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Abstract—Performances evaluation, benchmarking and re-
producibility represent significant aspects for evaluating the
practical impact of scientific research outcomes in the Computer
Science field. In spite of all the benefits (e.g., increasing visibility,
boosting impact, improving the research quality) which can be
obtained from conducting comprehensive and extensive experi-
mental evaluations or providing reproducible software artifacts
and detailed description of experimental setup, the required effort
for achieving these goals remains prohibitive. In this article, we
present the design and the implementation details of the Liquid
Benchmarking platform as a social and cloud-based platform
for democratizing and socializing the software benchmarking
processes. Particularly, the platform facilitates the process of
sharing the experimental artifacts (computing resources, datasets,
software implementations, benchmarking tasks) as services where
the end users can easily design, mashup, execute the experiments
and visualize the experimental results with zero installation
or configuration efforts. Moreover, the social features of the
platform enable the users to share and provide feedback on the
results of the executed experiments in a form that can guarantee
a transparent scientific crediting process. Finally, we present
four benchmarking case studies that have been realized via the
Liquid Benchmarking platform in the following domains: XML
compression techniques, graph indexing and querying techniques,
string similarity join algorithms and reverse K nearest neighbors
algorithms.

Keywords—Cloud Computing; Benchmarking; Software-as-a-
Service, Social Computing

I. INTRODUCTION

Over the last decades, the scientific community has been
witnessing a significant increase in the amount of research
outlets. In general, one of the important characteristic of the
Computer Science research field is that the research outcomes
provides artifacts other than the research outlets, in particu-
lar, computer software. In principle, the Computer Science
scientific community is continuously witnessing claims on
performance improvement from the various researchers and

publications which have called for the necessity of conduct-
ing comprehensive and reproducible experimental assessments
and comparisons between competing alternative software of
approaches, algorithms or entire systems with the objective of
evaluating the significance or the practical impact of the re-
ported research contributions. In practice, most of the research
outlets usually report results of their experimental evaluation
to assess/compare their introduced scientific contributions with
the state-of-the-art, however, unfortunately, the accuracy and
the quality of such experimental evaluations are usually con-
strained with various factors including the unavailability of
sufficient time or manpower, the unavailability of adequate or
standard testing scenarios or any other resource constraints.
In addition, it is common that research outlets are usually
concentrating on reporting the experimental results of the sweet
spots of their contribution which can usually affect on the
reflection of the actual picture on the real-world scenarios and
suffer from file-drawer effect [37]. Furthermore, it is usually
very challenging to assess and understand the performance
characteristics of the design choices of a specific approach.

Practically, conducting a consistent, independent and com-
prehensive study of performance evaluation or benchmarking
competing alternatives in a specific domain is mostly a re-
source and time consuming process. Therefore, it is common
that the accuracy and the quality of reported experimental
results can be limited and constrained with various conditions
including the limited time, limited human power, shortage of
computing resources and unavailability of publicly accessible
software implementation of some contributions that have been
reported in the research literature. Moreover, it is practi-
cally challenging to get an access to various configuration
of computing environments/resources which can represent or
cover the wide spectrum of various real-world use cases [31].
Hence, it is, unfortunately, common in many research areas
to have little or no objective knowledge about the advan-
tages and limitations of any group of competing research

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

519 | P a g e
www.ijacsa.thesai.org 



approaches/techniques that are sharing the focus on addressing
a specific research problem.

In principle, the ability to repeat experiments is considered
a hallmark of the scientific process which is used to confirm
or refute hypotheses and previously obtained results [16]. In
recent years, the importance of defining and performing com-
prehensive benchmarking and performance evaluation studies
has been acknowledged by various research communities.
Additionally, various scientific conferences, funding agencies
and publishers have started to motivate the researchers to share
the software artifacts and documentations that can facilitate the
reproducibility of the experimental results which are reported
in their research outlets. For instance, in the database re-
search community, since 2008, the ACM SIGMOD conference,
which is considered as the most prestigious conference of
the community, has started to offer the chance to verify
the reproducibility of the reported experimental results by
providing the researchers with the opportunity to submit their
software and other experimental artifacts (e.g., datasets) [27].
Moreover, since 2008, another prestigious conference of the
commuity, the VLDB conference, initiated a new experimental
and analysis paper track that motivates the researchers of
community to submit manuscripts that document and report
in-depth experimental evaluation and benchmarking studies1.
Furthermore, various proposals [10] and scientific tutorials
demonstrated in the main scientific venues of the database
research community have been focusing on promoting the sig-
nificant importance of reproducibility, performance evaluation
and benchmarking studies in database research [18], [25]. As
a result, some efforts such as Arizona Database Laboratory
(AZDBLab) [41] has been proposed to support database re-
searchers in performing a comprehensive and empirical study
among various database management systems. Other research
communities followed the same trend such as the Semantic
Web2,3,4, Semantic Web Service5, Business Process6, Infor-
mation Retrieval7 communities in addition to the general
Executable Paper Grand Challenge8. In spite the fact that these
initiatives for benchmarking efforts and research publications
are important and useful, however, the main limitation of these
efforts is that they report particular snapshots for the state-of-
the-art that reflect the status at the time of their conduct. In
practice, the state-of-the-art in any research domain is always
evolving and dynamic, by default. For example, emerging or
novel approaches or techniques that tackle the same research
challenge of a formerly revealed snapshot publication can
be proposed or the performance characteristics of formerly
assessed approaches or techniques may develop and improve.
Hence, this type of research publications can be outdated
shortly after they have been released.

