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Abstract—Linear systems with tridiagonal structures are very
common in problems related not only to engineering, but chem-
istry, biomedical or finance, for example, real time cubic B-Spline
interpolation of ND-images, real time processing of Electrocardio-
graphy (ECG) and hand drawing recognition. In those problems
which the matrix is positive definite, it is possible to optimize
the solution in O(n) time. This paper describes such systems
whose size grows over time and proposes an approximation
in O(1) time of such systems based on a series of previous
approximations. In addition, it is described the development of
the method and is proved that the proposed solution converges
linearly to the optimal. A real-time cubic B-Spline interpolation
of an ECG is computed with this proposal, for this application
the proposed method shows a global relative error near to 10−6

and its computation is faster than traditional methods, as shown
in the experiments.

Keywords—real time interpolation; linear convergence;
Cholesky decomposition; biomedical data acquisition

I. INTRODUCTION

Several problems in many fields of science are related to
linear systems of the form Ax = b [1], [2], [3]. Matrices
with special structures such as the Toeplitz matrix arise in
many problems, including the solution of ordinary and partial
differential equations [4], [5], [6], [2], [7], [8]. In many cases
the size of these systems is very large; then, computing the
solution in a reasonable amount of time becomes a problem
for real time applications [9], [10], [11], [12], [13], [14], [3],
[15]. Due to the increasing interest in tridiagonal matrices, it
is important to understand its properties and its applications
[16], [12], [17], [18], [19], [20], [21], [22], [23], [24].

In general, the system Ax = b is solved in O(n2) time
[25]; if A is tridiagonal, i.e. Aij = 0 for |i− j| > 1, there
exists fast algorithms to solve it in O(n) time [16], [11], [2],
[19], [3], [25], [24]. Additionally, if A is Toeplitz, symmetric
and positive definite as shown in (1), the computation can
be optimized [16], [11], [2], [3], for example by using the
Cholesky decomposition A = LLT [11], [3]. Equation (1)
describes all of those matrices with constant diagonal and (2)
represents the ratio of the matrix coefficients that must lie
between -1 and 1.

A =


β α
α β α

. . . . . . . . .
α β α

α β

 , β > 2 |α| . (1)

− 1 < ν ≡ 2α

β
< 1. (2)

A. Cholesky decomposition

For a square, symmetric and positive definite matrix A,
the Cholesky decomposition computes a matrix L such that
LLT = A. The coefficients of L can be computed in O(n)
[3] following the iterative scheme (3):

L2
11 = A11,

Li,i−1 = Ai,i−1/Li−1,i−1,
L2
ii = Aii − L2

i,i−1, for i = 2, . . . , n.
(3)

When the matrix A has the structure defined in (1), the
coefficients can be computed in a closed form [16], [19], as
shown in (4). Those coefficients have the following limits:
limi→∞ Lii =

√
λ1 and limi→∞ Li,i−1 = α/

√
λ1, due to

the fact that β > 2|α| and λ1 > λ2 > 0.

Lii =

√
λi+1
1 −λi+1

2

λi1−λi2
,

Li,i−1 = α

√
λi1−λi2

λi+1
1 −λi+1

2

, where

λ1 =
β+
√
β2−4α2

2 , λ2 =
β−
√
β2−4α2

2 .

(4)

With this approach the system can be computed in O(n) and
is able to be parallelized [9], [10], [14].

B. Solve Ax = b using Cholesky decomposition

The Cholesky decomposition allows to find the solution
x of the linear system Ax = b by first finding u such that
Lu = b and, then finding x such that LTx = u. If A is
defined as in (1), the Cholesky decomposition can be used to
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solve the linear system in O(n) time. The complete iterative
procedure is described as follows:

u1 =
b1
L11

,

ui =
bi − Li,i−1ui−1

Lii
, for i = 2, 3, . . . , n; (5)

after computing all ui, the xi is computed as:

xn =
un
Lnn

,

xi =
ui − Li+1,ixi+1

Lii
, for i = n− 1, . . . , 1. (6)

II. MATERIAL AND METHODS

This section shows the computation of an approximation
of the (n+ 1)× (n+ 1) linear system, based on the solution
of a similar system of size n× n.

