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Abstract—This paper presents an Internal Model Control 

(IMC) structure designed for a class of continuous linear 

underactuated systems. The study treats the case of Minimum 

Phase (MP) systems and those whose zero dynamics are not 

necessarily stable. The proposed IMC structure is based on a 

specific controller which is obtained by the realization of an 

approximate inverse of the model plant. It is shown that, using 

such IMC structure, it is possible to remedy the problem of 

system underactuation and Non-Minimum Phase (NMP) 

behavior. The case of non-zero initial conditions and imperfect 

modeling are also presented and model parameters effects on the 

system evolution are discussed. Simulated examples are 

presented to prove the effectiveness of the proposed control 

method to ensure set-point tracking, stability and disturbance 

rejection. 
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I. INTRODUCTION 

Multivariable underactuated systems, i.e., systems having 
fewer control inputs than degrees of freedom, are widely used 
in industry. Aircraft, helicopters, underwater vehicles, surface 
vessels, mobile systems and many of today’s walking and 
underwater robots are some examples of underactuated 
systems. They are used for reducing cost, weight or energy 
consumption. Some other advantages of underactuated systems 
include tolerance for actuators failure and less damage while 
hitting an object. The dynamics of some underactuated systems 
may contain NMP behavior which causes much more 
challenging control problems. 

Over the last years, research in the field of underactuated 
control systems have led to significant advance and several 
control methodologies have been proposed. In order to 
contribute to this research area, we propose to extend an 
interesting control approach (called IMC) to a class of 
continuous linear underactuated systems. 

The IMC is considered as one of the most powerful control 
approaches thanks to its robustness and simplicity. In 1982, it 
was defined for Single-Input Single-Output systems (SISO) by 
Morari and Garcia and extended to Multi-Input Multi-Output 
(MIMO) ones in 1985 [3, 8]. Since then, several structures of 
continuous-time, discrete-time, linear and non-linear IMC have 

been proposed [1, 2, 4, 5, 6, 7]. These studies have covered 
many classes of SISO systems and MIMO fully-actuated ones 
where the number of control inputs is equal to that of the 
outputs. Among the proposed IMC approaches, we are mostly 
interested in the IMC structure proposed in [7]. The specificity 
of this IMC structure resides in the use of a special controller 
which is an approximate inverse of the model plant. The use of 
this controller ensures a high level of robustness and system 
performance reservation even in the case of NMP systems and 
those with a time-delay [1, 5]. A number of studies of this IMC 
structure have been applied to both linear and non-linear SISO 
systems [1, 6, 7] as well as multivariable fully-actuated ones 
[2, 4]. The obtained results are very satisfactory which led us to 
extend the approach to a class of continuous linear 
multivariable underactuated systems. 

An internal model controller of a class of continuous linear 
multivariable underactuated systems is presented in this paper. 
Cases of linear MP and NMP underactuated systems are 
studied. Simulation results confirm the effectiveness of the 
approach to ensure stability, accuracy and system performance 
reservation in spite of the presence of external disturbances, 
unstable zeros and non-zero initial conditions. The influence of 
the model parameters on the system behavior is also discussed. 

The rest of this paper is divided into three sections. Firstly, 
the proposed approach is described beginning with a review of 
the IMC basic structure which was designed for linear 
multivariable fully-actuated systems, followed by the 
explanation of the encountered basic problems and the 
proposed solutions. Secondly, two illustrative examples, in 
which our proposed IMC structure is applied to cases of MP 
and NMP linear underactuated systems, are presented. Thirdly, 
the influence of non-zero initial conditions on the system 
evolution is treated and finally, effects of the model parameters 
are discussed. 

II. THE PROPOSED APPROACH 

A. The basic IMC structure 

As presented in Fig. 1, the basic IMC structure consists of 
three principal parts:  an internal model M chosen very close to 
the process allowing to predict the effect of the manipulated 
variables on the outputs, a controller C used to compute values 
of the manipulated variables that are based on present and past 
errors as well as set-point trajectories, and a filter which can be 
inserted to achieve a desired degree of robustness [1, 3, 7, 8]. 
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The IMC structure has several advantages. For example, it 
guarantees the closed loop system stability, anticipates 
constraint violations and allows for corrective actions. Also, a 
perfect set-point satisfaction can be achieved despite the 
presence of external disturbances. 

 

Fig. 1. IMC basic structure (MIMO fully-actuated systems) 

The controller C is the inverse of the chosen model if it is 
realizable. Its structure and parameters are known a priori 
which simplifies the process of finding a suitable 
approximation for a practical implementation. 