In practice, the recent advances in Web technologies (e.g.
social web, cloud computing, software-as-service) have pro-
vided novel work environments that opened new opportunities

1http://www.vldb.org/pvldb/vol1.html
2http://challenge.semanticweb.org/
3http://2014.eswc-conferences.org/important-dates/call-challenges
4http://iswc2014.semanticweb.org/call-replication-benchmark-data-software-papers
5http://sws-challenge.org/wiki/index.php/Main\textunderscorePage
6http://processcollections.org/past/2013-2/matching-contest
7http://www2.informatik.hu-berlin.de/∼wandelt/

searchjoincompetition2013/
8http://www.executablepapers.com/

to address the above mentioned challenges. As a result, re-
cently, the scientific communities started to increasingly use
personal/shared blogs and wikis (e.g. ACM SIGMOD blog9,
DBMS210, SemWebTec11) to share and discuss their findings.
PubZone12 has been designed as a service that provides
the scientific community with a Wiki and discussion forum
for publications. crowdLabs13 and myExperiment14 have been
proposed as environments for sharing workflows that describe
computational experiments, data analyses and visualizations.
However, in practice, there is a still long way to go for achiev-
ing effective and collaborative innovations in the research
practices. In particular, surprisingly, the Computer Science
research communities have not been successful, so far, to make
the best use of or effectively exploit the availability of the
recent advances in Web technologies to establish platforms and
form driving forces that can address the above mentioned chal-
lenges and implement functional and widely-used collaborative
experimental evaluation and benchmarking platforms that can
dynamically evolve and exploit the power of the crowd.

In this article, we present the design and the imple-
mentation details of the Liquid Benchmarking platform [35]
as a novel research infrastructure that provides cloud-based,
collaborative and social environment that attempts to tackle
the above mentioned challenges and obstacles by facilitating
the democratization, socialization and improving the quality
of the performance evaluation and benchmarking processes
in the Computer Science research domain. In particular, we
summarize the main contributions of our presented platform
as follows:

• The platform can significantly reduce the effort and
time for executing performance evaluation experiments
by facilitating the process of sharing the experimental
artifacts (e.g., software implementations, benchmarking
tasks, computing environments) and supporting its end
users to easily design, mashup and execute the experi-
ments with zero installation or configuration efforts.
• The platform supports for searching, comparing, analyz-

ing and visualizing the results of previous experiments.
• The users of the platform can subscribe to get notifications

about the results of any new running experiments for the
domains/benchmarks of their own interests.
• The collaborative and social features of the platform

enable turning the performance evaluation and bench-
marking process into a living process where different
users can run different experiments, share the results
of their experiments with other users in addition to
commenting on the results of the conducted experiments
by themselves or by other users of the platform. Such
features guarantee the utilization of the wisdom of the
crowd, the freshness of the results, the establishment
of a transparent process for scientific crediting and the
development of scientific advances that trust and build on
previous research contributions.

In addition, we present the implementation details of four

9http://wp.sigmod.org/
10http://www.dbms2.com/
11http://semwebtec.wordpress.com/
12http://www.pubzone.org
13http://www.crowdlabs.org/
14http://www.myexperiment.org/home
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benchmarking case studies that have been fully realized and
made available via the Liquid Benchmarking platform. The
remainder of this paper is organized as follows. Section II
motivates the practicality and significance of our platform
by illustrating sample scenarios. Section III discusses some
of the fundamental obstacles for conducting trustable and
conclusive experimental evaluation or benchmarking research
in the Computer Science filed. In Section IV, we describe the
main entities and the conceptual model of the Liquid Bench-
marking platform. The architecture and the implementation
details of the platform is presented in Section V. Four Liquid
Benchmarking case studies are presented in Section VI before
we conclude the paper in Section VII.

