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Abstract—In this paper, we propose a new compression 

method for electroencephalographic signals based on the concept 

of compressed sensing (CS) for the P300 detection spelling 

paradigm. The method uses a universal mega-dictionary which 

has been found not to be patient-specific. To validate the 

proposed method, electroencephalography recordings from the 

competition for Spelling, BCI Competition III Challenge 2005 - 

Dataset II, have been used. To evaluate the reconstructed signal, 

both quantitative and qualitative measures were used. For 

qualitative evaluation, we used the classification rate for the 

observed character based on P300 detection in the case of the 

spelling paradigm applied on the reconstructed 

electroencephalography signals, using the winning scripts (Alain 

Rakotomamonjy and Vincent Guigue). While for quantitative 

evaluation, distortion measures between the reconstructed and 

original signals were used. 

Keywords—Biomedical signal processing; Brain-computer 
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I. INTRODUCTION 

In the last years, the CS method has attracted considerable 
attention in areas such as applied mathematics, computer 
science, and electrical engineering. Basically, the method 
speculates the fact that, in certain conditions, many signals can 
be represented using only a few non-zero coefficients in a 
suitable basis, and nonlinear optimization can be used to 
recover such signals from very few measurements [1]. The 
concept of compressed sensing is a classic example of practical 
use of the new mathematical concepts. The difficulties for 
using in applications of such concepts are related to the way 
such results are perceived, in a more or less intuitive manner, 
in order to facilitate the fusion between theory and 
applications. The literature of recent years shows a large 
number of papers in the CS field [2, 3], covering both 1D and 
2D medical signals [4, 5, 6]. Among the 1D signals currently 
used in CS applications, are the electrocardiogram (ECG) and 
electroencephalogram (EEG) since they are commonly used in 
the medical world as well. In the case of EEG signals, very 
often there is a need of records for longer periods of time (i.e., 
during night) or for a large number of channels. Paralyzed 
persons (e.g. with lateral amyotrophic sclerosis, cerebral stroke 
or severe polyneuropathy) or with other motor disabilities need 
alternative methods for communication and control. Using the 
EEG signal as a communication vector between human and 

machine is one of the new challenges in signal theory. The 
main element of such a communication system is known as 
“Brain Computer Interface - BCI”. The purpose of BCI is to 
translate human intentions – represented as suitable signals – in 
control signals for an output device, e.g. a computer or a 
neuroprothesys. A BCI must not depend on normal output 
traces of peripheral nerves and muscles. In the last two 
decades, many studies have been carried out to evaluate the 
possibilities that recorded signals from the scalp (or from the 
brain) to be used for a new technology that does not imply 
muscles control. 

The BCI that uses the EEG signal is capable of measuring 
the human brain activity, of detecting and of discriminating 
certain specific features of the brain. Recent advances in BCI 
research widened the possibilities of applicability fields. 
Intelligent devices that are capable to compensate some 
drawbacks associated with the lack of information from the 
EEG signals are also useful to persons with milder disabilities. 

The definition of BCI largely accepted by the research 
community given in [7], states that BCI is a system of 
communication in which the messages or the commands to the 
outside world by an individual are not passing through the 
normal brain ways, i.e., those implemented by the peripheral 
nerves and muscles. 

The first mentioning of communication by means of the 
BCI was made by Vidal in 1973 [8]. Nowadays there are many 
research teams involved in BCI research. Different approaches 
and results are achieved, but they are not always precise and 
imply complicated hardware [8]. Since the development of a 
BCI combines a great variety of disciplines (e.g. medicine, 
biology, physics, bioengineering, electronics, computer 
science, mathematics), the implied aspects are numerous and 
diverse. 

The BCI framework used in this paper is based on P300 
Event Related Potentials (ERP), which are natural responses of 
the brain to some specific external stimuli. 

II. COMPRESSED SENSING 

Shannon’s sampling theory represents, in many cases of 
signal classes, a too severe limitation. It can be overcome by 
using the "Compressed sensing" theory (compressive sensing, 
compressive sampling and sparse sampling) perfected in the 
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past few years by prestigious researchers such as D. Donoho 
[10, 11], E. Candès [12], M. Elad, etc. The concept of 
compressed sensing (CS) is a new and revolutionary method 
which attracted the attention of many researchers and it is 
considered to have a high potential, with multiple implications 
and applications, in all fields of exact sciences. Basically CS is 
a technique for finding sparse solutions to underdetermined 
linear systems. In the signal processing domain, CS is the 
process of acquiring and reconstructing a signal that is 
supposed to be sparse or compressible. 

The advantage of compressed sensing is that the acquisition 
stage is very fast, with very low complexity, and it is done in 
real time leading to a compressed EEG signal. The difficult 
part is the EEG reconstruction where two aspects are crucial: 
computing complexity (currently there are many mathematical 
algorithms which can be chosen depending on the needed 
accuracy, time and available resources) and knowledge of a 
dictionary for which the initial EEG signal has a satisfactory 
sparsity. 

