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Abstract—Data transmission consumes significant amount of 

energy in large scale wireless sensor networks (WSNs). In such 

an environment, reducing the in-network communication and 

distributing the load evenly over the network can reduce the 

overall energy consumption and maximize the network lifetime 

significantly. In this work, the aforementioned problem of 

network lifetime and uneven energy consumption in large scale 

wireless sensor networks is addressed. This work proposes a 

hierarchical compressed sensing (HCS) scheme to reduce the in-

network communication during the data gathering process. Co-

related sensor readings are collected via a hierarchical clustering 

scheme. A compressed sensing (CS) based data processing 

scheme is devised to transmit the data from the source to the 

sink. The proposed HCS is able to identify the optimal position 

for the application of CS to achieve reduced and similar number 

of transmissions on all the nodes in the network. An activity map 

is generated to validate the reduced and uniformly distributed 

communication load of the WSN. Based on the number of 

transmissions per data gathering round, the bit-hop metric 

model is used to analyse the overall energy consumption. 

Simulation results validate the efficiency of the proposed method 

over the existing CS based approaches. 

Keywords—Compressed sensing; in-network communication; 

network lifetime; traffic load balancing; wireless sensor network 

I. INTRODUCTION 

Wireless sensor networks (WSNs) have revolutionised 
today's practice of numerous scientific and engineering 
endeavours, including ecosystems, environmental sciences, 
military applications, scientific research etc. WSNs are used for 
sensing physical variables of interest at unprecedented high 
spatial densities and long-time durations [1]. Applications like 
environmental monitoring, scientific research etc., explore the 
benefits of WSNs. Such applications require transferring a 
huge amount of sensed data from one point of the network to 
another. Considering the fact, that the energy consumed in 
transmission of 1 Kb of data over a distance of 100 meters is 
equal to the energy consumed in executing 300 million 
instructions with the rate of computation being 100 million 
instructions per second on a processor with general 
configurations [3], [4].  Almost 70% of the total energy is 
consumed in communication within the network [2]. Hence, 
the inherent constraints of WSNs such as limited bandwidth 
and limited battery life makes them prone to failure and 
compromise the network lifetime. Significant energy 
conservation in such networks can be achieved by: a) 
minimizing the cost of interaction between the nodes and b) 

achieving traffic load balancing during in-network 
communications [3]. Techniques such as data aggregation have 
been used to efficiently reduce the communication load of the 
network, however the issue of asymmetric load distribution in 
the network remain an important concern till date. Load 
balancing and optimized energy consumption are thus, much 
sought after parameters for multi hop data transmission in 
WSNs. 

This work addresses the problem of uneven energy 
consumption and network lifetime maximization through a 
novel in-network data processing scheme which incorporates 
CS in a novel way over a clustered routing structure. The nodes 
are randomly deployed in a sensing area which is divided into 
homogenous sub-regions. Such a division is done to model the 
real world scenario of an area such as a thermal power plant. In 
such a deployment, the area can be divided into homogeneous 
regions in such a way that one homogeneous region is different 
from the other.  

For example, the area with the thermal station (one 
homogeneous region) will exhibit high temperature readings as 
compared to the residential areas of the plant (another 
homogeneous region) and are known as a priori. The proposed 
HCS is divided into two phases, a) Clustering and 
communication phase b) CS and data processing phase. The 
proposed scheme incorporates CS in a way to efficiently 
distribute the communication load evenly over the network. To 
the best of our knowledge, the advantages of using CS and 
hybrid CS on tree based routing structure are many but its 
advantages over a clustered routing structure have not been 
explored yet. The contributions of this work can be 
summarised as: 

 A CS based data processing scheme with minimum in-
network transmissions. 

 A scheme for enhancing the network lifetime by 
balanced network traffic load distribution 

The remainder of the paper is organised as follows: in 
section II, a summary of the related work is discussed. In 
section III the problem statement for the proposed work is 
given. The section IV presents the proposed scheme along with 
the detailed analysis and framework for CS. A detailed analysis 
of the energy consumption, based on the bit hop metric model, 
is also discussed. Finally, in section V, a detailed explanation 
of the simulation results is presented. The section VI 
summarises the proposed work with concluding comments. 
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II. RELATED WORK 