II. MOTIVATING SCENARIOS

In this section, we present two sample scenarios that
motivate the practical importance of our presented Liquid
Benchmarking platform as follows.

Scenario 1: Alan is a graduate student in one of the
world reputable research groups on data management systems.
He and his advisor are researching on developing novel effi-
cient techniques for querying graph-based biological databases.
Alan has been recommended by his advisor to perform a
survey on the related literature and conduct an experimental
evaluation for assessing the performance characteristics of the
state-of-the-art. During this activity, Alan got overwhelmed
with a large number of literature which are reporting scientific
proposals for techniques and approaches to tackle the problem
of interest. As a result of an extensive research task, Alan has
been successful on getting the access to the software imple-
mentation for some of proposed approaches and techniques
in the literatures while he exploited his technical software
development skills to re-implement a set of the important
approaches which were reported in the literature, according to
their reported description, but that have no available software
implementations. After a year of effort, Alan prepared all the
requirements to conduct a benchmarking study which assesses
and compares between some of the proposed techniques for
tackling his problem of interest. This experimental evaluation
study supported Alan to gain useful insights for achieving
his primary objective. Apparently, this is very time and effort
consuming task (in addition to some other various obstacles
which will be discussed in more details in Section III).
In practice, the accuracy and the quality of the outcomes
of such conducted experimental evaluation activity has been
constrained with the amount of effort, time and attention which
has been dedicated by two researchers: Alan and his advisor,
through this research activity. In general, it is common that
graduate students in the various research areas of the Computer
Science field usually go through a similar process at the initial
stages of their research work. Unfortunately, prospect graduate
students in the same domain, across the world, may not be able
to leverage, extend or improve Alan’s effort unless there is an
effective and workable solution or platform that allow Alan to
share the artifacts of his study and enable other students and
researchers to collaborate on following up and contributing
to this sort of experimental evaluation research. In addition,
after one year, Alan may not be able to reproduce his own
results or explain them. In practice, constant time pressure and
strict submission deadlines usually push the scholars to favor

timely results over spending enough time on documenting the
experiments and data traceability.

Scenario 2: John is one of the active researchers in the
domain of graph databases. During his research, John got
interested in benchmarking the state-of-the-art of the indexing
and querying approaches for graph databases. As a result, John
allocated about 24 weeks of his time in the following activities:

• Establishing a large corpus of graph databases that have
various characteristics.

• Searching for the available software implementations of
graph indexing and querying techniques in addition to
implementing some of the techniques that have been
presented in the literature but they have no available
software implementation.

• Conducting extensive experiments to assess the perfor-
mance characteristics of various proposed techniques,
which were proposed in the literature, using the es-
tablished collection of graph datasets and analyze their
results.

• Documenting the results of the conducted experiments,
sharing the artifacts of the study via a public web page
and writing up a journal publication that disseminate the
results and lessons of his benchmarking study.

Following its release, John’s benchmarking study has at-
tracted a lot of interest from the research community of
graph databases where some of the active researchers in this
domain had communications with John to inquiry about
various aspects of the experimental study or seeking some
advices in reproducing the results of some of the reported
experiments. However, unfortunately, these communications
remained offline in John’s mail box. After sometime, John
has moved to a new position and his research interest shifted
to another research area. Hence, he become less responsive to
inquiries from researchers in the graph indexing and querying
domain about his benchmarking study. In addition, the results
of his benchmarking study has become out-of-date after the
introduction of novel approaches and techniques that tackle the
same problem and the improvement of formerly investigated
approaches by John. In practice, effectively and cumulatively
exploiting John’s effort calls for joint efforts from other active
scholar in the graph indexing and querying domain in addition
to an the availability of an adequate platform that can facilitate
and support such efforts.