CS studies the possibility of reconstructing a signal x from 
a few linear projections, also called measurements, given the a 
priori information that the signal is sparse or compressible in 

some known basis  . The vectors on which x is projected 

onto are arranged as the rows of an nxN projection matrix  , 
n < N, where N is the size of x and n is the number of 
measurements. Denoting the measurement vector as y, the 
acquisition process can be described as 

 xy      (1) 




 ytosubject
l0

minargˆ   (2) 

̂ˆ x       (3) 

The system of equations (1) is obviously undetermined. 

Under certain assumptions on   and  , however, the 
original expansion vector   can be reconstructed as the unique 

solution to the optimization problem (2); the signal is then 
reconstructed with (3). Note that (2) amounts to finding the 
sparsest decomposition of the measurement vector y in the 

dictionary  . Unfortunately, (2) is combinatorial and 
unstable when considering noise or approximately sparse 
signals. Two directions have emerged to circumvent these 
problems: (i) pursuit and thresholding algorithms seek a sub-
optimal solution of (2) and (ii) the Basis Pursuit algorithm [12] 

relaxes the 0l  minimization to 1l , solving the convex 

optimization problem (4) instead of the original. 




 ytosubject
l1

minargˆ   (4) 

Using the 0l  norm is an NP-hard problem [13] that 

requires an algorithm of non-polynomial complexity. Such 
problems are practically impossible to be solved for usual 
dimensions of data. 

III. BRAIN COMPUTER INTERFACE - P300 SPELLER 

PARADIGM 

P300 is an event related potential which occurs at 300 ms 
after a rare and relevant event. 

P300 has two subcomponents (as shown in Fig.1 a): the 
novelty P3 (also named P3a), and the classic P300 (renamed as 
P3b). P3a is a wave with positive amplitude and peak latency 
between 250 and 280 ms; the maximum values of the 
amplitude are recorded from the frontal/central electrodes. P3b 
has also positive amplitude with a peak around 300 ms; higher 
values are recorded usually on the parietal areas of the brain. 
Depending on the task, the latency of the peak could be 
between 250 and 500 ms. 

 

 
Fig. 1. P300 wave and the classical P300 spelling paradigm described by 

Farwell-Donchin 1988 

Most of the paradigms that use the P300 evoked potentials 
are derived from the one proposed by Farwell and Donchin in 
[14]. 

The P300 speller is based on the so-called oddball 
paradigm which states that rare expected stimuli produce a 
positive deflection in the EEG after about 300 ms. It consists of 
a 6 × 6 matrix of characters as shown in Figure 1. This matrix 
is presented on computer screen and the row and columns are 
flashed in a random order. The user is instructed to select a 
character by focusing on it. The flashing row or column evokes 
P300 response in EEG. The non-flashing rows and columns do 
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not contribute in generating P300. Therefore, the computer can 
determine the desired row and column after averaging several 
responses. Finally, the desired character is selected. 

For the BCI III competition, the dataset has been recorded 
from two different subjects in five sessions each. The 
procedure consists in repeating for 15 times (15 epochs), for 
each character, followed by a pause of 2.5 seconds. For each 
given character, there will be 6x2x15=180 intensifications: 
2x15 will contain the target character (once when the column is 
highlighted, second for the line it belongs to, repeated for 15 
epochs) and the rest will not contain it. The signals have been 
bandpass filtered in the range 0.1 - 60Hz and sampled at 
240Hz. Each session is composed of runs, and, for each run, a 
subject is asked to spell a word. For a given acquisition 
session, all EEG signals of a 64-channel scalp have been 
continuously collected. The train set contained 85 characters, 
and the test set of 100 characters for each of the two subjects. 
A more detailed description of the dataset can be found in the 
BCI competition paper [15]. 

The classification problem can be formulated as follows: 
given the 64-channel signals collected after the intensification 
of a row or column, we want to predict if such signal includes 
or not a P300. This first part of the problem is thus a binary 
classification problem. In accordance with the classification of 
each post-stimulus signal, the goal is to correctly predict the 
desired character using the fewest sequences as possible. A 
second part of the problem deals with a 36-class classification 
problem as it seeks recognition of a symbol from the 6 × 6 
matrix, as shown in Figure 1 [9]. 

