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Abstract—In this paper, weighted G1-multi-degree reduction
of Bézier curves is considered. The degree reduction of a given
Bézier curve of degree n is used to write it as a Bézier curve of
degree m,m < n. Exact degree reduction is not possible, and,
therefore, approximation methods are used. The weight function
w(t) = 2t(1 − t), t ∈ [0, 1] is used with the L2-norm in multi-
degree reduction with G1-continuity at the end points of the
curve. Since we consider boundary conditions this weight function
improves approximation in the middle of the curve. Numerical
results and comparisons show that the proposed method produces
fewer errors and outperform all existing methods.

Keywords—Bézier curves; multiple degree reduction; G1-
continuity; geometric continuity

I. INTRODUCTION

Degree reduction of Bézier curves and surfaces is an
important issue in Computer Aided Geometric Design (CAGD)
that is tackled by many researchers. It facilitates data exchange,
compression, transfer, and comparison. In degree reduction, we
approximate a Bézier curve of degree n by a Bézier curve of
degree m,m < n; moreover, the boundary conditions have
to be satisfied and gives minimum error. The struggles of
finding a solution are disturbed by the requirement of solving
a non-linear problem, in which numerical methods have to
be used. In 2000, J. Peter and U. Reif proved in [5] that
degree reduction of Bézier curves in the L2 norm equals best
Euclidean approximation of Bézier points. These results are
generalized to the constrained case by Ahn et. al. in [1], and
discrete cases have been studied in [2], [8].
The existing methods to find degree reduction have many
issues including accumulate round-off errors, stability issues,
complexity, accuracy, losing conjugacy, requiring the search
direction to be set to the steepest descent direction frequently,
experiencing ill-conditioned systems, leading to a singularity,
and the most challenging difficulty is in applying the methods
(difficulty and indirect). A. Rababah and S. Mann presented
in [10] a method to find the G2-degree reduction for Bézier
Curves based on exploiting additional parameters as in [7].
These results are expressive to researchers as well as to
industrial practitioners. Their examples show that the C2

method fails to reproduce the inner loop of the heart, while
their C1/G2 method reproduces the loop and provides a better
approximation elsewhere along the curve.

In all existing degree reducing methods, the conditions and
free parameters were applied at the end points. So, there is a

need to better approximate those parts close to the centre of
the curve. In this paper, we introduce a weight to take care
of the centre of the curve, it is appropriate to consider degree
reduction with the weight function w[t] = 2t(1− t), t ∈ [0, 1].
The examples show that the proposed methods provide better
approximation at the centre of the curves with minimum error
and also reproduced these loops correctly better than existing
methods.

II. PRELIMINARIES

A Bézier curve Pn(t) of degree n is defined algebraically
as follows:

Pn(t) =

n∑
i=0

piB
n
i (t), 0 ≤ t ≤ 1, (1)

where

Bn
i (t) =

(
n

i

)
(1− t)n−iti, i = 0, 1, . . . , n,

are the Bernstein polynomials of degree n, and p0, p1, . . . , pn
are called the Bézier control points or the Bézier points, for
more see [4].

The first derivative of the Bézier curve is given by:

d

dt
Pn(t) = n

n−1∑
i=0

∆piB
n−1
i (t),

where

∆pi = pi+1 − pi, i = 0, 1, . . . , n− 1.

The multiplication of two Bernstein polynomials with the
weight function w(t) = 2t(1− t) is given by

Bm
i (t)Bn

j (t)2t(1− t) =
2
(
m
i

)(
n
j

)(
m+n+2
i+j+1

)Bm+n+2
i+j+1 (t). (2)

We define the Gram matrix Gm,n as (m + 1) × (n + 1)-
matrix with weight function as follows:

gij =

∫ 1

0

Bm
i (t)Bn

j (t)2t(1− t)dt

=
2
(
m
i

)(
n
j

)
(m+ n+ 3)

(
m+n+2
i+j+1

) , i = 0, . . . ,m, j = 0, . . . , n.(3)
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The matrix Gm,m with weight function is real, symmetric,
and positive definite like the case in [10].

III. DEGREE REDUCTION OF BÉZIER CURVES

Degree reduction is approximating a given Bézier curve
of degree n by a Bézier curve of degree m,m < n. It is
approximative process in nature and exact degree reduction
is not possible. In this paper, our aim is to find a Bézier
curve Rm(t) of degree m with control points {ri}mi=0 that
approximates a given Bézier curve Pn(t) of degree n with
control points {pi}ni=0, where m < n. The Bézier curve Rm

has to satisfy the following two conditions:

1) Pn and Rm are G1-continuous at the end points, and
2) the weighted L2-error between Pn and Rm is mini-

mum.