III. BENCHMARKING CHALLENGES IN COMPUTER
SCIENCE

In comparison to more traditional disciplines (e.g., natural
sciences), computer science is considered a much younger
discipline which is usuall said to have a somewhat sloppy
relationship with the repeatability of published results [13].
In practice, each computer science scholar could share a story
about of a failed attempt to reproduce the results of a some
top-notch paper [13]. For example, Collberg et al [11] have
reported that they have failed, in many cases failed, to system-
atically replicate artifacts from highly ranked research papers.
In this section, we discuss some of the remarkable obstacles
for conducting trustable and conclusive benchmarking studies
in the Computer Science research field as follows.
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• Limited reproducibility of reported experimental results:
In an ideal world of Computer Science research, the
authors of a research outlet document the details of their
contributions in the manuscript and publicly provide the
binaries/source codes of their software implementation
with the other related software atrifacts (e.g., experimental
datasets) to the other researchers so that they can be
exploited for reproducing the reported results in their
publication. This ideal process would provide several
advantages. For example, other researchers in the same
domain of the study would be able to independently
asses the performance characteristics of the provided
software implementation using other experimental setups
(e.g., datasets, computing resources) in order to verify the
reported claims and make sure that there is no hidden
aspects which can affect the accuracy of the reported
experimental results. In addition, other researchers can
exploit this available software artifacts as a valuable
starting point to evaluate and assess the significance of
their own proposed contribution. One of the interesting
examples for the value of such independent evaluation
studies is the study of Sidirourgos et al. [39] where they
have reported about an independent assessment of the
published result by Abadi et al. in [4] which described an
approach for implementing a vertically partitioned DBMS
for Semantic Web data management. The outcomes of
this independent assessment revealed many interesting
aspects. For instance, in [4] Abadi et al. reported that
the performance of binary tables is superior to that of
the clustered property table for processing RDF queries
while Sidirourgos et al. [39] reported that even in column-
store database, the performance of binary tables is not
always better than clustered property table and depends
on the characteristics of the data set. In addition, the
experiments of [4] reported that storing RDF data in
column-store database is better than that of row-store
database while [39] experiments have shown that the
gain of performance in column-store database depends
on the number of predicates in a data set. A main lesson
from this example is that we cannot really be sure that
published research results are accurate and comprehensive
even if they were reported by the best scientists and
went through the most rigorous peer review process.
However, can have more confidence on these results
if others can repeat the same experiments and obtain
similar results [16]. However, it should be noted that such
repetitions are considered part of the scientific process
and they do not represent any mistrust for the scholars
who published the original results. Instead, they represent
part of the scientific process which aims of gaining more
confidence in the original results or to provide more
insights that can specify or delimit the range of their
applicability.
In practice, unfortunately, the research world is not
usually following this ideal process. For instance,
Sakr [32] has performed a benchmarking study for the
state-of-the-art of XML compression techniques [1].
The results of this study have shown that many XML
compression techniques which were presented in the
literature have no available software implementations
and thus it is hard or not straightforward to assess their
performance characteristics. Collberg et al. [11] have also

reported in their study for highly ranked research papers
that when software was available, with a percentage of
only 44% of the cases, it was difficult to have it running.
Clearly, such limitation prevents the researchers from
confirming the reproducibility of the reported figures
in the original publications and hinders the chances
of conducting comprehensive comparisons among the
whole set of the proposed techniques for tackling the
same research challenges. Recently, some groups have
organized initiatives to establish open challenges in
various research domains (e.g. Semantic Web Service
Challenge, Semantic Web Challenge, Information
Retrieval). In addition, recent editions of SIGMOD
conference started to offer the opportunity for the
researchers of the published manuscripts to evaluate their
software using the experimental datasets to reproduce
the reported experimental results. Unfortunately, so far,
the repeatability reports of the SIGMOD conference
have shown limited success on achieving this goal due
to several reasons [7], [26], [27].

• The dynamics and continuous evolution of the state-of-
the-art: In practice, conducting an independent, com-
prehensive and conclusive benchmarking study for the-
state-of-the-art in any research area is a very useful
but also a challenging task which involves considerable
time, effort and resources. For example, it may require
designing different scenarios, choosing different datasets
and evaluating the performance characteristics using var-
ious metrics. Therefore, some journals (e.g., the Elsevier
Performance Evaluation Journal15) focus their scope of
interest around manuscripts that consider this type of
experimental evaluation research. In 2008, the reputable
VLDB scientific venue initiated a new experimental
analysis research track that focuses on analyzing the
advantages and drawbacks of various techniques which
are tackling the same research challenge. Although this
type of research publications are useful, they suffer from
a main limitation that they reflect snapshots for the state-
of-the-art at the time of their conduct. However, by
default, the research contributions in any research area are
always evolving and dynamic. For instance, novel tech-
niques which are designed to address the same research
challenge of a formerly published snapshot publication
can be proposed or the performance characteristics of
formerly evaluated techniques can develop and improve.
Hence, these publications may go out-of-date after a
relatively short period of their release. Assuming that the
results of such benchmarking studies can be maintained
on web pages, continuous evolving and maintenance of
the reported results may require too much effort from
the authors who may loose interest in re-executing the
same task after sometime. Finally, it is not practically
recommended in the current very dynamic environment to
spend several years in conducting a set of benchmarking
experiments in a certain research domain. In particular,
nowadays, the development of such benchmarking studies
should be fast, dynamic and reactive in order to be
valuable.

