+1

n

∥∥∥2

Ω

]
= E

[∥∥∥vl
n

∥∥∥2

Ω

]
−2µ̄

l
nE
[∥∥∥vl

n

∥∥∥2

ΩR̃

]
+

(µ l
n)

2E
[∥∥∥Dl

n

∥∥∥2

Ω

](
ξ

l
n−σ

2
ν̄ l

n

)
(53)

(53) shows the time evaluation or the transient behavior
of the weighted variance E

[∥∥vl
n
∥∥2

Ω

]
for any constant weight

matrix Ω. Different performance measures can be achieved by
the proper choice of the weight matrix Ω.

E. Constructing the Learning Curves for the Excess Mean
Square Error (EMSE)

Learning curves for the EMSE can be constructed by using
EMSE = E

[(
el

an
)2
]
= E

[∥∥vl
n
∥∥2

R̃

]
. If Ω = I, R̃, . . . , R̃N−1, a

set of relations can be obtained. Now by using the Cayley-
Hamilton theorem, following can be established

(54)Ω = −p0I − p1R̃− . . .− pN−1R̃N−1

where
(55)p(x) , det

(
xI − R̃

)
= p0 + p1x + . . .+ pN−1xN−1 + xN

is the characteristic polynomial of R̃.Consequently,

E
[∥∥∥vl+1

n

∥∥∥2

R̃N−1

]
= E

[∥∥∥vl
n

∥∥∥2

R̃N−1

]
+2µ̄ l

n(
p0E

[∥∥∥vl
n

∥∥∥2

I

]
+ p1E

[∥∥∥vl
n

∥∥∥2

R̃

]
+ . . .

+pN−1E
[∥∥∥vl

n

∥∥∥2

R̃N−1

])
+(µ l

n)
2E
[∥∥∥Dl

n

∥∥∥2

R̃N−1

](
ξ

l
n +σ

2
ν̄ l

n

)
(56)

So,

(57)ϒ
l
n

=



1 −2µ̄ l
n 0 · · · 0 0

0 1 −2µ̄ l
n 0 · · · 0

... 0 1 −2µ̄ l
n · · ·

...
0 0 0 1 −2µ̄ l

n 0
0 0 · · · 0 1 −2µ̄ l

n
2µ̄ l

n p0 2 ¯µ l
n p1 2µ̄ l

n p2 · · · 2µ̄ l
n pN−2 1 + 2µ̄ l

n pN−1


And

(58)ϖ
l
n =


E
[∥∥vl

n
∥∥2

I

]
E
[∥∥vl

n
∥∥2

R̃

]
...

E
[∥∥vl

n
∥∥2

R̃N−1

]


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Similarity

(59)al
n =


E
[∥∥Dl

n
∥∥2

I

]
E
[∥∥Dl

n
∥∥2

R̃

]
...

E
[∥∥Dl

n
∥∥2
]


By combining 57 , 58 and 59 ,

(60)ϖ
l+1
n = ϒ

l
nϖ

l
n + (µ l

n)
2
(

ξ
l
n + σ

2
ν̄ l

n

)
al

n

VI. STEADY-STATE ANALYSIS OF THE MNCLMS
ALGORITHMS

Steady-state analysis of an adaptive filter is performed to
study the behavior of steady-state EMSE and MSD. Steady-
state performance measures is also obtained by analyzing (50)
when l→ ∞ which is presented in the next section i.e

(61)lim
l →∞

E
[∥∥∥vl+1

n

∥∥∥2

Ω

]
= lim

l→∞
E
[∥∥∥vl

n

∥∥∥2
]

So at steady-state (53) will become

2µ̄
∞
n lim

l →∞
E
[∥∥∥vl

n

∥∥∥2

ΩR̃

]
= (µ∞

n )
2 lim

l→∞
E
[∥∥∥Dl

n

∥∥∥2

Ω

](
ξ

∞
n + σ

2
ν̄ l

n

)
(62)