In the case of multivariable fully-actuated systems, n is the 
number of the system inputs and outputs, r is a reference signal 
of a dimension (n   1), y is the process output vector of a 
dimension (n   1), ym is the model output vector of a 
dimension (n   1), v is a disturbance signal affecting the 
system and uc is the control input signal of a dimension (n   1) 
[2, 4]. As shown in Fig. 1, the signal uc, which is generated by 
the controller C, is applied to the plant and the model M alike. 
The signal d represents the calculated difference between the 
process output signal y and the model output signal ym. It also 
represents the disturbance effect and the modeling errors, as 
shown in (1). 

               e=r-d = r-((G(s) - M(s))u(s) +v(s))                    (1) 

The signal d is then compared to the reference signal r to 
generate the controller input signal e. 

In the case of linear multivariable fully-actuated systems, 
the process and its model can be presented by their square 
transfer matrices of dimension (n   n) or their space state 
representations [2, 4]. 

The internal model control structure is stable if and only if 
the process, the model M and the controller C are stable in the 
open loop. In other words, the characteristic polynomials of the 
plant, the model and the controller state matrices should verify 
the Routh-Hurwitz stability criterion. The controller synthesis 
and stability conditions will be discussed in more details in the 
following section. 

B. Main problems 

The synthesis of an IMC controller that is equal to the 
inverse of the model expression is essential in order to ensure 
perfect set-point tracking. This inversion represents the basic 
problem of the IMC approach. In fact, the realization of the 
direct model inverse is difficult or not possible for most 
physical systems. This difficulty is due to the denominator 
order on the model expression, which is usually greater than 
the numerator one, or the presence of unstable zeros or/and 

time delay. The direct model inversion is also impossible in the 
case of underactuated plants. In fact, the model must provide 
an accurate description of the process dynamics and 
characteristics. Therefore, the model expression must be very 
close to that of the plant. For underactuated systems, the 
number of control inputs is equal to m, the number of outputs is 
equal to n, and the transfer matrix of the plant is of a dimension 
(n   m) making it a non-square matrix. In this case, the model 
cannot be invertible. This represents the major problem 
encountered. 

In addition to the system underactuation, the presence of 
NMP dynamics complicates the system control and makes it 
much more challenging. In fact, an NMP system, i.e., a system 
with zeros in the Right Half of the Plane (RHP), is presented 
by an NMP model. As explained previously, the controller 
which must be stable is an inverse of the model expression. 
This inversion may generate an unstable controller. To remedy 
these problems, we propose firstly to modify the IMC basic 
structure so that it becomes applicable to underactuated 
systems. Secondly, we design an approximate inverse of the 
model plant which is inspired of studies of [1, 7] in the case of 
SISO systems, and those of [2, 4] in the case of multivariable 
fully-actuated systems. This proposed controller represents a 
remedy for NMP systems. 

These proposed solutions will be detailed in the following 
section.  The system and model transfer matrix representations 
will be considered in order to simplify the study and the 
proposed approach explanation. 

C. Proposed IMC structure for linear underactuated systems 

1) The proposed IMC design 
Underactuated systems are systems with more outputs than 

control inputs. Therefore, the transfer matrix of a linear 
underactuated system cannot be square. As mentioned in the 
previous section, on the one hand, the model M must be chosen 
as very close to the process G; and on the other hand, the 
controller C is an approximate inverse of the model which 
requires a square transfer matrix M. The suggested solution 
consists of utilisating a square model then eliminating the 
excess control inputs which are applied to the system. This 
procedure has led to the proposed IMC structure as presented 
in Fig. 2 [9, 10]. 

 
Fig. 2. IMC structure for linear multivariable underactuated systems 

In fact, the transfer matrix G(s) of a linear underactuated 
system (such that m is the number of system inputs, n is the 
system outputs one, and m is less than n) is of dimension        
(n   m). G(s) is expressed by the following matrix. 
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11 1

1

m

n nm

G (s) G (s)

G(s)

G (s) G (s)

 
 


 
  

              (2) 

The matrix M(s) must be chosen close to G(s), but as 
explained previously, the inversion problem requires that the 
matrix M(s) must be square [2].  To solve this problem, a 
number of (n   (n m)) transfer functions are added to the 
matrix M(s) in order to make it a square matrix having a 
dimension of (n   n) [9, 10]. Therefore, the IMC structure 
designed for multivariable fully-actuated systems (where        
(m = n)) can be applied. The (n   (n m)) added functions can 
be chosen as first-order transfer functions which verify the 
Routh- Hurwitz stability criterion in order to simplify the study 
and avoid inversion problems [9, 10]. The obtained matrix M is 
expressed by (3). 

