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Abstract—A new design method internal model control is 
proposed for multivariable over-actuated processes that are often 
encountered in complicated industrial processes. 

Due to the matrix that is adopted to describe over-actuated 
system is not square, many classical multivariable control 
methods can be hardly applied in such system. In this paper, 
based on method of virtual outputs, a new internal model control 
method is proposed. 

The proposed method is applied to shell standard control 
problem (3 inputs and 2 outputs). The simulation results show 
that the robust controller can keep the set inputs without 
overshoot, steady state error, input tracking performance and 
disturbance rejection performance, the results are satisfactory 
have proved the effectiveness and reliability of the proposed 
method. 

Keywords—internal model control (IMC); over-actuated 
multivariable system; inverse model; method of virtual outputs; 
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I. INTRODUCTION 
The multi-input and multi-outputs (MIMO) over-actuated 

systems exist in industrial and such are a difficult problem in 
the control [12], [21]. The multivariable over-actuated system 
is non-square system with the number of inputs is superior to 
that of outputs [7]. 

A simple of controlling the MIMO non-square system is 
transform it into a square system by adding or deleting 
variables. But adding variables will increase the control cost, 
while deleting variables reduce the quality of control by 
reason of missing information and may even make the process 
unstable between the credible introduction of right half plane 
[1], [8], [9], [16] . 

The Internal Model Control (IMC) which due to its 
simplicity, excellent robustness, and better control 
performance shows the capacity  to solve the control problems 

of the multivariable systems. If we combine IMC with 
multivariable control system, it could be a capable way to 
solve the control difficulty of multivariable systems [11]. 

On the basis of the IMC principle, the design of a 
controller for a square system is generally based on the inverse 
matrix of system [3], [4], [20]. Nevertheless, considering non-
square processes, IMC cannot be applied exactly, as it cannot 
obtain the traditional sense of inversion [5], [6]. 

In recent years, many researchers adopted finding the 
robust controller by internal model control. 

Seshagiri [2] designed a PI controller as a Smith delay 
compensator for non-square system with multiple time delays. 
This method achieves static decoupling because it is based on 
the pseudo inverse of the steady-state gain matrix of non-
square systems. Only using the steady-state information of the 
systems will lead to the limitation of control performance. 

Chen [17] a modified the IMC el for non-square systems 
by inserting compensated to remove the terms unrealizable 
factoring there for obtained from the controller. The objective 
the controller parameter is to achieve tracking performance 
and robustness. 

Chen [9] proposed a new method using Internal Model 
Control and smith controller between design a PI controller 
for multivariable non-square systems with transfer function 
elements consisting of first order and time delay. The problem 
of this method is no analysis of load disturbance performance, 
and the decoupling effect is poor than dynamic decoupling. 

Quan [12] proposed a new NERGA based on internal 
model control method for non-square system. This method 
calculate the inverse of the matrix, the model controller is 
designed based on the model of squared subsystem. But when 
building the subsystem controller, that is to say we eliminate 
variables the global system will reduce the quality and control 
performance. 
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Liu [10] proposed a method a modified two-degrees-of-
freedom internal model control method for non-square 
systems with multiple time delays and right-half-plane zeros. 
This method, pseudo-inverse is introduced to describe the 
internal model controller, and an appropriated closed-loop 
transfer function is designed to eliminate the impracticable 
factors of the derived controller. 

Jin [18] proposed a design method of decoupling IMC for 
non-square processes with multiple time delays. The method 
can achieve a realizable decoupling controller of non-square 
processes by inserting some compensated terms. At the same 
time, based on the relative normalized gain array, an 
equivalent transfer function matrix is acquaint to approximate 
the pseudo-inverse of the process transfer function matrix. 

This paper presents a new technique to enquire into the 
IMC control design for multivariable over-actuated system. In 
the controller design procedure a simple method designed to 
uses virtual outputs method [1]. Finally, this method is 
applied in a system with 3 inputs than two outputs; the 
simulation results show that the proposed method had good 
performance of tracking ability and strong performance. 