• Constraints on the availability of computing resources:

15http://www.elsevier.com/locate/peva
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In various domains, performing conclusive benchmarking
study may require huge computing resources. In
addition, conducting experimental evaluations may
require experimenting with various configurations for
the computing environments in order to reflect the
various configurations of computing environments in
real-world scenarios. In practice, the availability of such
computing resources requirements for researchers who
are aiming to conduct a benchmarking study in their home
labs/environments can be limited which consequently can
limit or prevent their capacity to conduct comprehensive
and insightful benchmarking studies. For instance,
Pavlo et al. [30] described a benchmarking study that
compares between the performance and the development
complexity of parallel databases and MapReduce in
executing large-scale data analysis jobs. In practice,
reproducing the results of the experiments which has
been reported in this publication by other researchers is
a very challenging task due to the high and demanding
configurations of the the testing computing environment.
In particular, the original experiments which have
been reported in this publication were conducted using a
computing cluster of about hundred machines. In general,
conducting a fair and apples-to-apples comparison
among any alternative software implementations would
require executing the experiments using exactly similar
computing environments and the same experimental
artifacts. In addition, it is crucial that an experimental
evaluation study test the performance characteristics of
hardware components and subsystems in a realistic and
meaningful way. Therefore, ideally, researchers should
have the facility to access shared computing resources
where they can compare/evaluate the various software,
under study, consistently. The adequate configurations of
such experimental computing environments should be
also decided collaboratively.

• Not enough standard benchmarks are available or widely-
used: A benchmark is a standard test or set of tests
which is utilized to compare/evaluate different techniques
that have a shared objective to address a certain research
challenge. In practice, the unavailability of a standard
benchmark in a specific research issue represents a ma-
jor source of hardship for the researchers who want
to comprare/evaluate their contribution in this domain
and consequently leads to reporting about various adhoc
experimental results in the various publication which
documented research efforts that attempted to tackle this
research challenge. In principle, a benchmark usually
consists of a motivating scenario, a set of benchmarking
tasks in addition to specifying a set of performance evalu-
ation metrics. In principle, limited number of benchmarks
usually succeed on gaining wide acceptance and achiev-
ing good success in their target research community.
For instance, in the database research community, some
benchmarks were successful on achieving such success
including:
◦ The TPC group of benchmarks for evaluating the

performance characteristics of transaction processing in
relational database management systems [3].
◦ The oo7 benchmark [8] which has been presented as

a standard benchmark for evaluating the performance
characteristics of object-oriented database systems.

◦ The XML Benchmark Project (XMark) [38] which
has been used as a mean to evaluate the performance
characteristics of XML data management systems.

However, on the other hand, there are still many other
research aspects in the database research community
which are in a significant need for defining standard
benchmarks that fulfil the requirements of the researchers
in assessing the impact of their contributions (e.g. graph
databases, RDF databases, big data processing systems,
NoSQL databases, scientific databases) [33], [34], [40].
In practice, for any benchmark to be successful, it needs
to gain wide acceptance by its target community. Hence,
the motivating scenario of the defined benchmark should
be simple, the set of testing tasks and performance
metrics should be complete and generic [12]. In addition,
such standard benchmarks should satisfy other general
and important qualities such as portability, relevance,
scalability and extensibility [22]. In practice, it is
challenging that a single benchmark can reflect the
various usage scenarios and achieve all these quality
goals. Therefore, it is common that many research
domains require defining microbenchmakrs [5] that have
deep focus in a specified detailed aspects. In principle, a
well-designed benchmark in a certain domain is usually
very useful to the active researchers in that domain as
it constitutes the fundamental basis for evaluation and
comparing their research contributions. Therefore, they
become able to specify the advantages and disadvantages
of their contribution which can effectively inspire their
plans for the various directions of improvement. However,
designing a successful benchmark is a quite challenging
task which is usually not easily achievable by a single
researcher or research group. Ideally, effectively tackling
the challenge of establishing standard and successful
benchmarks would require collaborative efforts from
various groups of peer researchers within the target
domain of the benchmark.

IV. CONCEPTUAL MODEL

The primary objective of the Liquid Benchmarking plat-
form is to provide a cloud-based and social platform which
can simplify and democratize the job of computer science
scientific scholars in conducting solid experimental evaluations
with high quality. In particular, the features of this platform
is designed to provide scientific scholars with various mutual
services including:

• Establishing repositories of related and competing soft-
ware implementations where these implementations can
be executed as software services that involve no installa-
tion or configuration requirements at the users side.

• Sharing testing computing environments.
• Collaboratively defining, discussing and evolving the

specifications of standard benchmarks to assess the com-
peting software implementations.