Data aggregation in WSNs is considered to be the most 
easily deployable data reduction technique [2]. With varying 
network topology, such as cluster based [2], tree based [3], 
chain based [4], various data aggregation schemes have been 
proposed [4], [5], [6], [7], [8], [9]. Data aggregation mainly 
exploits the redundancy in the spatially and temporally co-
related data sensed by the nodes [10]. Hence, significant 
energy conservation is achieved by reducing the amount of 
data being forwarded by any node. However, data aggregation 
approaches suffer from certain disadvantages. The most 
important concern with most of the data aggregation 
approaches, is the loss of information. Data aggregation 
approaches mainly focus on transferring only a summary of the 
sensed value to the sink. Hence, a lot of information about the 
measured value is sacrificed by the aggregation techniques 
[11]. Another drawback of data aggregation schemes is the 
asymmetric load distribution within the network. This results in 
parts of the network having relatively higher activity and thus 
becoming non-operational because of dead nodes, leaving the 
sink isolated. For example, in case of an event, WSNs have 
large amount of data flowing in the network. In such an 
environment, activity in the deployment area depends upon the 
occurrence of an event and position of the nodes [12]. The 
nodes near the sink have high energy consumption as 
compared to the nodes in other region because of heavy load of 
data transmission to the sink. Asymmetric distribution of the 
load results in high activity in parts of the network causing 
nodes with heavy communication load to die quickly. 

 
Fig. 1. Traditional data gathering in multi-hop environment 

CS has evolved as a promising technique, which can 
efficiently overcome the drawbacks of the existing aggregation 
approaches. Data gathering in traditional multi hop 
environment can be understood from the Fig 1. which shows 
the highlighted path in a WSN where, „N‟ sensor nodes form a 
multi-hop path for data collection. Let the reading generated by 
the node S1 is r1. Similarly, reading generated by the node S2 
is r2 and so on. In a normal data acquisition process, the node 
S1 sends its reading to node S2. S2 in turn transmits both its 
data r2 and the data obtained from S1 to S3 .Finally in the end, 
the last node of the route, sends all the data received from 
previous nodes along with its own data to the sink. As seen in 
the Fig.1, the nodes closer to the sink consume more energy as 
compared to the nodes away from the sink. Due to this, the 
nodes closer to sink will be drained quickly compromising the 
lifetime of the network. 

 
Fig. 2. Data gathering with Compressed Sensing 

The Fig. 2 shows the compressed data gathering method in 
the highlighted path of a WSN where, „N‟ sensor nodes form a 
multi-hop path for data collection. The sink upon receiving all 
the M samples from „N‟ nodes, reconstructs the original data. 
In order to send the i

th
 sample to the sink, S1 generates a 

random coefficient 1i  and multiplies it‟s reading i.e. r1 with 

it. The product is then sent to the node S2. Similar 
multiplication is performed at the node S2 with the random 

coefficient 2Φi and the sum
1 1 2 2Φ  Φi ir r  is sent to the node 

S3. This process is followed by every node in the route to send 
M samples of their data. Such a transmission results in the sink 

receiving Φ

1

n
r

ij j
j





. The number of samples sent by each node is 

limited to M. Comparing the Fig.1 and Fig.2, three 
observations can be made: (a) all the nodes in compressed data 
gathering, perform the same number of computations (b) the 
number of transmissions of the first M nodes is more in 
compressed data gathering scheme as compared to normal 
transmissions, but the remaining nodes send less messages(c) 
compressed data gathering scheme distributes the load equally 
among the nodes of the routing path. Since M is a much 
smaller number as compared to n, this becomes clearly visible 
that the number of transmissions in compressed data gathering 
scheme is far less than normal data gathering [12]. Although, 
the number of transmissions for collecting M samples from N 
node is reduced to MN, the literature supports the fact that 
applying CS naively might not be as beneficial as applying it 
on a later stage. Considering the drawbacks of applying CS at 
initial stages of the data gathering process, hybrid approaches 
were proposed. The hybrid CS scheme proposed in [13] allows 
the leaf node to sense and send the data without using the CS 
method, but the nodes which are closer to the sink are the ones 
which are responsible for the application of CS. The approach 
in [13] proposes a threshold value K, beyond which CS scheme 
should be applied but before the threshold is reached, the data 
collection proceeds in a normal fashion. Owing to the fault 
tolerance and optimal load balancing properties of clustered 
routing, the tree based routing scheme becomes the secondary 
choice of routing strategy in this work. One other advantage of 
clustered routing is better traffic balancing, which makes the 
clustering approach preferable choice over the tree based 
routing scheme. A theoretical analysis presented in [14] proves 
the efficiency of the compressed data gathering. Aiming the 
network energy consumption, the authors in [15] proposed a 
greedy heuristic solution which uses CS with joint routing 
protocol. In [16], Zigbee protocols are considered in a wireless 
sensor environment with the assurance of reduced energy 
consumption. The authors proposed an adaptive scheme which 
uses CS to reduce the number of transmissions over the 
network. The scheme proposed in [17], makes use of data 
aggregation trees formed by subdividing the sensor network 
into sub networks. The authors in [18], [19] described a three 
phased CS data gathering scheme. The sensing region is 
classified into cells with a unique cell head. The cell head 
collects and forwards the data in compressed fashion along the 
columns to the Vth row. Finally the data is relayed to the sink 
along the Vth row cells. In a recent work in [20], the authors 
proposed a clustering based compressed data gathering 
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scheme. The authors divide the nodes in a clustered fashion to 
transmit the compressed data through various levels. 