This paper is organized as follows. Section II presents a 
generality on the internal model control strategy of 
multivariable system. Section III proposes the design method 
of the controller for the internal model control for 
multivariable over-actuated system. In section IV, an example 
is employed to illustrate the effectiveness of the proposed 
controller. Some conclusions are drawn in section V. 

II. STRUCTURE OF IMC FOR MIMO PROCESSES 
The internal model control (IMC) found wide acceptance 

in process control system, due to be simplicity, excellent 
robustness, and good control performance, shows the strong 
vitality to solve the control problems of multivariable non-
square and square systems. 

The internal model control structure of multivariable 
process as shown in Fig. 1. Where G(s), M(s), C(s) and Gv(s) 
represent the transfer functions of the process, the process 
model, IMC controller and disturbance respectively; y and ym 
are the outputs vectors of the process and its model, 
respectively; r is the input vectors of the process; u represents 
the control input signal; v is the disturbance. 

 
Fig. 1. Structure of Internal model control (IMC) 

Where, all elements in G(s), Gm(s) are stable [19]. 

The equation of input, output and disturbance is given by 
[19]: 
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When the model is perfect, the model process is given by: 

( ) ( )M s G s=                                                                                               (2) 

The expression of output transfer function can be obtained 
to equation (3): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )vy s G s C s r s I G s C s G s v s= + −  
                        (3) 

The MIMO transfer functions for the process G(s) with 'n' 
inputs and  'm' outputs (m<n)  is considered as [7]: 
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Transfer function of the controller is : 
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We consider the IMC configuration that is stable for 
process, the model of the process and the IMC controller. 

In IMC, the synthesis of a controller which is equal to the 
inversion of the model system is paramount to ensure perfect 
follow instructions. But, the manner of direct inversion is 
practically impossible for over-actuated systems. To remedy 
this problem, it is proposed to develop a method of inversion 
in the case of over-actuated multivariable linear systems. 

III. CONTROLEUR DESIGN 

A. Structure of the controller to a over-actuated multivariable 
system 
For MIMO non-square system, the input number is 

unequal to the output number. There are two types of non-
square systems: the under-actuated system where the number 
of inputs is inferior than the number of outputs (m>n) and the 
system over-actuated system the number of inputs is superior 
to that of outputs (m<n) [7]. 

In this paper we will take an interest in the over-actuated 
system, and we will follow a methodology to design our 
controller for this case of system. 

Using the method of virtual outputs of adding lines to the 
transfer matrix of the non-square system, up to have a square 
transfer matrix that can be reverse [1]. 

Regarding the virtual outputs that will add to the transfer 
matrix system, we will copy the outputs of the original system 
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and the programmation part we will remove them. these 
virtual outputs will be used to make the square transfer matrix. 

The transfer function matrix of the over-actuated system is 
then a rectangular matrix recess non-singular. If we extend the 
matrix G(s) to make it square. This amounts to consider      
((n-m), n) further referred to as the word of virtual outputs. 

Our system is represented by the following equation (11),  
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                                           (11) 

The transfer matrix that will add to make the over-actuated 
system square is its size ((n-m), n). This matrix has the 
following form: 
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                          (12) 

In the system simulation phase, we need to add a function 
block which eliminates (m-n) output added to visualize the 
non-square system output. 

The simulation block diagram is given in Fig.3. 

 
Fig. 2. IMC structure for multivariable over-actuated system 

B. Study of the stability of the proposed controller 
The IMC controller is present on Fig.2 by using the 

inversion method proposed [13], [14]. K1 reversal of the 
matrix is an invertible square matrix; it must ensure the 
stability conditions of the controller. 
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Fig. 3. Structure for model inversion 

The expression of internal model controller can be 
obtained: 

( ) 1

m 1I ( )
KC s
K M s

=
+

                                                                             (6) 

the K1 inversion matrix of the form 1 mI ,K a a += ∈ , Im 

is the identify matrix is chosen sufficiently High then 1
a

 is  

sufficiently low there by approximating  given by the equation 
[15]: 

( )
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                                                                          (7) 

The stability of the structure proposed for the internal 
model depends of stability of the process control, of the model 
and of the controller C(s) respectively. 