• Providing the end-users with an environment that supports
easily creating and executing testing experiments and
share their results.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

523 | P a g e
www.ijacsa.thesai.org 



User

Use

�ormal
User

Produce

Experimental

Results

Experiments

Evaluated

By

Solutions

Evaluate

Liquid

Benchmark

Setup

Developer

Testing

Environment

Configure

Rendering

Style

Rendered

By
Social Text

Annotated

By

Produce

Task

Consists

of

Scenarios

Contain

Dataset
Run

Over
Execute

Evaluation

Metric

Evaluated

By

Executes

on

Support

Fig. 1: Conceptual Model of Liquid Benchmarks

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

524 | P a g e
www.ijacsa.thesai.org 



Figure 1 illustrates an overview of the conceptual model for
the main entities of the Liquid Benchmarks. In this model, we
differentiate among two types of users: developer user (bench-
mark developing committee) and normal user. Developer users
represent the set of researchers who have the privilege to
participate in the collaborative environment for defining the
configurations of the different components of the benchmark
(e.g. datasets, tasks, evaluated software) while normal users
are only allowed to use the defined configurations of the
benchmark to run their test experiments. However, normal
users can be optionally allowed to do some configuration tasks
such as: uploading their own datasets or defining their own
tasks for running specially defined experiment in a private area
which is separated from the public setup of the benchmarks.
In particular, each liquid benchmark is configured by defining
the following main components:

• Scenarios: In principle, each liquid benchmark consists of
at least one scenario which models a use case that focuses
on evaluating some aspects of the competing softwares in
the target domain (e.g. MacroBenchmark or MicroBench-
mark). In particular, each scenario is described by a
Service Schema that defines the set of parameters (inputs
and outputs) which need to be defined for interfacing with
the services of the evaluated softwares.

• Evaluated Solutions: The set of competing software
implementations (e.g. techniques, algorithms, systems)
which are developed to tackle the specific problem of the
liquid benchmark. In practice, each software implemen-
tation may have various versions. Each of these versions
is treated as a separate (but linked) competing solution.
Each solution need to register the set of its supported
tasks in order to avoid the running of many failing tasks.

• Task(s): Describes a set of operations which should be
executed by the competing software implementations (e.g.
update operations, queries, compressing operations). In
practice, each operation usually assesses one or more
target evaluation aspects which is in the scope of the
benchmark specifications.

• Metric(s): Represents the measures of evaluating the
performance characteristics of the competing software
implementations in performing the various defined tasks
of the benchmark (e.g. execution time, response time,
throughput). In particular, metrics represent the basis of
comparing the competing software implementations.

• Testing Environment(s): Represents a set of different
configurations for computing environments (e.g. operating
system, CPU, disk space, main memory) that reflect
various real-world scenarios.

V. PLATFORM ARCHITECTURE AND IMPLEMENTATION

In principle, the features and design decisions of the im-
plementation of the Liquid Benchmarking platform16 combine
the facilities provided by different emerging Web technologies
which are described as follows:

• Software-as-a-Service: The platform uses the RESTful
architectural style as an effective software distribution
technique [42] in which software implementations can

16The implementation of the Liquid Becnhmarking platform is available
onhttp://liquidbenchmark.net:8080/Liquid/

be installed on the hosting computing environment and
made available via an application programming interface
to the end-users via the Internet. This technology requires
zero downloading, installation or configuration effort at
the side of the end user where all communication with
software can be achieved using HTTP methods [29].

• Cloud Computing:
Benchmarking in practical computer science requires
more than just data and code, however, it also requires
an appropriate and shared or identical computing en-
vironment in which to run experiments. The platform
exploits cloud computing as an emerging effective tech-
nology for broad sharing of hardware resources and
computing environments over the Internet [15]. In par-
ticular, virtualization is a key technology of the cloud
computing paradigm which improves the manageability
of hardware resources by flexibly allowing computing
resources to be provisioned on demand (in the form
of virtual machines) and hiding the complexity of re-
source sharing details from cloud users [36], [6]. In
practice, conducting a fair and apples-to-apples compar-
ison between any competing software implementations
requires performing their experiments using exactly the
same computing environment [31]. In addition, perform-
ing a comprehensive and insightful evaluation process
that assess different performance characteristics of the
evaluated software implementations may require using
several virtual machines with variant and scaling (in terms
of computing resources) configuration settings (e.g. main
memory, disk storage, CPU speed) that reflect different
real-world scenarios [31]. The Liquid Benchmarking plat-
form utilizes the virtualization technology for maintaining
the testing computing environments in cloud platforms
in the form of pre-configured virtual machines (with
different configurations) which are hosting the competing
software implementations (in the form of web services)
and are shared by the end-users of the benchmark.