Where µ̄∞
n , (µ∞

n )
2and ξ ∞

n are steady-state values of µ̄ l
n,

(µ l
n)

2and ξ l
n respectively. Now using (20) and (21) it can be

shown that

(63)
(

µ̄
l
n

)2
= (µ l

n)
2
(

2γλ
l
n + γ

2
(

λ̄
l
n

)2
)

(
λ

l+1
n

)2
= (1−β )2

(
λ

l
n

)2
+β (1−β ) λ̄

l
nξ

l
n+

β 2

4

[
E
[∣∣∣el

n

∣∣∣4]
−2σ

2
ν̄ l

n

(
ξ

l
n +σ

2
ν̄ l

n

)
+σ

4
ν̄ l

n

]
(64)

(64) can be written compactly as

(65)
(

λ
l+1
n

)2
= (1 + β )2 (λ l

n)
2
+ β (1− β ) λ̄

l
nξ

l
n +

β

2
ξ

l
nσ

2
ν̄ l

n

If we define mean Lagrangian multiplier as λ̄ l
n = E

[
λ l

n
]
, it

can be shown that at steady-state

(66)λ̄
l
n =

ξ ∞
n

2

Similarly, if µ̄ l
n = E

[
µ l

n
]
, it can be shown that

(67)µ̄
∞
n = µ

(
1 + γ

ξ ∞
n

2

)
(63) can be expressed as

(68)(µ∞
n )

2 = µ
2
[
1 + 2γλ

∞
n + γ

2 (λ ∞
n )2
]

(65) is written as

(69)(λ ∞
n )2 =

1
(2− β )

[
(1− β )

2
(ξ ∞

n )2 + βξ
∞
n σ

2
ν̄ l

n

]

Using (62) with Ω = I,

2ξ
∞
n + γ (ξ ∞

n )2 = µTr
(
R̃
)

ξ
∞
n +µTr

(
R̃
)

σ
2
ν̄ l

n
+

µγTr
(
R̃
)
(ξ ∞

n )2+

µγTr
(
R̃
)

σ
2
ν̄ l

n
ξ

∞
n

+µγ
2
(

1
2−β

)(
1−β

2

)
Tr
(
R̃
)
(ξ ∞

n )3

+µγ
2
(

1
2−β

)(
1−β

2

)
Tr
(
R̃
)

+µβTr
(
R̃
)

σ
2
ν̄ l

n
(ξ ∞

n )2+

µβTr
(
R̃
)

σ
2
ν̄ l

n
ξ

∞
n (70)

(70) is cubic in terms of ξ ∞
n and can be expressed as

(71)A(ξ ∞
n )3 + B(ξ ∞

n )2 +Cξ
∞
n + D = 0

In 71above,

(72)A = −µγ
2Tr
(
R̃
)( 1

2− β

)(
1− β

2

)

(73)B = γ−µTr
(
R̃
)[

γ +σ
2
ν̄ l

n

{(
1

1− β

)(
1− β

2

)
+β

}]

(74)C = 2− µTr
(
R̃
)[

1 +
(

γ + βσ
2
ν̄ l

n

)
σ

2
ν̄ l

n

]
And

(75)D = −µTr
(
R̃
)

σ
2
ν̄ l

n

Now assuming that at steady-state, µTr
(
R̃
)
� 1 [15], it

can be shown that at steady-state, the value of ξ ∞
n is close

to zero meaning that higher powers of ξ ∞
n can be ignored.

Consequently, (71) will become,

(76)Cξ
∞
n + D = 0

or
(77)ξ

∞
n =

−D
C

Hence, steady-state EMSE of the proposed MNCLMS al-
gorithm in the presence of MAI and noise can be shown to
be

(78)ξ
∞

n(MNCLMS) ≈
µTr

(
R̃
)

σ2
ν̄ l

n

2− µTr
(
R̃
)[

1 +
(

γ + βσ2
ν̄ l

n

)
σ2

ν̄ l
n

]
By using the same procedure developed above, steady-

state EMSE of the LMS, NCLMS, ZNCLMS, and MCLMS
algorithms in the presence of MAI and noise can be shown,
respectively to be