Thus, variations of CS have proved to be advantageous in 
such an environment as WSN, but the existing approaches have 
certain disadvantages. An important concern is that most of the 
existing work on CS view compression from the signal 
processing perspective only [21], [22]. Applications on data 
compression, from the networking protocol perspective in 
WSNs are limited [23]. CS, if and when applied naively to a 
sensor network, imposes extra burden over the network. As 

shown in Fig. 2, suppose   1N   nodes are each sending one 

sample to the Nth node, the outgoing link of that node will 
carry „N‟ samples if no aggregation is performed; or will carry 
1 sample if lossy aggregation is performed. If we apply the CS 
principle directly, the CS aggregation will force every link to 
carry „M‟ samples, leading to unnecessary higher traffic at the 
early stage transmissions [13]. To overcome these drawbacks, 
the idea of hybrid CS was proposed but hybrid CS has its own 
disadvantages. The selection of non-CS and CS points within 
the hybrid-CS scheme is critical in getting the benefit of CS 
[13], [14], [15]. Distributed CS [23] suffers as compared to a 
mixed protocol in large-scale WSNs, under real technological 
constrains. Unless the network size and compression are both 
taken into consideration in network design, distributed CS 
approaches tend to have average performance in terms of 
lifetime and energy conservation. Interestingly, existing works 
on compressed data gathering in WSNs, mainly exploit the tree 
based routing structure. Because of the drawbacks of the tree 
based routing structure, such as unstable network topology, 
most of the existing works face the problem of unreliability 
and poor quality of service [26]. 

Thus, the proposed HCS is developed on the principle of 
hybrid CS over clustered routing structure, with the aim of 
achieving reliable data transmission with minimum energy 
consumption (achieved by minimizing and balancing the 
network traffic evenly over the network). 

III. PROBLEM DEFINITION 

The main objective in WSNs is to reduce the in-network 
communication and improve the throughput of the network by 
increasing the network lifetime. However, network lifetime in 
large scale wireless sensor networks is also significantly 
affected by uneven energy expenditure by sensor nodes. Nodes 
with heavy communication load consume more energy and die 
quickly causing holes and isolation of some regions of the 
network. It is therefore desirable to process as much data 
locally as possible so as to reduce the number of bits 
transmitted. Techniques such as data aggregation are used to 
reduce the amount of data being forwarded by the nodes. 
However, data aggregation schemes have certain drawbacks 
such as, asymmetric load distribution and information loss. In 
case of an event, WSNs have large number of message 
transmissions in the network. In such an environment, activity 
in the deployment area depends upon the occurrence of an 
event and position of the nodes. The nodes near the sink have 
high energy consumption as compared to the nodes in other 
regions because of heavy load of data transmission to the sink. 
An asymmetric distribution of the load results in parts of the 
network having relatively higher activity and thus becoming 

non-operational because of dead nodes, leaving the sink 
isolated. Energy conservation may be achieved by transmitting 
only the summary of the sensed data that may result loss of 
information. Recent reported work state that, the idea of using 
CS for data transmission can be advantageous in the above 
scenario. Naïve application of CS to a sensor network imposes 
extra burden over the network, hence Hybrid CS would be the 
most suited solution. However, determining the CS and non-
CS points is crucial in such approaches to explore the true 
potential of the scheme. Hence a CS scheme with the ability of 
uniform load distribution and efficient data transmission is 
desired. Reduced in-network communication and optimized 
energy usage in such a scheme will significantly improve 
stability period and reduced instable region. Hence, a scheme 
based on compressed sensing over clustered routing structure is 
proposed. 