• Collaborative and Social Software: The platform is en-
abled with different Web 2.0 and social Web capabilities
(e.g. tagging, forums, user comments) that support human
interaction and facilitates the establishment of online
communities between groups of researchers who share the
same interests (peers) where they can interact and work
together in an effective and productive manner [14]. Most
important, the platform supports sharing the performance
evaluation and benchmarking artifacts (e.g., software im-
plementations, datasets, virtual machines) in a workable
environment.

Figure 2 illustrates the architecture of the Liquid Bench-
marks platform which are equipped with several components
that are described as follows:

• Web-based User Interface: This component provides
the end user with a user-friendly interface where she/he
can mash up the components (e.g., services, computing
environments, tasks, metrics) of the experiment in a drag
and drop style (Figure 3). In principle, according to the
configuration of the components of the liquid benchmark,
end users can design and run their experiments where each
experiment is specified by: the solution(s) (software im-
plementation(s)) to be evaluated, the task to be executed
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Fig. 2: Platfrom Architecture

with the associated instantiation of the parameters of the
service schema, the selected metrics for evaluation and

the testing environment which will be used for running
the experiment. The platform user interface also provides
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Fig. 3: Screenshot: Mashing Up an Experiment

the end-users with other facilities including managing
user account, maintaining the metadata store, searching
and commenting on the results of previous experiments,
subscribing to the results of a benchmark in addition to
analyzing and visualizing the experimental results.

• Metadata Store: This component stores the information
about the various components of the benchmark (e.g.,
services, service schema, tasks, virtual machines).

• Experiment Manager: The experiment manager receives
the specification of the user-defined experiment, which is
configured by the Liquid Benchmark user interface, an
registers this experiment for execution on the Experiment
Queue. In principle, the experiment queue is used by
the Experiment Execution Engine to ensure that the
execution of one experiment in a testing environment is
not going to influence the execution of another experiment
in the same environment (an experiment can only start
after the end of the current experiment, if exist, on the
computing environment). Through the experiment life
cycle, the Experiment Execution Engine sends a set of
notification events to the Notification Center with the
status of the experiment till its completion and storing
its results in the Repository of Experimental Results
for further analysis and visualization purposes. It should
be noted that the Experiment Execution Engine is
the component that is responsible for managing the life
cycle of testing environments. In particular, it starts the
virtual machine of a testing environment for running an
experiment if it has been in a stopped mode or it stops
the virtual machine if it has been idle for a while and has
no pending experiments in the queue.

• Repository of Experiment Results: This is a central
repository that stores the results of all experiments as-
sociated with their configuration parameters, provenance
information (e.g. timestamp, user) and social informa-
tion (e.g. comments, discussions). Clearly, end-users can
search and view the contents of this repository to analyze,
compare, visualize and comment on the results of the
formerly running experiments without taking the time of
re-running or creating them from scratch.

• Visualization Manager: This component is equipped
with a set of visualization styles (e.g. line charts, column
charts) for presenting and comparing the results (metrics)
of the selected experiments by the end-users (Figure 4).

VI. CASE STUDIES

In this section, we present four benchmarking case studies
which have been realized using the Liquid Benchmarking
platform17 on the following domains:

• XML compression18: This case study is based on the
benchmark of XML compressors (e.g., XMill [24], Gzip,
Bzip, XMLPPM [9]) that has been presented in [32].
In particular, this case study provides services for the
implementation of nine XML compression tools with
benchmarking tasks over a large XML corpus that covers
the different types and scales of XML documents. This
case study evaluates the XML compressors by three

17The full documentation for using the platform is available on http://wiki.
liquidbenchmark.net/

18The full documentation and screencast of this case study is available on
http://wiki.liquidbenchmark.net/doku.php/casestudy-xmlcompression
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Fig. 4: Screenshot: Comparing and Visualizing Experimental Results

different metrics: compression time, decompression time
and compression ratio.

• Graph indexing and querying19: This case study imple-
ments the iGraph framework [19], [20] for evaluating
various graph indexing and querying techniques (e.g.
Closure-Tree [21], gIndex [43], TreePi [45]). In particular,
the case study provides the services of seven techniques
and evaluates them on the basis of their indexing time,
index size and query processing time using a real AIDS
antiviral screen dataset (NCI/NIH) and synthetically gen-
erated datasets.

• String Similarity Join20: An implementation for the recent
evaluation and comparison study which is presented by
Jiang et al. [23]. The case study provides the imple-
mentation of twelve algorithms and provides six different
experimental datasets. The evaluation of the benchmarked
algorithms is based on two metrics: the running time and
the size of candidate results.