We can write the two Bézier curves Pn(t) and Rm(t) in
matrix form as

Pn(t) =

n∑
i=0

piB
n
i (t) =: BnP, 0 ≤ t ≤ 1, (4)

and similarly

Rm(t) =
m∑
i=0

riB
m
i (t) =: BmR, 0 ≤ t ≤ 1.

In the following sections we investigate the case of G1-
continuity with weighted degree reduction of Bézier curves.

IV. WEIGHTED G1-DEGREE REDUCTION

Pn(t) and Rm(t) are G1-continuous at t = 0, 1 if they
satisfy the following conditions

Rm(i) = Pn(s(i)), i = 0, 1. (5)

R′m(i) = s′(i)P ′n(s(i)), s′(i) > 0, i = 0, 1. (6)

This means that the two curves Pn and Rm have to have
common end points

r0 = p0, rm = pn,

and the direction of the tangent at the two end points of Pn and
Rm should coincide, but they need not to be of equal length.
To simplify the problem and have a linear system, the authors
in [10] used s′(i) = δi, for i = 0, 1. We analogously use these
substitutions for the case of weighted degree reduction to get

R′m(i) = δiP
′
n(i), i = 0, 1. (7)

Using s′(i) = δi, i = 0, 1, we can solve (5) and (7) for the
two control points at either ends of the curve to get

r0 = p0,

r1 = p0 +
n

m
∆p0δ0,

rm−1 = pn −
n

m
∆pn−1δ1,

rm = pn.

The points r0, r1, rm−1 and rm are determined by G1-
continuity conditions at the boundaries; accordingly, the el-
ements of Rm can be decomposed into two parts stated as
follows. The boundaries part Rc

m = [r0, r1, rm−1, rm]t and
the interior part with interior points Rf

m = Rm\Rc
m =

[r2, . . . , rm−2]t. Similarly, Bm is decomposed in the same way
into Bc

m and Bf
m.

The weighted distance between Pn and Rm is measured
using weighted L2-norm; therefore, the error term becomes:

ε =

∫ 1

0

||BnPn −BmRm||2 2t(1− t)dt

=

∫ 1

0

||BnPn −Bc
mR

c
m −Bf

mR
f
m||2 2t(1− t)dt. (8)

Differentiating ε with respect to the unknown control points
Rf

m we get

∂ε

∂Rf
= 2

∫ 1

0

||BnPn −Bc
mR

c
m −Bf

mR
f
m|| Bf

m 2t(1− t) dt.

Evaluating the integral and equating to zero gives

∂ε

∂Rf
= Gp

m,nPn −Gc
m,mR

c
m −Gf

m,mR
f
m = 0, (9)

where

Gp
m,n := Gm,n(2, . . . ,m− 2; 0, 1, . . . , n),

Gc
m,m := Gm,m(2, . . . ,m− 2; 0, 1,m− 1,m),

Gf
m,m := Gm,m(2, . . . ,m− 2; 2, . . . ,m− 2),

and Gm,n(. . . ; . . .) is the sub-matrix of Gm,n formed by the
indicated rows and columns.

Differentiating ε with respect to δi and equating to zero
gives

∂ε

∂δ0
=
(
G1

m,nPn −G1;c
m,mR

c
m −G1;f

m,mR
f
m

)
·∆p0 = 0, (10)

∂ε

∂δ1
=
(
Gm−1

m,n Pn −Gm−1;c
m,m Rc

m −Gm−1;f
m,m Rf

m

)
·∆pn−1 = 0, (11)

where for q = 1,m− 1:

Gq
m,n := Gm,n(q; 0, 1, . . . , n),

Gq;c
m,m := Gm,m(q; 0, 1,m− 1,m),

Gq;f
m,m := Gm,m(q; 2, . . . ,m− 2). (12)

Note that (9) are point valued equations while (10) and (11)
are scalar valued equations, expanding (9) into its x, y, z, . . .
coordinates and joining them together with (10) and (11) yields
d(m−3)+2 equations in d(m−3)+2 unknowns, see Rababah-
Mann [10].