IV. PROPOSED APPROACH 

A. Compressed sensing 

The idea of compressive data gathering is relatively new in 
the field of wireless sensor networks. Some of the basic yet 
essential properties of the framework asserts that, a relatively 
small number of samples of a sparse data contains enough 
information to successfully recover the original data with 

almost no data loss [27]. Mathematically, If a sparse data „ x ‟ 

can be denoted as  1,   2 3  

T

, ..  Nx x x x x  such that 

NxR  and the orthogonal sparse basis or projection of x is 

given by  1 2 3  , , .. N       where
i

 is the 
th

i  

column of , then x  can be given by the following equation: 

1
     .  

N

i
i

ix S S


                     (1)  

Such that, S is a vector of the coefficient matrix   and “.” 
represents the inner product. According to the theory of the CS, 

provided the target data x is K-sparse in the basis  , then 

under specific conditions, M adaptive measurements of x  are 

sufficient to fully recover the original data such that 

 M  . Where each weighted measurement, y, can be 

written as: 

Φy x                                                      (2)  

The recovery of the target data by M measurements is 
dependent on the following condition: 

 2
. Φ .  .  M c K logN                                           (3)  

Where Φ  is a M N sensing matrix, „c‟ is a positive 

constant and (Φ )   is the coherence between the sensing 

matrixΦ  and the representation basis . The original data is 
recovered by solving a convex optimization problem, given by: 

( )1
i

i

ls s
             

  1
n

min

s
s l

Rò        

                                    provided,  Φy S                          
      (4)
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And considering,

^

   Ψx s , with

^

s being the optimal 
solution. 

Thus, an important conclusion can be drawn from the 
assertion is that the basic foundation of CS relies on sensing 
matrices. For reliable and efficient compression, the data must 
be sparse in some intitutively known domain and the sensing 

matrix, Φ , must meet the restricted isometric property (RIP). 

An essential property of the sensing matrix, Φ , is the Null 
space property (NSP) and is denoted by: 

   Φ  : 0 . NSPN z Az 
 

To explain, a sparse data x, can be completely recovered by

Φx , if for every pair of distinct vectors such as   , ,
'

x x

k

  

'Φx = Φx . Considering the mentioned condition is not true 

i.e. if
'

Φx =  Φx , results  'Φ 0x x  such that

'

2
  .

k
x x   Therefore, it can be said that for „A‟ to 

uniquely represent every  
k

x  , (Φ)N   should not contain 

a vector that belongs to 
2k . This feature of the sensing 

matrix is known as spark of the matrix and is defined as: 

Definition 1. The spark of a sensing matrix given byΦ , is 

the smallest number of linearly dependent columns ofΦ . 

Theorem 1. If the spark of a sensing matrixΦ , is greater 

than 2k  then, for a given vector, y, where     myR , there 

exists a unique data     ,
k

x such that  Φy x . 

Proof: To prove the theorem 1 by contradiction, let there 

be a vector „y‟ such that     myR and there exists a unique 

data     ,
k

x  such that  Φy x . It is assumed that, spark

( ) 2k  . Or it can be said that there are at most 2k  

linearly independent columns which implies that there is an 

    (Φ)h N such that 
2

    .
k

h Now, since 
2

    ,
k

h  

therefore   'h x x  , where     ., '
k

x x  As we know that 

    (Φ)h N , therefore  'Φ 0x x  and
'Φ Φx x . But 

this is a contradiction of the above assumption that there exists 

a unique data     ,
k

x such that  Φy x . Hence, spark

( ) 2k  . Now, considering spark ( ) 2k  , and for a 

given „y‟ there exist     ,, '
k

x x  such that: 
'Φ Φ Φx x  . 

This implies that,  'Φ 0x x  , OR Φh 0 , replacing 

'x x with h . 