• Reverse K Nearest Neighbors (RkNN)21: An implemen-
tation for the recent evaluation and comparison study
which is presented by Yang et al. [44]. The case study
provides the implementation of various Reverse k Near-
est Neighbors Query Processing algorithms over various
experimental datasets.

Each of our case studies is deployed in two cloud environ-
ments: the Amazon public cloud environment22 with its various

19The full documentation and screencast of this case study is available on
http://wiki.liquidbenchmark.net/doku.php/casestudy-graph-indexing-querying

20The full documentation and screencast of this case study is available on
http://wiki.liquidbenchmark.net/doku.php/casestudy-string-similarity-join

21The full documentation and screencast of this case study is available on
http://wiki.liquidbenchmark.net/doku.php/reverse-k-nearest-neighbors

22http://aws.amazon.com/

cloud services (e.g., Simple Storage Service (S323), Elastic
Compute Cloud (EC224)) in addition to our own private cloud
environment which is managed by the OpenStack platform25.
However, the platform can be easily adopted to run over
other cloud environments (e.g., CloudStack26, Eucalyptus27).
In addition, each case study is configured using two different
testing environments (virtual machines): The first environment
is configured with high computing resources while the other
environment is configured with limited computing resources in
order to imitate the various real world scenarios. Furthermore,
authenticated users of our platforms can access various ser-
vices of the platform (e.g., searching the repository of results,
creating and running experiments) via our provided RESTful
interfaces and API-based SDK28. Tho social features of our
platform has been implemented the open source social network
platform, elgg29.

VII. CONCLUSION

In principle, the field of practical computer science is
suffering from the repeatability problem of the research re-
sults [11] which represents a keystone of the scientific process.
It is common that the results of experiments tend to reside
in some folders or repositories which have never been doc-
umented thoroughly. Several reasons are behind this problem
but time pressure is the most prominent of them. In practice,

23https://s3.amazonaws.com/
24http://aws.amazon.com/ec2/
25http://www.openstack.org/
26http://cloudstack.apache.org/
27https://www.eucalyptus.com/
28http://wiki.liquidbenchmark.net/doku.php/RESTful-interface
29http://elgg.org/
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documentation of experiments and data traceability needs valu-
able work time, while publish or perish and strict conference
deadlines call for timely results. In practice, the Web has
dramatically enhanced the people’s ability to share knowledge,
ideas and contributions. We believe that the Computer Science
research community should have the leadership in having
such scientific collaborative environments that can significantly
develop and improve the capacity of the scientific communities
on deeply understanding the details of their research chal-
lenges, have careful, clean and insightful analysis for the state-
of-the-art that can support them for developing new effective
approaches, techniques and solutions.

In this article, we presented the design and implementation
details of the Liquid Benchmarking platform that relies on
the current advances in the Web technologies to provide
collaborative Web-based platforms that democratize and so-
cialize the key tasks of evaluating, comparing and analyzing
the continuous scientific contributions in different domains
of the Computer Science field. We believe that our platform
can effectively exploit the increasing human power which
are participating in the Computer Science research efforts
and distributed over the world. In particular, we argue that
our platform can empower the Computer Science research
communities with many capabilities such as:

• Developing focused and centralized repositories for re-
lated software implementations [2] and their experimental
results. These repositories can serve as a very positive
step towards tackling the experimental reproducibility
challenge in the Computer Science field.

• Facilitating the establishment of shared computing re-
sources environments that can be exploited by different
active contributors in the same domain who reside in
different parts of the world.

• Providing workable environments to collaboratively es-
tablish standard benchmarks that can be widely utilized
for achieving insightful evaluation for alternative research
efforts. These environments can help researchers to opti-
mize their time in assessing and improving the quality
of their contribution. Having such environments will
discourage authors from publishing paper with adhoc or
poor experimental results.

• Facilitating collaborative maintenance of experimental
studies to guarantee their freshness. This task can follow
the same model of collaborative organization of interna-
tional conferences or journals where each participating
researchers or research groups in a specific community
can play a volunteering managerial role for a specific
period.

• Exploiting the wisdom of the crowd in providing feed-
backs over the experimental results in a way that can
provide useful insights for tackling further problems and
improving the state-of-the-art.

• Creating a transparent platform for scientific crediting
process based on collaborative community work.

• Establishing concrete foundations and feasible environ-
ments for providing provenance services [28] for scien-
tific experimental results and time-analysis services for
the evolution of research efforts.

Therefore, we hope that our platform can serve as the foun-
dation for a fundamental rethinking of the experimental evalu-

ation process in the Computer Science field. As a future work,
we are planning to implement more case studies using our
platform and make them available for the research community.
In addition, we are planning to add more features of the social
aspect of the platform with careful consideration to important
details such as credit attribution and data anonymization [17].
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