In the planar case, the control points of the Bézier curve
are expanded into their x and y components. Therefore, the
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variables of our system of equations are rxk , ryk, k = 2, . . . ,m−
2, δ0 and δ1. To express the system in a clear form, we have
to decompose each of r1 and rm−1 into a constant part and a
part involving δ0 and δ1, respectively. Let v1 and vm−1 be the
constant parts of r1 and rm−1 respectively. Hence

v1 = p0, vm−1 = pn.

The following vectors are defined to express the linear
system in explicit form:

PC
n = [px0 , ..., p

x
n, p

y
0, ..., p

y
n]t,

RF
m = [rx2 , . . . , r

x
m−2, r

y
2 , . . . , r

y
m−2, δ0, δ1]t,

RC
m = [rx0 , v

x
1 , v

x
m−1, r

x
m, ry0 , v

y
1 , v

y
m−1, r

y
m]t.

Let ⊕ be the direct sum. Define the matrices

Gp+
m,n = Gp

m,n ⊕Gp
m,n,

Gc+
m,m = Gc

m,m ⊕Gc
m,m,

Gf+
m,m = Gf

m,m ⊕Gf
m,m. (13)

The Gram matrix Gf+
m,m has the same properties of the

matrix Gf
m,m.

Write G := Gm,m and define

C =

[
∆p0∆p0G(1, 1) ∆p0∆pn−1G(1,m− 1)
∆p0∆pn−1G(m− 1, 1) ∆pn−1∆pn−1G(m− 1,m− 1)

]
,

=

[
∆p0 0

0 ∆pn−1

] [
G(1, 1) G(1,m− 1)

G(m− 1, 1) G(m− 1,m− 1)

]
×[

∆p0 0
0 ∆pn−1

]
.

Further define Lm,n, L
c
m,m, L

f
m,m as

Lm,n =

[
G1

m,n∆px0 G1
m,n∆py0

Gm−1
m,n ∆pxn−1 Gm−1

m,n ∆pyn−1

]
,

Lc
m,m =

[
G1;c

m,m∆px0 G1;c
m,m∆py0

Gm−1;c
m,m ∆pxn−1 Gm−1;c

m,m ∆pyn−1

]
,

Lf
m,m =

[
G1;f

m,m∆px0 G1;f
m,m∆py0

Gm−1;f
m,m ∆pxn−1 Gm−1;f

m,m ∆pyn−1

]
,

Further define Lm,n, L
f
m,n as

Lm,n =

[
G2

m,n∆px0 G2
m,n∆py0

Gm−2
m,n ∆pxn−1 Gm−2

m,n ∆pyn−1

]
,

Lf
m,n =

[
Gc;2

m,n∆px0 Gc;2
m,n∆py0

Gc;m−2
m,n ∆pxn−1 Gc;m−2

m,n ∆pyn−1

]
,

where Gq
m,n, G

q;c
m,m, and Gq;f

m,n are defined in (12). The ma-
trices C, Lm,n, Lc

m,m, and Lf
m,m are obtained from (10) and

(11), (the derivatives with respect to the δis).

The coordinate form of the expansion of (9) becomes

GF
m,mR

F
m = GPC

m,nP
C
n −GC

m,mR
C
m, (14)

where

GPC
m,n =

[
Gp+

m,n

Lm,n

]
,

GC
m,m =

[
Gc+

m,m

Lc
m,m

]
,

GF
m,m =

[
Gf+

m,m
n
m (Lf

m,m)t

Lf
m,m

n
mC

]
.

From (14) and because GF
m,m is invertible, we can find our

unknowns as

RF
m = (GF

m,m)−1
(
GPC

m,nP
C
n −GC

m,mR
C
m

)
. (15)

V. APPLICATIONS

In this section, some examples are given to illustrate the
effectiveness of the proposed method of weighted G1-degree
reduction. Comparisons with other existing methods are also
presented in this section.

Example 1: Given the Bézier curve (spiral) Pn(t) of
degree 19 with the control points, see Fig. 11 in [10]:
P0 = (37, 38), P1 = (43, 37), P2 = (39, 27), P3 =
(29, 26), P4 = (23, 36),
P5 = (26, 50), P6 = (45, 56), P7 = (58, 47), P8 =

(58, 29), P9 = (46, 14),
P10 = (26, 6), P11 = (5, 15), P12 = (0, 40), P13 =

(3, 58), P14 = (24, 68),
P15 = (50, 75), P16 = (79, 69), P17 = (79, 36), P18 =

(65, 12), P19 = (50, 0),

It is reduced to Bézier curve Rm(t) of degree 8. Fig. 1 de-
picts the original curve in solid-blue and weighted G1-degree
reduction in dashed-red curve. Fig. 2 shows the curves with
control polygons; original curve (dashed-Black); weighted G1

(dashed-Green). Fig. 3 shows the error plots for weighted G1-
degree reduction in Example 1.