The competition winners, Alain Rakotomamonjy and 
Vincent Guigue, proposed a method that copes with such 
variability through an ensemble of classifiers approach [9]. 
Each classifier is composed of a linear support vector machine 
(SVM) trained on a small part of the available data and for 
which a channel selection procedure has been performed. They 
achieved a classification rate of 95.5% for 15 sequences and 
73.5% for 5 sequences [9]. Thus, in the preprocessing stage, 
for each channel, all data samples between 0 to 667 ms, 
posterior to the beginning of an intensification, were extracted. 
Afterwards, each extracted signal has been filtered with an 8-
order band-pass Chebyshev Type I filter with cut-off 
frequencies 0.1 and 10 Hz and has been decimated according to 
the high cut-off frequency. At this point, an extracted signal 
from a single channel is composed of 14 samples. The solution 
proposed by the winners consists of an ensemble of classifiers, 
the 85 characters from the training set being divided into 17 
groups of 5 characters. The individual classifications are SVM 
with linear kernel. Each single SVM training involves a model 
selection procedure for setting its regularization parameter C 
[9]. 

IV. METHOD 

In general, the biomedical signals do not have a good 
sparsity in the standard type dictionaries as wavelet, DCT, DST 
etc. [16]. This is why, for EEG and ECG signals, in most of 
cases, it is preferred to build signal specific dictionaries, which 
take into consideration the statistic of the signal, or the 
repetitive elements from the signal.  For example, the ECG 
signal has a pseudo-cyclicity for the QRS complex, and the P 

and T waves which can be exploited. The EEG signal is a 
much more complex signal that has no visible repeated 
elements. The EEG signal is mainly composed of alpha, beta, 
theta, and delta waves which have significance in clinical 
interpretation but they are visible only in the frequency 
domain. 

A. The dictionary 

Taking into account the missing visible, repeated elements 
from EEG signals and the results obtained previously in  [17, 
18, 19, 20], it is apparent that, in case of EEG signal, an option 
to build the dictionary is that of using the EEG signal itself. In 
the case of the spelling paradigm, the dictionary will be built 
from the data used in the training set. 

We tested the possibility of building an universal mega-
dictionary consisting of EEG segments from all 64 channels. 
Thus, for each channel, three atoms were selected, consisting 
in EEG segments from the corresponding channel, so that a 
dictionary made up of 3x64 = 192 atoms has been obtained. 
The size of the dictionary is 192x240, since each atom has the 
size of 240. For the construction of this dictionary, it was used 
the training signal from the paradigm of spelling. 

The testing of the method was done using EEG test signals 
which consist in compressed sensed EEG signals. The 
proposed method is tested also for the inter-subject variability 
of the dictionary, namely the dictionary with signals from the 
training set of a subject was tested with signals from the testing 
set of the other subject. The spelling data base has only two 
subjects and this led to the following possible combinations to 
validate the proposed method: 

 dictionary from train test of subject A and test by test 
set for subject A (denoted by TrainA - TestA) 

 dictionary from train test of subject B and test by test 
set for subject B (denoted by TrainB - TestB) 

 dictionary from train test of subject A and test by test 
set for subject B (denoted by TrainA - TestB) 

 dictionary from train test of subject B and test by test 
set for subject A (denoted by TrainB - TestA) 

B. The acquisition matrix 

At the acquisition matrix level, namely the projection 
matrix, three types of matrices can be used: random matrix, 
Bernoulli-type matrix (with values of -1, 0, 1in equal ratios) or 
an optimized matrix that takes into account the used dictionary 
for reconstruction. Thus, taking into account the previous 
results from [17, 19, 20], in this work, we have used the 
optimized matrix. Shortly, for a given dictionary, if we 
multiply the projection matrix with the transposed dictionary 
we will get an optimized projection matrix for that dictionary. 
This optimization procedure was detailed in [19]. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

For the evaluation of the proposed method, we used the 
dataset II of the BCI Competition III 2005 -P300 Spelling (the 
dataset has been recorded from two different subjects; The 
train set contained 85 characters, and the test set of 100 
characters for each of the two subjects). 
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For compression evaluation, we used the compression rate 
(CR) defined as the ratio between the numbers of bits needed 
to represent the original and the compressed signal. 

comp

orig

b

b
CR       (5) 

We have also evaluated the distortion between the original 
and the reconstructed signals by means of the PRDN (the 
normalized percentage root-mean-square difference (6)) for to 
validate the compression: 
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where 
)(nx

 and 
)(~ nx

 are the samples of the original and 

the reconstructed signals, respectively, x is the mean value of 
the original signal, and N is the length of the window over 
which the PRDN is calculated. 

For qualitative evaluation of the method based on the 
classification rate in spelling paradigm, we used scripts from 
the winners, A. Rakotomamonjy and V. Guigue [9] (the scripts 
implement classification based on all 64 EEG channels). 

In Table 1, we present the classification results in paradigm 
spelling using original data and the software from [9]. It can be 
observed that after the reconstruction using a dictionary built 
with signals for the training stage of subject B, the obtained 
classification rates in the spelling paradigm are better than in 
the case of the original signal. This scenario is true for both 
subject B (92.4% versus 89.37%), and subject A (89.15% 
versus 87.10%). In the case of using a dictionary built with 
signals for training from subject A, the obtained results are 
very close, but a slightly under the performance obtained for 
the original signals. 