11 1 1 1 1

1 1

  added transferInitial transfer 
    functions   functions
  (n x (n-m))  (n x m)

m m n

n nm nm nn

M ( s ) M ( s ) M ( s ) M ( s )

M( s )

M ( s ) M ( s ) M ( s ) M ( s )





 
 


 
  

 (3) 

Secondly, the IMC structure designed for multivariable 
fully-actuated systems (proposed in [2]) is modified in order to 
eliminate the (n m) excess control inputs. To do so, a bloc is 
added to the basic IMC structure as shown in Fig. 2 [9, 10]. It 
is used to eliminate the (n m) excess control inputs acting on 
the process G by the use of usual arithmetic operators, as 
shown in Fig. 3. 

 

Fig. 3. The added bloc 

Where ug is the vector of the m control inputs acting on the 
process G ; 

ue=[ue1 … uef]
T
 is the vector of the (n m) excess control 

inputs ; 

uf=[uf1 … uff]
T
 is the vector of the (n m) eliminated 

excess control inputs. 

uf  is the control input vector acting on the (n  (n m)) 
added transfer functions of the model M and u is the control 
input vector acting on the model M. 

The control inputs vectors u and ug, the signals d and e, and 
the system output vector y are given respectively by these 
following expressions and equations. 

 

 

1 1

1

0 0
T

m m n

  Eliminated excess control inputsControl inputs acting 
  ((n-m) x 1)on the plant

( m x 1 )

T

g m

u u ... u u ... u

u u ... u

  


    (4) 

( ) ( ) ( ) ( )gd s G s u M s u v s  
                                            (5) 

( )

( ) ( ) ( ( ) ( ) ( ))g

d s

e s r s G s u M s u v s   

   (6)                   

1 2( ) ( ) ( )g g gu s u s u s 
                                                       (7) 

where                                                                            

 

 

1

1

1

2

( ) ( ( ) ( )) ( ) ( ) ( )

( ) ( ( ) ( )) ( ) ( ) ( )

g

g n

u s C s G s C s r s v s

u s C s G s C s M s I u s




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

 

               

               (8) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )r v uy s y s r s y s v s y s u s                          (9) 

 where      

 

1

1

1

( ) ( )( ( ) ( )) ( )

( ) ( )( ( ) ( )) ( )

( )( ( ) ( )) ( ) ( )

r

v n

u n

y s G s C s G s C s

y s I G s C s G s C s

y G s C s G s C s M s I







 


 


 

   (10)  

2) The controller design 
The controller structure of multivariable linear systems that 

can be NMP is presented in Fig. 4 [1, 2, 7]. 

 

Fig. 4. The controller structure 

Where M(s) is the transfer matrix of the proposed model. It 
is of a (n   n) dimension. K1 is a chosen square matrix of a       
(n   n) dimension and K2 is a gain matrix of a (n   n) 
dimension. e is the controller input vector of a dimension        
(n   1) and uc  is the control input vector of a dimension         
(n   1). 

The gain matrix K2 is used to compensate the static errors, 
and the gain matrix K1 is used to ensure the controller stability. 
In fact, the first part of this proposed controller which 
represents the approximate inversion approach is shown in   
Fig. 5. In this case, the controller can be expressed by (11). 

        
1 1 1

1 1 1nC( s ) ( I K M( s )) K ( K M( s ))     
          (11) 
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Fig. 5. The approximate inversion (multivariable systems) 

Where In is the identity matrix of a dimension n and K1 is 
an invertible square matrix ensuring the stability of the 
controller. In order to simplify our study, K1 can be expressed 
by (12) where a ∈ ℝ+. 

                                   1 nK a I
                                      (12) 

If we choose a high value of a in (12), we obtain a small 

value of  
 

 
  which allows to approximate (K1

-1 
+ M(s))

-1
 with 

M(s)
-1

. In this case, C(s) is approximately equal to the model 
expression inverse as follows. 

                               C( s )≃
1M( s )                                   (13)           

Therefore, the system output vector expression given in (9) 
can be expressed by (14). 