A. A linear system of size (n+ 1)× (n+ 1)

Let Ax = b be a linear system, where A ∈ Rn×n with
structure defined in (1), and x, b ∈ Rn.

The solution of this kind of systems can be computed
with the procedure described in (5) and (6) in O(n) time.
Now, consider an expanded version of the system Ax = b as
A+x+ = b+, where A+ ∈ R(n+1)×(n+1) and x+, b+ ∈ Rn+1,
such that, A+ has the same structure as (1) and b+j = bj , for
j = 1, 2, . . . , n.

The system A+x+ = b+ appears in problems that grow
over time, such as: real time interpolation of biomedical data
(ND Images or ECG), filtering data, handwriting recognition
and real time image processing. Solving A+x+ = b+ requires
additional O(n+ 1) time, therefore, solving all systems from
size 1 to n is O(n2), i.e. this approach is not convenient.

This paper proposes a new method that computes an
approximation of A+x+ = b+, based on the solution of
Ax = b in O(1) time, moreover, it is demonstrated that the
proposed method has linear convergence and it requires only
6 steps to reach a relative error about 10−4. The method is
summarized in algorithm 1.

Algorithm 1 Approximation of A+x+ = b+ based on Ax = b
in O(1) time
Require: Ax = b of size n with computed solution x.
Require: A+x+ = b+ of size n + 1 s.t. b+i = bi for i =

1, . . . , n.
Require: an small integer k > 0 . typically k = 6

1: Set Ak+1 the matrix (1) of size k + 1
2: Set r1 = b+n−k+1 − αxn−k . update last value
3: Set ri = b+n−k+i for i = 2, . . . , k + 1
4: Solve Ak+1u = r
5: Set x+i = xi for i = 1, . . . , n− k
6: Set x+n−k+i = ui for i = 1, . . . , k + 1

The next paragraphs expose the basis of the method as
follows:

• Cholesky decomposition used to solve Ax = b and
A+x+ = b+ shows that intermediate solution u and
u+ share the same values (theorem 1);

• theorem 2 and corollary 1 show that the error between
x+i and xi increases from i = 1 to n or decreases from
i = n to 1;

• fig. 5 shows that |x+i −xi|∝ 10−4 for i = 1, . . . , n−6.
The last point suggests that only is necessary to solve
a little system to get an approximation of x+ as shown
in algorithm 1.

Theorem 1. The first n terms of the partial solution u+ are
identical to the first n terms of the partial solution u, i.e.,

u+j = uj , for j = 1, 2, . . . , n. (7)

Proof: Since A+ has the same structure as A, then L+
ij =

Lij for i, j = 1, . . . , n; and using b+i = bi for i = 1, . . . , n:

u+1 =
b+1
L+
11

=
b1
L11

= u1,

and by induction

u+i =
b+i − L

+
i,i−1u

+
i−1

L+
ii

=
bi − Li,i−1ui−1

Lii
= ui,

for i = 2, 3, . . . , n.

Theorem 2. The absolute error between x+i and xi is an
increasing function of i, moreover

x+i − xi = (−1)n−i+1

(
n∏
k=i

Lk+1,k

Lkk

)
x+n+1, i ≤ n. (8)

Proof: First, the proof of equation (8) is given; second,
the proof of equation (8) is shown.