Since spark ( ) 2k  , hence at most 2k  columns of 

are linearly independent and h 0 . Therefore, the theorem 1 is 

proved as
'x x . An important conclusion from the above 

theorem is that the number of measurements i.e. m , should 

follow the following condition: 

  2m k  

Definition 2. For a measurement matrix , to satisfy the 

null space property (NSP) of order k , there must exist a 

constant 0C   such that, 

2

1h
h C

k



                                    
(5)

 

is true for all ( )h N  and for all „  ‟ such that k  . 

That is, a k-sparse vector in ( )N   is 0h  , iff, the matrix 

  satisfies the NSP. The literature supports the fact that a 

NSP of order 2k  is necessary and sufficient condition for a 

recovery algorithm (say 𝑙1 minimization). 

The NSP guarantees do not cover for data, which is 
degraded because of noise. In [27], the authors proposed RIP 

on the sensing matrix „ ‟ for full recovery of the data even if 
it is corrupted. 

Thus, the framework for data transfer using hierarchical CS 
in WSN can be summarised with the following advantages: 

1) The computation load is shifted from encoder (CH) to 

the decoder end (sink). 

2) Routing for data transmission is independent of the 

compression. 

3) Same number of data packets for every node in the 

network. 
Considering the above advantages, an efficient data transfer 

scheme for wireless sensor networks is proposed in C and D. 

B. Sensor Network Model 

The graph,     V,G E , is the sensor network where V  

consists of all (N) sensor nodes in the network and the sink 

node given by 0 v . A link is assumed to be present between 

two nodes of V  iff, the two nodes are within each other‟s 

communication range. A hierarchical clustering scheme, with 
at most two hop transmission, is used for the cluster formation. 
The nodes choose a random number between 0 and 1 and 
compare it to the threshold broadcasted by the sink. The nodes 
with values higher than the threshold are chosen as the cluster 
head. A major concern of hybrid CS is the point of application 
of CS and non CS strategies. In this work, the true potential of 
hybrid CS is explored by choosing two optimal points for the 
application of CS. Specifically, CS is applied at the FCHs and 
at the one hop neighbours of the FCHs, depending upon the 
transmissions received at both the points. Finally, Huffman 
encoded data is obtained at the SCH and is transmitted to the 
sink. 
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A network model with the following assumptions is 
considered: 

1) A wireless sensor network is randomly deployed and 

the sensor nodes transmit the data on the occurrence of an 

event. 

2) The network consists of only one sink. 

3) The deployed area is randomly divided into sub-

regions in such a way that readings from one region are 

different from the other. 

4) Establishing routing information consumes relatively 

less energy as compared to the data gathering process, hence 

it is not considered for energy computation. 
The two phases of the proposed scheme are discussed in the 

following sections: 

C. Clustering and Communication 

Selection of First level cluster head (FCH) 

The FCH is chosen using the standard LEACH protocol 
from the deployed sensor nodes. Once the FCHs have been 
identified, the cluster formation and communication protocol is 
established as follows: 

1) The FCH sends a join message to all the one hop 

neighbours. 

2) All the one hop neighbours join the FCH if one of the 

following condition is true:- 
 It has not received a join message from any other FCH. 

 It has received a join message from more than one 
FCH. In this case the node joins the nearest FCH. 

3) One hop neighbours, after joining the FCH, follow the 

two hop communication protocol and broadcast a join 

message to their one hop neighbours. 

4) The two hop neighbours of the FCH follow the same 

communication protocol as explained in (ii). 

5) The data is compressed using CS and is forwarded to 

respective SCHs. 
Selection of Second level cluster head (SCH) 

Assuming that the sink is aware of the position of all the 
nodes including the FCHs, the FCHs closest to the sink are 
identified as the SCHs. A multicast message from the sink to 
all the FCHs establishes the communication hierarchy. The 
communication protocol is established as follows: 

6) The SCH sends a join message to all the one hop 

FCHs. 

7) All the one hop FCHs join the SCH if one of the 

following condition is true:- 
 It has not received a join message from any other SCH. 

 It has received a join message from more than one 
SCH. In this case the node joins the nearest SCH. 

8) One hop FCHs, after joining the SCH, follow the two 

hop communication protocol and broadcast a join message to 

their one hop neighbours. 

9) Two hop neighbours of the SCH follow the same 

communication protocol as explained in (step 7). 

10)  The SCH applies Huffman encoding on the received 

data and forwards it to the sink. 