                  ( )y s ≃ ( ) ( ) ( ) ( )r vy s r s y s v s                       (14) 

The coefficients of the characteristic polynomial of the 
controller state matrix whose values depend on the value of a 
in (12) must satisfy the Routh-Hurwitz criterion in order to 
ensure the controller stability. Since M(s) is stable, a suitable 
choice of the matrix K1 ensures the controller stability. 
However, in the case of NMP systems, the adequate coefficient 
value of a cannot be chosen to be very high which can lead to 
the system accuracy degradation. In fact, in order to ensure the 
system accuracy, i.e., a zero static error, the controller static 
gain matrix C(0) must be very close to the inverse of  the 
model static gain matrix M(0) as shown in (15), which is not 
possible in the case of a small value of a [2]. 

                                   0C( )≃ 10M( )                              (15) 

In order to remedy this problem, the gain matrix K2 
presented in Fig. 4 is added. It allows to compensate the system 
static errors thanks to its expression given by (16) and ensures 
that C(s)M(s) = In. 

                 
1 1

2 1 1 0 0nK K ( I K M( ))M( )  
               (16) 

The general controller expression for NMP multivariable 
systems is therefore presented by (17) as follows [2]. 

               
1

2 1 1nC( s ) K ( I K M( s )) K                  (17) 

III. ILLUSTRATIVE EXAMPLES 

Two set-point signals r1 and r2 of type steps having an 
amplitude equal to 1 are applied to the following two 
examples, such that r = [r1  r2]

T
. Nominal cases are considered, 

i.e., systems with no external disturbances. 

A. The case of a linear MP underactuated system 

Considering the following linear MP underactuated system 
with one control input u1 and two outputs y1 and y2. The system 
transfer matrix G(s) is given by (18). 

                          

1

2

2
2

2

3 2

1

4 3 1

Gs

s s
G(s)

s

Gs s

  
       

   
   

                            (18) 

The model transfer matrix M(s) is of a dimension (2 x 2) as 
explained previously. The system and the model outputs are 
expressed respectively by (19) and (20). 

                     
 1 2 1

T

gy y G u G u 
                         (19) 

1 111 12

21 222 2

The Model M The control 
input vector
        u       

0

m

m

y uM M
Mu

M My u

    
     

    

 (20) 

The model transfer functions M11 and M21 are successively 
chosen to be close to G1 and G2. We consider the case of a 
perfect modeling, such that M11 is equal to G1 and M21 is equal 
to G2. M12 and M22 are chosen as first order transfer functions 
so that they ensure the invertibility conditions of the matrix M. 
The chosen model is expressed by the following transfer matrix 
M(s). 

                            

2

2

2 1

3 2 2

1 3

4 3 2 4

s

s s s
M(s)

s

s s s

 
   

  
 

 
                           (21) 

The application of the Routh–Hurwitz stability criterion 
allows to assess the necessary and sufficient condition of the 
controller stability. In the case of this system, we must choose 
a> -0.72 such that K1 = a × I2. The proposed IMC design 
presented in Fig. 2 is applied and the controller of Fig. 4 is 
used in order to ensure a greater accuracy. 

In this study, two cases are considered. In the first case, the 
gain matrix K1 is chosen to be equal to 1× I2 (a = 1), and in the 
second case, K1 is equal to 40 × I2 (a = 40). 

The gain matrix K2 which is relative to K1 = 1 × I2 is given 
by (22). 

                               
2

2 5 1

1 3

.
K

 
  

                                  (22) 

The gain matrix K2 which is relative to K1 = 40 × I2 is given 
by (23). 

                       
2

1 0375 0 0250

0 0250 1 0500

. .
K

. .

 
  

                        (23) 

https://www.google.tn/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjqx8m517HPAhWJ7RQKHcFUASsQFggjMAE&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRouth%25E2%2580%2593Hurwitz_stability_criterion&usg=AFQjCNGFFLIm58pCAORd4PQQZ-LkNLmmFA&sig2=1k9amp2L4PiDHPfngb6m1w&bvm=bv.134052249,d.d2s


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 12, 2016 

144 | P a g e  

www.ijacsa.thesai.org 

Fig. 6 and Fig. 7 show the system control inputs evolution 
in the cases where a = 1 and a = 40, respectively. 

Fig. 8 and Fig. 9 show the system outputs signals in the 
cases where a = 1 and a = 40, respectively. 