(79)ξ
∞

n(LMS) ≈
µTr

(
R̃
)

σ2
ν̄ l

n

2

ξ
∞
NCLMS ≈

−
(
2 + γσ2

U

)
+ 2µTr

(
R̃
)

σ2
U

[
1 + γσ4

U
+ γ2

(
1−β

2−β

){
σ2

U
+ σ4

U

}](
2 + γσ2

U

)
− 2µTr

(
R̃
)

(80)

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 1, 2016 

707 | P a g e
www.ijacsa.thesai.org 



ξ
∞
ZNCLMS

≈
−
(

2 + γσ2
ν̄ l

n

)
+ 2µTr

(
R̃
)

σ2
ν̄ l

n

[
1 + γσ4

ν̄ l
n
+ γ2

(
1−β

2−β

){
σ2

ν̄ l
n
+ σ4

ν̄ l
n

}]
(

2 + γσ2
ν̄ l

n

)
− 2µTr

(
R̃
)

(81)

ξ
∞
MCLMS

≈
−
(

2 + γσ2
ν̄ l

n

)
+ 2µTr

(
R̃
)

σ2
ν̄ l

n

[
1 + γσ4

ν̄ l
n
+ γ2

(
1−β

2−β

){
σ2

ν̄ l
n
+ σ4

ν̄ l
n

}]
(

2 + γσ2
ν̄ l

n

)
− 2µTr

(
R̃
)

(82)

VII. TRACKING ANALYSIS OF THE MNCLMS
ALGORITHMS FOR THE RANDOM WALK CHANNEL IN THE

PRESENCE OF MAI AND NOISE

Tracking analysis of an adaptive filter is performed to study
its ability to track down the time variations in the channel.
This is due to the fact that statistical properties of the weight
vector and error signals are able to track the changes in the
input signal variation by relying on instantaneous data [9].
In this section, tracking analysis of the proposed algorithm is
performed for a random walk model.

A. Random Walk Model

This section deals with the tracking analysis of the MN-
CLMS algorithm performed for a random walk channel.
A general framework for the tracking analysis of adaptive
algorithms is used in this section which can handle random
system nonstationarities [16] . This framework is based on
an energy conservation relation and is valid for adaptive
algorithms whose recursion is of the form

(83)wl+1
n = wl

n + µ
l
nDl

n f
(

el
n

)
Where f

(
el

n
)

represents a general scalar function of the
output estimation error el

n. For an LMS algorithm f
(
el

n
)
= el

n.
The random walk model for a channel is given by

(84)wl+1
n = wl

o,n + ql
n

ql
n in (84) is assumed to be zero mean, i.i.d, with a positive

definite co-variance matrix E
[
qnqT

n
]
= Q and is also statis-

tically independent of the input regressor and the MAI plus
noise, whereas wo

n is the unknown system to be tracked. For
tracking analysis of an adaptive algorithm, a very important
measure is its steady-state tracking EMSE (ξ ∞

n ) defined as

(85)
ξ

∞
n = lim

l→∞
E
[∣∣∣el

an

∣∣∣2]
= E

[∥∥∥vl
n

∥∥∥2

R̃

]
Where vl

n = wo
n −wl

n is the weight error vector for the
random walk channel.

B. Fundamental Energy Relation for the Random Walk Chan-
nel

In this section, the fundamental energy conservation relation
[9] is used to develop the framework for the tracking analysis
of the proposed MNCLMS algorithm. By using (19) and (84),
it can be shown that

(86)vl+1
n = vl

n − µ
l
nel

nDl
n + q

Consider the (83) , which is given by

(87)wl+1
n = wl

n + µ
l
nDl

n f
(

el
n

)
Subtracting both sides of the (87) from wl+1

0,n

(88)
(

wl+1
o,n − wl+1

n

)
=
(

wl+1
o,n − wl

n

)
− µ

l
nDl

n f
(

el
n

)
In case of an LMS algorithm, f

(
el

n
)
= el

n, so (88) becomes

(89)wl+1
o,n − wl+1

n =
(

wl+1
o,n − wl

n

)
− µ

l
nDl

nel
n

Now we transpose both sides of (89)