The principle of induction is used to prove (8) as follows:
1) equation (8) is true for i = n (use equation (6)):

x+n − xn =

(
u+n
L+
nn
−
L+
n+1,n

L+
nn

x+n+1

)
−
(
un
Lnn

)
=

(
un
Lnn

− Ln+1,n

Lnn
x+n+1

)
−
(
un
Lnn

)
= −Ln+1,n

Lnn
x+n+1;

∴ (8) is true for i = n; 2) assume for a moment that (8)
is true for i = n − j + 1, given x+n−j+1 − xn−j+1 =

(−1)j
(∏n

k=n−j+1
Lk+1,k

Lkk

)
x+n+1; 3) the following lines show
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the truth for i = n− j:

x+n−j − xn−j

=
un−j − Ln−j+1,n−jx

+
n−j+1

Ln−j,n−j

− un−j − Ln−j+1,n−jxn−j+1

Ln−j,n−j

= −Ln−j+1,n−j

Ln−j,n−j

(
x+n−j+1 − xn−j+1

)
= −Ln−j+1,n−j

Ln−j,n−j

(−1)j
 n∏
k=n−j+1

Lk+1,k

Lk,k

x+n+1


= (−1)j+1

 n∏
k=n−j

Lk+1,k

Lk,k

x+n+1.

∴ (8) is true for i = n− j.

To prove that |x+i −xi| increases with respect to i the next
equation must be satisfied:

|x+i − xi|
|x+i+1 − xi+1|

=

∣∣∣∏n
k=i

Lk+1,k

Lkk

∣∣∣ |x+n+1|∣∣∣∏n
k=i+1

Lk+1,k

Lkk

∣∣∣ |x+n+1|
=

∣∣∣∣Li+1,i

Lii

∣∣∣∣ < 1.

The last expression is true, due to (4) and (2).

Corollary 1. The function γνj =
∣∣∣∏n

k=n−j+1
Lk+1,k

Lkk

∣∣∣ con-
verges linearly to 0 with respect to j.

Proof: In order to prove that γνj converges linearly to 0,
it is needed to demonstrate that lim

j→∞
|γν,j+1|
|γν,j | ∈ (0, 1) [2]. By

using the definition of L in (4):

lim
j→∞

|γν,j+1|
|γν,j |

= lim
j→∞

∣∣∣∣∣ n∏
k=n−j

α
λ1

√
1−(λ2/λ1)

n−k

1−(λ2/λ1)
n−k+2

∣∣∣∣∣∣∣∣∣∣ n∏
l=n−j+1

α
λ1

√
1−(λ2/λ1)

n−l

1−(λ2/λ1)
n−l+2

∣∣∣∣∣
,

= lim
j→∞

∣∣∣∣∣( α
λ1

)j+1 n∏
k=n−j

√
1−(λ2/λ1)

n−k

1−(λ2/λ1)
n−k+2

∣∣∣∣∣∣∣∣∣∣( α
λ1

)j n∏
l=n−j+1

√
1−(λ2/λ1)

n−l

1−(λ2/λ1)
n−l+2

∣∣∣∣∣
,

=

∣∣∣∣ αλ1
∣∣∣∣ limj→∞

∣∣∣∣∣
√

1− (λ2/λ1)
j

1− (λ2/λ1)
j+2

∣∣∣∣∣;
the last expression is the product of two values between 0 and
1 ∴ the result is less than 1 and the rate of convergence is
linear.

The theorem 2 gives us a chance to approximate x+ with
the first n − j terms of x and the last j terms of x+, i.e.
x̃+ ≈ [x1, . . . , xn−j , x

+
n−j+1, . . . , x

+
n ]. In other words, given

the solution of Ax = b, an approximation of the expanded

system A+x+ = b+ is given by the computation of the last j
terms of x+.

Theorem 2 and corollary 1 show that the error between
x+n−j and xn−j decreases linearly with respect to j, as a
consequence, the approximation of the expanded system needs
few elements and the computation can be done in constant
time.

III. EXPERIMENTAL RESULTS

In this section the proposed algorithm is tested with three
experiments, the first one is a simple example that shows an
easy computation of our proposed method, the second one is
a real time interpolation of an ECG and a comparison with
cubic B-Spline interpolation, and the third one is related to
theoretical properties of our method.