 
Fig. 6. Control inputs (linear MP underactuated system,  case of a = 1) 

 
Fig. 7. Control inputs ( linear MP underactuated system, case of a = 40) 

 
Fig. 8. System outputs ( linear MP underactuated system, case of a =1) 

 

Fig. 9. System outputs (linear MP underactuated system, case of a =40) 

It can be shown in Fig. 6 and Fig. 7 that the excess control 
input u2 is successfully eliminated. Simulation results also 
show the effects of the choice of the coefficient a on the system 
behavior. The more the value of a increases, the more the 
system responses are fast and accurate. This is explained by the 
fact that the approximated inverse is closer to the real inverse 
of the model. However, we note a significant peak of the 
control input u1 which appears at the initial instants in    Fig. 7 
which is due to the high value of a. The more the value of a 
increases, the more the peak is high. This is due to the fact that 
the system at boot acts as an open-loop system controlled by a 
control signal vector C(s) which is equal to a×r(s). The peak is 
then eliminated by the feedback effect. 

The problem of the control input peak can be solved by the 
use of a saturation bloc that is added to the controller 
configuration as shown in Fig. 10 [1]. 

 

Fig. 10. Controller structure with a saturation bloc 

The same linear MP underactuated system presented in (18) 
and the case where K1 = 40 are considered. The gain matrix K2 
is presented in (23). 

Fig. 11 shows the control input evolution after having 
applied the controller structure in Fig. 10. Maximum eligible 
values of the control input u1 must be equal to -10 and 10.  It is 
shown that u1 has not exceeded the landmarks. It is also noted 
that the addition of the saturation block does not affect the 
system accuracy and stability. 
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Fig. 11. Control inputs 

The next example presents the case of a linear NMP 
underactuated system. 

B. The case of linear NMP underactuated system 

We present in this example one control input/two outputs 
NMP system. It is represented by the following transfer matrix 

          

1

2

2
2

1

1

1

2 1

Gs

s s
G( s )

s

Gs s

  
       

   
   

    

                               (24)    

where the unstable zero of G(s) is equal to 1. 

The case of a perfect modeling is considered. So, the 
transfer function M11 is chosen to be equal to G1 and M21 is 
chosen to be equal to G2. M12 and M22 are chosen as first order 
transfer functions with stable poles and zeros in order to 
simplify the calculations and avoid model inversion and 
controller stability problems. 

The model M is presented by the transfer matrix given in as 
follows. 

      

11 12

2

2
21 22

1 1

1 2

1 1

2 1 1

M M s

s s s
M( s )

s

M M s s s

   
         

   
  

                (25) 

The model has one unstable zero (equal to 1) which may 
cause instability of the controller if we apply a direct inversion 
of the model. The controller structure described in Fig. 4 
allows us to overcome this blocking problem. In fact, the 
application of the Routh–Hurwitz stability criterion on the 
controller characteristic polynomial whose  coefficients depend 
on the value of a allows us to determine the necessary and 
sufficient condition of the controller stability which is found to 
be  a < 0.87. In this case, the stabilizing value of a is small.  
So, the approximated inverse model is different from the real 
one which requires the addition of the gain matrix K2 expressed 
in (16). In our case, the gain matrices K1 and K2 are 
respectively equal to (26) and (27). 

                                           1 20 1K . I
                            (26) 

                                    
2

21 10

20 21
K

 
  

                         (27) 

The control inputs and the system outputs are respectively 
presented in Fig. 12 and Fig. 13. 

Simulation results prove the effectiveness of the approach 
to ensure a fast set-point tracking and to preserve the system 
performances in spite of the presence of underactuation and 
non-minimum phase behavior. 

 

Fig. 12. Control inputs 

 

Fig. 13. System outputs 

In what follows, the implementation problems of the 
proposed IMC structure are discussed. Indeed, the influences 
of external disturbances, initial conditions and model 
parameters on the system behavior are studied. 

IV. IMPLEMENTATION OF THE PROPOSED IMC STRUCTURE 

The linear underactuated system which is presented in (18) 
is considered in all the following examples and the controller 
structure of Fig. 4 is used. The chosen gain matrix K1 is equal 
to 40×I and the reference signals are chosen to be steps of 
amplitude equal to 1. 

A. The case of disturbed system 

In order to show a significant improvement of the accuracy 
and the disturbance rejection capability of the proposed IMC 
structure, we consider the case of a disturbed system where  the 
disturbance signals v1 and v2 are chosen to be steps of 
amplitude 1 that occurs at t = 20s as in (28). 