The controller C(s) can be written as follows [15]: 

( )
( )( )
( )( )

m 1 1

m 1

I
det I

comt K M s K
C s

K M s
+

=
+

                                                          (8) 

are N (s) and D (s) respectively represent the numerator 
and denominator of ( )( )m 1det I K M s+ . 

To ensure the stability of the regulator C(s), it must be 
ensured that N(s) is a polynomial of Hurwitz. This means that 
the roots of N(s) must be strictly negative real parts. These 
roots can be located either using geometric methods such as 
root locus or algebraic methods such as of Routh criterion. 

Given a model M(s) Stable, adequate choice of K1 
inversion matrix then ensures the stability of the regulator 
C(s). 

C. Precision study of the system 
To ensure the accuracy of the system, that is to say a zero 

static error, check that [15]: 

( ) 10
(0)

C
M

=                                                                       (9) 

With C(0) is the matrix of the static gains of the controller. 
It can be expressed as a function of the matrix of the static 
gains of the system M (0). It is defined by the equation (10): 

( )
( )( )

1

m 1

0
I 0

KC
K M

=
+

                                                                     (10) 

It can be said the performance of the proposed controller, 
to ensure a perfect tracking of the reference input 
independently of external disturbances. This property can only 
be validated if we choose a sufficiently high. 

IV. SIMULATION RESULTS 
Consider a 2 3× stable over-actuated multivariable system; 

the transfer function of the model system is given as: 
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Where there are two controlled variables ( )1 2,y y  and 

three manipulated variables ( )1 2 3, ,u u u . 

The model is represented by the following transfer matrix 
function M(s), it is defined by the equation (14): 
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In our case, the chosen matrix 1K is equal to 1 340K I= × , 
to ensure the stability of the system G(s) for controlling. 

Fig. 4 and Fig. 5 represents the evolution of the internal 
model controllers u1(t) and u2(t). The unit step responses of 
outputs y1(t) and y2(t) are shown in Fig.6 and Fig.7. From the 
analysis of Fig.6 and Fig. 7, it follows that the system control 
effect is satisfactory without overshoot, static error and the 
system has good traceability. The resulting outputs responses 
of the system are in order affirm the effectiveness of the 
proposed internal model controller. 

 
Fig. 4. The control input u 

 
Fig. 5. The control input u2 

 
Fig. 6. The step response of output y1 

 
Fig. 7. The step response of output y2 

The disturbance signal is expressed by equation (15) 
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In order to assert the disturbance rejection capability of the 
system, assumed a step disturbance signal with magnitude 1 
was added to the input 1, input 2 and input 3 at t=1s. 

Fig. 8 and Fig. 9 represents the evolution of the internal 
model controllers u1(t) and u2(t). 

 
Fig. 8. The control input u1 with disturbance 
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Fig. 9. The control input u2 with disturbance 

The simulation results of model perturbation responses of 
outputs y1(t) and y2(t) are given in Fig.10 and Fig.11. The 
simulation results show that the proposed method has 
disturbance rejection performance. It clearly shows that the 
set-point tracking and disturbance rejection are achieved and it 
offers robustness. 

 
Fig. 10. The step response of output y1 with disturbance 

 
Fig. 11. The step response of output y2 with disturbance 

V. CONCLUSION 
For the multivariable system with the number of inputs is 

superior to that of outputs are habitually met in system 
industries, we proposed a new method of virtual outputs based 
on internal model control for over-actuated system has been 
presented in this paper. This novel method avoids the complex 
calculation; such as calculate the inverse of this matrix, the 
controller structure is simple. 

The multivariable over-actuated system is not square, so 
the reverse is not possible with our method of virtual outputs 
is added, our system becomes square at that moment, and we 
can build our controller which is based on the reversal of the 
processes. 

The simulation results show that this method proposed has 
the advantages of small overshoot, the set-point tracking 
controller and disturbance rejection performance. Meanwhile, 
better control performance and good robustness than other 
control methods of over-actuated systems. 

Generally, this new method is simple, has robust 
performance and easy to implement in engineering processes. 
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