(90)
(

wl+1
o,n − wl+1

n

)T
=
(

wl+1
o,n − wl

n

)T
− µ

l
nel

n

(
Dl

n

)T

By multiplying both sides of (90) with Dl
n from left yields(

wl+1
o,n − wl+1

n

)T
Dl

n =
(

wl+1
o,n − wl

n

)T
Dl

n − µ
l
nel

n

(
Dl

n

)T
Dl

n

(91)

Equation (91) in terms of a priori error and a posteriori
errors can be expressed as

(92)el
p,n = el

a,n − µ
l
nel

n

∥∥∥Dl
n

∥∥∥2

For the case when Ω = I, 86 becomes

(93)vl+1
n = vl

n − Dl
n

[
el

an − el
pn

‖Dl
n‖

2

]
+ ql

n

By evaluating the energies on both sides of (93) We get

(94)
∥∥∥vl+1

n − ql
n

∥∥∥2
+

1

‖Dl
n‖

2

∣∣∣el
an

∣∣∣2 =
∥∥∥vl

n
l
∥∥∥2

+
1

‖Dl
n‖

2

∣∣∣el
pn

∣∣∣2
Since ql

n is a zero mean stationary random vector and is
independent of the input regressor vector and the MAI plus
noise, so (94) , can be expressed as∥∥∥vl+1

n

∥∥∥2
−
∥∥∥ql

n

∥∥∥2
+

1

‖Dl
n‖

2

∣∣∣el
an

∣∣∣2 =
∥∥∥vl

n

∥∥∥2
+

1

‖Dl
n‖

2

∣∣∣el
pn

∣∣∣2
(95)

(95) is the random walk tracking model for MNCLMS
algorithm. The energy relation is used to evaluate the excess
mean-square error at steady state.
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TABLE I
COMPUTATIONAL COMPLEXITY PER ITERATION FOR DIFFERENT
ALGORITHMS FOR REAL VALUED DATA IN TERMS OF THE REAL

MULTIPLICATIONS, REAL ADDITIONS AND REAL DIVISIONS

Algorithm × +

LMS 2L+1 L
RLS L2 +5L+1 L2 +3L

MNCLMS[4] 2L+1 2L+6
MIMO-MNCLMS(LE) 2ML+8 2ML+4

C. Tracking Steady-State EMSE of the MNCLMS Algorithms

A7): qn is a zero-mean stationary random vector process
with a positive definite covariance matrix Q and is statistically
independent of the input regressor vector xl

n and MAI plus
noise Zl

m sequence .
Taking expectation on both sides of equation (95) and using

equation (44) assumption A7) and the fact that at steady-state,
vl+1

n = vl
n , the following equation can be obtained

(96)2E [µ∞
n ξ

∞
n ] = Tr (Q∞

n ) + E
[
(µ∞

n )
2 ‖D∞

n ‖
2 (e∞

n )
2
]

Where Tr (Q∞
n ) =

[
q∞

n (q∞
n )

T
]
. By using equation (96) to-

gether with assumption A4 yields

(97)2µ
∞
n ξ

∞
n = Tr (Q∞

n ) + (µ∞
n )

2Tr
(
R̃
)(

ξ
∞
n − σ

2
ν̄ l

n

)
By substituting the values of µ̄∞

n , λ̄ ∞
n , (µ∞

n )
2
and (λ ∞

n )2 in
equation (97) , we get the steady-state EMSE of the proposed
algorithm.