                
20 20

1 2

T
s s

T e e
v(s) v v

s s

  
   

 

              (28) 

https://www.google.tn/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjqx8m517HPAhWJ7RQKHcFUASsQFggjMAE&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRouth%25E2%2580%2593Hurwitz_stability_criterion&usg=AFQjCNGFFLIm58pCAORd4PQQZ-LkNLmmFA&sig2=1k9amp2L4PiDHPfngb6m1w&bvm=bv.134052249,d.d2s
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The case of a perfect modeling is considered. The model is 
expressed by its transfer matrix given by (21).  The gain matrix 
K2 is presented in (23). 

Control inputs and system outputs are respectively 
presented in Fig. 14 and Fig. 15. Simulation results show that 
the IMC designed for linear underactuated systems guarantee 
an accurate set-point tracking and a fast disturbance rejection 
proving the robustness of the proposed approach. 

 
Fig. 14. Control inputs 

 

Fig. 15. System outputs 

As we mentioned in the previous section, the control inputs 
peaks values can be reduced by the use of the controller 
structure with saturation bloc which was presented in Fig. 10. 

B. The case of non-zero initial conditions 

We consider the model presented in (21) and the gain 
matrix K2 given by (23). 

The transfer matrix representation does not reveal the 
system evolution if it is not initially relaxed. So, we convert it 
into an equivalent state-space representation. This model and 
process representations are given respectively by (29) and (30) 
in a canonical form. 
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The disturbance vector presented in (28) is considered. We 
study these two examples of non-zero initial conditions of the 
system outputs: 

 0y( t s ) =[y01  y02]
T 

=[0.75  0.375]
T
 ; 

0y( t s ) =[y01  y02]
T 

=[1.53 0.675]
T 

.
 

The resulting simulations are illustrated in Fig. 16 and    
Fig. 17 respectively. It can be shown that even for model and 
system initial conditions that may be non-zero and different, 
only the transient region of the output signals is affected which 
proves the robustness of the proposed control structure. 

 
Fig. 16. System outputs 

 

Fig. 17. System outputs 

C. The case of imperfect modeling: model parameters effects 

The IMC approach is based on an accurate linear model, 
but in many cases such as changes in process settings, sensors 
measuring imprecision, the system linearization, system 
parametric uncertainties, etc, modelling cannot be highly 
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precise. Such model cannot provide a perfect description of the 
process behavior. Therefore, it can affect the process stability 
and/or precision which has led us to study the case of an 
imperfect model and test its parameter effects on the system 
evolution. These tests can help us to choose the model that best 
describes the controlled system and does not affect its stability. 

The studied system is the linear underactuated system 
presented in (18). The gain matrix K2 is given by (23). We 
present in the following the case of an imperfect modeling 
caused by the difference between the value of the process 
Damping Ratio (DR) and that of the model. We consider the 
model presented by the transfer matrix given by (31). The 
nominal case is studied. 

The model and system DR values are denoted respectively 
as DRM and DRS. 

                    
11

2

1

2

1 3

4 3 2 4

M ( s )
s

M( s )
s

s s s

 
 

  
 

 
   

                        (31)  

In the following tests, the DR value of the model transfer 
function (M11) is chosen to be very different from that of the 
process (G1). 

1) Test 1:  DRM   DRS 
In this case, the transfer matrix M11(s) is given by (32). 

                      
11 2

2

30 2

s
M ( s )

s s




 
                      (32) 

The system outputs are illustrated by Fig. 18. It can be 
shown that even for a high value of DRM, the system stability 
is maintained while the reference signal tracking becomes 
much slower. 

 
Fig. 18. System outputs 

2) Test 2:  DRM   DRS 
The chosen transfer matrix M11(s) is given by (33). 

                  
11 2

2

0 01 2

s
M ( s )

s . s




 
                       (33)    

The system outputs are presented in Fig. 19. 

 

Fig. 19. System outputs 

The obtained simulation results show that, in the case of a 
much smaller value of the DRM as compared to the DRS, the 
system becomes unstable. 

In fact, the model response becomes much faster than that 
of the system. As a result, their outputs are added instead of 
being compared and the process behavior becomes equivalent 
to that of an open-loop system. 

V. CONCLUSION 

In this paper, a new approach to the IMC of continuous 
linear multivariable underactuated systems is presented. The 
realized research treats the case of underactuated MP and NMP 
systems. 

Effects of non-zero initial conditions and model parameters 
on the system evolution are discussed. 

Simulation results show the accuracy and the rapid 
disturbance rejection capability of the proposed IMC structure 
proving its robustness and its ability to remedy the problems 
caused by the system underactuation, the system NMP 
behavior, and non-zero initial conditions. 
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