A. First numerical example

The following numerical example shows the first validation
of the proposed method, by defining two linear systems:[

4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 4

][
x1
x2
x3
x4

]
=

[
3
1
1
2

] [
4 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 4

][ y1
y2
y3
y4
y5

]
=

[
3
1
1
2
4

]
;

with solutions
x = [0.7416, 0.0335, 0.1244, 0.4689],
y = [0.7462, 0.0154, 0.1923, 0.2154, 0.9462],

|y − x| = [0.0045, 0.0181, 0.0679, 0.2535];

where the two systems share the matrix structure and the
same right side results (except for the last value in the second
system). Because the second system grows from the first one,
it is expected that both solutions x and y are close each other.
According to theorem 2, can be deduced that the absolute
values |y5 − x5|, . . . , |y1 − x1| are in decreasing order and
tends to zero as expected.

B. ECG interpolation

Real time interpolation is a common task in data acquisition
systems as in an ECG. The cubic B-Spline interpolation is
usually applied in computer graphics because its simplicity,
quick computation (O(\)) and second order continuity. Even
so, in real time applications where new data arrives continu-
ously, there is no sufficiently time to perform the interpolation
between samples.

Cubic B-Spline interpolation uses the matrix defined in (4)
with α = 1 and β = 4, therefore, it is possible to use the
proposed method to perform the approximation of a cubic B-
Spline interpolation in real time.

In this example ECG data downloaded from physionet1 is
used:

• Database: MIT-BIH Long-Term ECG Database

• Record: 14046

• Sex: Male
1http://physionet.org/cgi-bin/atm/ATM?database=ltdb&record=14046&

tdur=3600
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Fig. 1. Cubic B-Spline interpolation of an ECG performed in real time.
Average error is about 10−6 in both cases.

• Age: 46

• Signals: 2

• Length: 1 hr

• Sampling frequency: 128 Hz

• Sampling interval: 0.0078125 sec

• Samples: 460 800

Because data were collected in 1 hr, it is not a good idea
to wait 1 hr to perform cubic interpolation, moreover, when
solving the full system every time a data arrives a O(n)
method becomes O(n2), i.e. as the system size increases, the
computation time increases quadratically. Because our method
is O(1), any approximation is computed in a constant time,
and furthermore, for every new data arriving the algorithm
becomes O(n). Computer experiments indicate that solving a
system with 460800 elements in size is computed in 0.061
secs using the Cholesky method, this time is greater than the
sampling interval, while the proposed method takes 10−6 secs
independently of the system size and can be used for real time
applications.

Interpolation of an ECG is shown in Fig. 1 within an
interval from 3197s to 3200s with 383 samples. Cubic B-Spline
interpolation was computed and an approximation by using the
method described in this paper. In Fig. 1, it is not possible to
observe a visual difference between the cubic B-Spline curve
and its approximation using the proposed method, this fact
is confirmed in Fig. 2 which shows an average error near to
10−6.

Fig. 2 shows the absolute error between the cubic B-
Spline interpolation and the proposed method. Cubic B-Spline
approximation is near to the exact solution as expected.

Notice that in this case, the error is accumulated through
n, and no necessarily is in increasing order.

Now, a comparison of the total computation time used to
interpolate ECG samples with the proposed method (O(1))
and the Cholesky method (O(n)) is described. Fig. 3 shows
100 independent experiments of both methods and its averages.
A single experiment consists of the total computation time vs
system size from n = 1 to n = 16000. It is possible to observe
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Fig. 2. Cubic B-Spline interpolation of an ECG performed in real time.
Average error is about 10−6 in both cases.
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Fig. 3. This plot shows 100 independent experiments to compare the
computation time between the Cholesky Method O(n) in blue lines and our
method O(1) in red lines, in a scenario where the linear system grows from
size 1 to 16000 and it is necessary to compute the solution every time the
system grows. The cholesky method computes the optimal solution while our
method computes and approximation with a relative error of 10−6. In this
case the Cholesky method becomes

∑n
k=1O(k) = O(n2) and the proposed

method becomes
∑n
k=1O(1) = O(n).

that Cholesky method grows quadratically and the proposed
method grows linearly, because

∑n
k=1O(k) = O(n2) and∑n

k=1O(1) = O(n).