TABLE I. CLASSIFICATION PERFORMANCE % AND ERROR (PRDN) IN 

P300 SPELLING FOR RECONSTRUCTED EEG SIGNAL WITH SOFTWARE FROM 

[9] FOR A COMPRESSION CR = 10:1 

 
CR 

Compression 

Max 

Classification 

Average 

Classification 
PRDN 

 

ORIGINAL A 10:1 94 % 87.10 % - 

AA 10:1 90 % 84.29 % 50.17 

BA 10:1 95 % 89.15 % 45.09 

 

ORIGINAL B 10:1 93 % 89.37 % - 

BB 10:1 97 % 92.40 % 43.07 

AB 10:1 92 % 86.59 % 48.80 

In Figure 2, the PRDN errors for the two subjects using the 
two dictionaries vs. EEG channels are presented. It can be 
observed a consistency of errors reported to channel, that can 
be explained as follows: some of channels are reconstructed 

with errors, independently of the used dictionary. A possible 
hypothesis is that those channels have different statistics and a 
higher variability compared to the other channels. 

 
Fig. 2. PRDN_Mean vs. channel for subject A and respectively subject B 

using dictionaries construct by train test A and train test B 

In Figure 3, we present an original EEG segment (red) and 
its reconstructed variant based on a dictionary built using its 
own training set (blue) and the alternative with a dictionary 
built from the signals from the training set of the other subject 
(black). It can be observed that the shape of the EEG signal is 
preserved, but there are some variations. 

Taking into account the classification results from the 
spelling paradigm, we may state that those variations of the 
reconstructed signal do not influence the classification in this 
paradigm. 

 
Fig. 3. Example by original signal (subject A with red) and reconstructed 

signals (TrainA – TestA blue and TrainB-TestA black) 
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Fig. 4. The topography of PRDN for EEG compressed sensing for subject A 

and CR = 10:1 (by TrainA – TestA and by TrainB – TestA from up to down) 

Figure 4 and 5 show the PRDN topography for subject A 
and respectively B. This topography shows that frontal/central 
electrode sites present a PRDN smaller than the other 
electrodes, a specific area for the P3a wave. Next area, as 
PRND error is parietal area, specific area for the P3b wave, and 
the biggest errors are in temporal zone. The temporal area has 
not too much significance for the P300 generation. 

 

 
Fig. 5. The topography of PRDN for EEG compressed sensing for subject B 

and CR = 10:1 (by TrainB – TestB and by TrainA – TestB from up to down) 

VI. CONCLUSION 

In this paper, it is presented a comparative analysis of 
results obtained using a mega-dictionary for EEG signals 
compressed sensing related to the spelling paradigm and using 
a mega-dictionary built from pieces of the train EEG signals. 

For the evaluation of the proposed method, the dataset from 
the BCI Competition III 2005 - P300 Spelling has been used. 
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In order to evaluate the results of the EEG signal 
reconstruction the PRDN was used in parallel with the 
classification rate of the spelling paradigm assessed using the 
scripts from the winner of the competition (the version of 
classification using all 64 channels). 

The main result is the verification of the hypothesis that the 
mega-dictionary is not patient-specific. The testing of this 
hypothesis involved the construction of a dictionary from the 
train set of a subject, and using it for the reconstruction of the 
test signals for other subjects. Even though the used database 
had only two subjects, the recorded EEG signals were long 
enough. Thus, both the usages of dictionary for the same 
subject, and for the other subject were tested. Even though the 
quantitative measure of the EEG signals reconstruction error 
expressed by PRDN was around 45, it has been found that the 
classification rates in the spelling paradigm are very close to 
the values obtained for the original signal or even above them. 

These results can be read in the sense that for the 
classification rate within the paradigm of spelling it is very 
important to preserve the shape of the EEG signal while small 
reconstruction errors do not matter significantly. 

The advantage of compressed sensed is that the acquisition 
stage is very fast, with very low complexity, it is done in real 
time and, after this stage, it results a compressed EEG signal. 
The difficult part is the EEG reconstruction and this is due to 
the following two aspects: 

 The complexity of computing, but currently there are 
different mathematical algorithms and, depending on 
the needed accuracy, time and available resources, a 
favourable algorithm can be chosen; 

 The knowledge of a dictionary in which the initial EEG 
signal has a satisfactory sparsity. 

The obtained results, in particular the classification rate in 
the spelling paradigm, demonstrate that the built dictionary 
ensures the reconstruction of the EEG signal with good results, 
regardless of the train EEG signal used for the dictionary 
construction. 
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