(98)ξ
∞
n ≈

µTr
(
R̃
)

σ2
ν̄ l

n

2− µTr
(
R̃
)[

1 +
(

γ + βσ2
ν̄ l

n

)
σ2

ν̄ l
n

] + Tr
(

Q∞
n

2µ

)

Since q is assumed to be an i.i.d, therefore Tr (Q∞
n ) = Lσ2

q ,
so equation (98) will be reduced to

ξ
∞

n(MNCLMS) ≈
µTr

(
R̃
)

σ2
ν̄ l

n

2− µTr
(
R̃
)[

1 +
(

γ + βσ2
ν̄ l

n

)
σ2

ν̄ l
n

] + Lσ2
q

2µ

(99)

Where L is the length of the filter.

VIII. COMPUTATIONAL COMPLEXITY OF LINEAR
EQUALIZER

Computational cost is an important aspect of any algorithm.
Higher computational cost can render an algorithm useless.
A trade off between computational cost and the performance
is possible, i.e. if the increased cost results in considerable
performance gain, then higher cost can be ignored. In this
section, we present the computational costs of few algorithms.
As can be seen in table I, computational cost of the proposed
algorithm is higher when compared to [4] but MNCLMS is
for SISO- CDMA case, whereas, the proposed algorithm is
for MIMO CDMA case. This algorithm can be used for run-
time applications such as channel estimation, tracking and
channel equalization. MIMO systems are being used in modern
wireless standards.
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Fig. 1. MSE behavior for different algorithms in an AWGN environment with
K = 10 at 20dB
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Fig. 2. MSE behavior for different algorithms in an AWGN environment with
K = 20 at 20dB

IX. SIMULATIONS

Behavior of the step size of the MIMO-CDMA MNCLMS
algorithm is shown in figure 3 for 10 subscribers. As can
be seen, in the transient state, the MIMO-CDMA MNCLMS
algorithm has the largest step-size value when compared to
the other algorithms and, thus, yields the fastest convergence.
Also, in the steady state, the step-size parameter of the MN-
CLMS algorithm was reduced to the smallest value amongst
all algorithms. Same behavior is achieved for 20 subscribers
as shown in figure 4

A. Interference Cancellation in Rayleigh Fading Channel

In this section, simulation results are presented to assess
the performance of the MNCLMS algorithm for the MIMO
CDMA LE case. The performance of the proposed MIMO-
CDMA MNCLMS algorithm is compared with the standard
LMS, MCLMS noise constrained LMS and zero noise algo-
rithms. The average MSE is the performance measure through
which the algorithms are assessed. A 2×2 MIMO system is
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Fig. 3. Behavior of time-varying step size of the MNCLMS algorithm for
K = 10 at 20 dB SNR
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Fig. 4. Behavior of time-varying step size of the MNCLMS algorithm for
K = 25 at 20 dB SNR

considered here. Random signature sequences of length 31 and
rectangular chip waveforms are used. The SNR is kept at 10
dB and 20 dB respectively.

The results of the comparison of the convergence speed of
these algorithms for 10 and 25 subscribers, in a Rayleigh
fading channel, are depicted, respectively, in Figure.5 and
figure 6. In both cases, it can be seen that the MIMO-
CDMA MNCLMS algorithm converges faster than the rest
of the algorithms. In the case of 10 subscribers, the proposed
algorithm was able to achieve an MSE at around -4.8 dB at
around 200 iterations . In case of 25 subscribers, the proposed
MNCLMS algorithm was able to achieve MSE at -5.2 dB and
in around 240 iterations.

X. CONCLUSION

In this paper a new constrained MIMO CDMA LMS type
algorithm (MNCLMS) for multiuser wireless environment is
presented. The MNCLMS algorithm may be refereed to as
a generalized constrained adaptive algorithm which includes
the MCLMS, the NCLMS and the ZNCLMS algorithms as
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Fig. 5. MSE behavior for different algorithms in Rayleigh Fading environment
with for K = 10 at 10 dB SNR
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Fig. 6. MSE behavior for different algorithms in Rayleigh Fading environment
for K = 20 at 20 dB SNR

special cases. In our analysis, we have performed a thorough
comparison of the proposed algorithm with a number of other
constrained algorithms and it is shown that our algorithm has
outperformed its competitors.
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