C. Plots and surfaces of the theoretical properties

The matrix A in (4), can be described with a real value
because A has one degree of freedom; equation (9) implies
|T (A)|< 1, ∀A with the structure shown in equation (4).

T : Rn×n 7→ R T (A;α, β) = 2
α

β
(9)

Fig. 4 shows the log surface of the function proportional
to the absolute error between x+ and x, i.e. |x+ − x|∝ γνj =

n∏
k=n−j+1

∣∣∣Lk+1,k

Lk,k

∣∣∣, in this plot, the j axis represents the number
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Fig. 4. Log surface of the function γνj related to the error of the current
and previous solution x+ and x, respectively; see theorem 2. The parameter
j is the index in reverse order that compares elements of x+ and x, while
the parameter ν = 2α/β is related to the matrix structure through the
transformation (9). Notice that the error decreases when ν is near to zero,
i.e. where the matrix A becomes more diagonally dominant.

ν ≡
2α
β

-1 -0.5 0 0.5 1
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Fig. 5. Slice of the function γνj at j = 6, see Fig. 4. Marks are located at
values where x+ − x is proportional to 10−k , for k = 4, 6, . . . , 18.

of elements counted from the end, ν is the real value that
represents any matrix A through the transformation (9).

Properties related to Fig. 4 are shown bellow:

• |x+s − xs|> |x+t − xt| if and only if s > t, as seen
along the j axis;

• for a fixed ν, the rate of convergence is almost linear;

• for a fixed j, the speed of convergence of γνj grows
(i.e. log γνj is more negative) when ν goes to zero,
indicating that the matrix A is almost diagonal, in this
case the computation becomes straightforward.

Fig. 5 shows a slice of the surface in Fig. 4 for j = 6,
i.e., considering the comparison between the last 6 elements
of x+ and x. Cubic B-Spline and Cubic Bezier interpolation
uses a matrix A with α = 1 and β = 4, which gives ν = 1/2
and at this value, the error is about 10−4, see Fig. 5. Table I
shows the relative error when the last j terms are computed;
it is necessary to compute the last 7 terms of the expanded
system for a relative error less than 10−4, and 11 terms are
required for a relative error less than 10−6.

TABLE I. NUMBER OF COMPUTATIONS AND ITS RELATIVE ERROR FOR
CUBIC B-SPLINE AND CUBIC BEZIER INTERPOLATION, I.E.

α = 1, β = 4→ ν = 1/2

last j terms Relative error

1 2.6795×10−1

2 7.1797×10−2

3 1.9238×10−2

4 5.1548×10−3

5 1.3812×10−3

6 3.7010×10−4

7 9.9167×10−5

8 2.6572×10−5

9 7.1199×10−6

10 1.9078×10−6

11 5.1118×10−7

12 1.3697×10−7

13 3.6694×10−8

14 9.8069×10−9

15 2.5321×10−9

IV. CONCLUSION

This paper demonstrated that linear systems with special
structure (4) (positive definite, tridiagonal, Toeplitz and sym-
metric) that grow over time, can be approximated in O(1) time
with linear rate of convergence based on a previous solution
of a smaller and similar system.

The proofs and properties of the proposed method have
been shown. This approach was tested with real time inter-
polation of an ECG, showing that 1) the average error of the
interpolation is about 10−6 compared with the exact solution;
and 2) the computation time is constant between samples.

The proposed method O(1) becomes O(n) while tradi-
tional methods of O(n) becomes O(n2) for real time interpo-
lation tasks.

Due to the proposed method properties, this approach can
be used in problems where data is generated in real-time en-
vironments such as handwriting recognition and interpolation
of ND medical images.
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