Example 2: Given the Bézier curve Pn(t) of degree 10
with the control points, see [6]:
P0 = (0, 1.2), P1 = (0.04, 0.6), P2 =
(0.15473790322581, 0.507),

P3 = (0.32207661290323, 0.878), P4 =
(0.30897177419355, 0.086),

P5 = (0.51864919354839, 0), P6 =
(0.62449596774194, 0.8), P7 = (0.89, 0.874),

P8 = (0.92, 0.6), P9 = (0.92, 0.3), P10 =
(0.75352822580645, 0).
This curve (blue) is reduced to Bézier curve (red) Rm(t)
of degree 6 using Weighted G1 method. The corresponding
degree reduced Bézier curve plot is depicted in Fig. 4 and the
error plot is depicted in Fig. 5.

Example 3: Given the Bézier curve Pn(t) of degree 13
with double loop control points, see [10]:
P0 = (4, 9), P1 = (23, 2), P2 = (49, 19), P3 =
(67, 20), P4 = (52, 48),

P5 = (0, 23), P6 = (26, 0), P7 = (71, 4), P8 =
(71, 37), P9 = (30, 54),
P10 = (4, 25), P11 = (24, 5), P12 = (41, 0), P13 =

(62, 1),
This curve (solid-Blue) is reduced to Bézier curve of degree 8
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(dashed-Red) using weighted G1 method, see Fig. 6. Compar-
ing this plot of double loop with the example from [10] shows
that our method produces better approximations and makes the
loops that other methods did not.

Example 4: This example focuses on a “heart” data set ,
given a Bézier curve Pn(t) of degree 13 with control points;
see [10].
P0 = (22, 10), P1 = (37, 5), P2 = (86, 18), P3 =
(81, 23), P4 = (69, 56),

P5 = (14, 26), P6 = (40, 3), P7 = (85, 7), P8 =
(85, 40), P9 = (44, 57),
P10 = (18, 29), P11 = (38, 9), P12 = (55, 3), P13 =

(77, 5).
The heart (solid-Blue) is reduced to Bézier curve of degree 8
(dashed-Red) using weighted G1-degree reduction. The cor-
responding degree reduced Bézier curves and the example of
heart in [10] are depicted in Fig. 7. Again the plot of double
loop example from [10] shows that our method produces better
approximations and makes the loops what other methods did
not.

The examples show that considering a weight with geomet-
ric degree reduction is of great benefit. The results are better
than the equivalent methods of C1/Gk-methods considered by
[10].

VI. CONCLUSION

In this paper, we have presented a method of weighted
G1-degree reduction. The weighted G1-degree reduction is
better than the G1-degree reduction method in [10]. Referring
to the examples in Fig. 1, Fig 3, Fig. 4, Fig 6, and Fig 7,
the weighted G1-degree reduction is the best approximation
and provides less error than the linear G1-degree reduction
method and the linear C1/G2 method in [10]. The examples
in Fig 3, Fig. 4, Fig 6, and Fig 7 show the effectiveness of our
proposed weighted G1-degree reduction method. Our weighted
G1-degree reduction reproduced these loops correctly and is
better than existing methods.
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[4] K. Höllig, J. Hörner, Approximation and Modeling with B-Splines, SIAM,
Titles in Applied Mathematics 132, 2013.

[5] J. Peters and U. Reif, Least squares approximation of Bézier coefficients
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Fig. 1. Spiral Curve: Original curve degree 19 (Solid-Blue); reduced to
degree 8 with weighted G1-degree reduction (dashed-Red).

Fig. 2. Curves with control polygons; original curve (dashed-Black); weighted
G1 (dashed-Green).

Fig. 3. Error plots for weighted G1-degree reduction in Example 1.

Fig. 4. Curve of degree 10 (Blue) reduced to degree 6 with weighted G1

method (Red).
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Fig. 5. Error plot for weighted G1-degree reduction in Example 2.

Fig. 6. Original curve in (solid-Blue); weighted G1-degree 13 reduce to 8
(dashed-Red).

Fig. 7. Original curve in (solid-Blue); weighted G1-degree 13 reduce to 8
(dashed-Red).
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