D. Compressed Sensing and Data processing 

The compression ratio (  ) is defined as the ratio between 

the amount of data available for transmission and the the 
amount of data actually transmitted. In a large scale WSN, the 
number of nodes in a cluster can be relatively high, leading to 
large amount of data at the cluster heads (CHs). Applying CS 
at the CH reduces the number of bits significantly, but the 
compression ratio might still be very low due to huge amount 
of data from the member nodes. In order to minimize the data 
to be transmitted and improve the compression ratio, a 

threshold (T), such that ˆ/T M  , is applied at the one hop 

neighbours of the FCH. 

Sensor nodes in each cluster, on detecting an event, 
transmit their readings to their respective FCHs through one 
hop or two hop transmission only. If the incoming traffic, at the 
one hop neighbours, increases from the predefined threshold 
(T), the received data is compressed using the CS principle. 
Application of CS at this point of the network not only 
minimizes the network traffic but also imposes no extra load 
on the intermediate nodes.  

Otherwise, the received data is transmitted to FCHs without 
compression. CS at one hop neighbours is applied in the same 
way as on the FCH‟s and is explained later in this section. One 
of the FCHs is designated as the SCH and receives the data 
forwarded by all the FCHs. It is assumed that each FCH 
already knows the value of the projection vectors in the 

measurement matrix   for all the nodes that belong to that 
cluster. In real environment a pseudorandom number generator 

is used to generate the value of the measurement coefficient   
using the unique id of every node. Thus, with the node id‟s 
known, the measurement matrix is constructed locally at the 
sink and at the cluster heads. Sub-matrices for respective 
clusters are formed at each FCH, by decomposing the 

measurement matrix  . Let the sub-matrix for 
thi  cluster is 

given by 
CHi

 , the respective cluster head is given by iCH , 

and the cluster‟s data vector is given by 
CHid . The cluster 

head, iCH , computes the projection of all the data items 

within the cluster by multiplying the measurement matrix for 
the cluster with the data received from all its nodes, that is 

CHi CHid .  

Finally, M projections of the cluster data is forwarded by 

the iCH to the SCH. The number of nodes in the cluster and the 

sparsity of the data determines the value of M. Each SCH, adds 
its own data (i.e. data of its own cluster) with the data obtained 
from all the members of the first level cluster and apply 
Huffman encoding on the received data.  

The encoded data is then forwarded to the sink. The sink is 
responsible for recovering the original data from the received 
samples. At the sink, Huffman decoding algorithm is used to 
recover the compressed data sent to the SCH followed by L1 
magic for recovering the original data. 
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Algorithm 1:  Clustering and Communication 

Input: v(i).id (Node id), sink, sparsity (S),  v i . min
d
   

Output: FCH(First level Cluster Head), SCH(Second level Cluster Head)  

Start 

For all  v i  

check eligibility for cluster head 

             if  v i 0   and  v i G 0.   

            set: _temp rand rand ; generate random value 

                set: Threshold   / (1 ( % (1 )))P P r round P ; using the 

probability ‘P’, set the threshold 

                    if  temp_rand   Threshold  

                        set v(i).type  ‘FCH’; determining FCH 

End 

               for all FCH(j) ; Communication setup 

                         Broadcast join message 
                     for all v(i) 

                            If  v i rec    

                              distance  compute distance from ( )FCH j to one hop 

neighbors. 

                            if distance   v i . mind  

                                   set  v i . mind  distance 

                                   join  v i with mind for respective FCH ; establish one 

hop neighbours 
                      End 
                End 

                for all 1HN(k) 

                                  send join message 

                                  for all  v i  

                                             if  v i rec    

                                                  distance    compute distance from 1HN(k) 

 v i  

                                            v i . mind  distance 

                                            join  v i with min
d

for respective 1HN; establish 

two hop neighbours 
                                  End 

                 End 

 

Algorithm:  Compressed Sensing and Data Processing 

Input: Compression Threshold (T), FCH, SCH 

Output : Huffman Encoded  

1

Φ

N

FCHi FCHi

i

d



  

       for all 1HN     

                          receive data from its child node ; receive sensed data 

                           if 1
trans

HN  T 

                                    take 
measurement

CS 
OHNid ; column vector of order 

 1N   

                                        generate Φ
OHNi

; Order (M×N), using node.id 

                                        set Φ
OHNi O

i

HNi
dZ   ; Order of Z is ( 1)M   

                                        save: iZ  

                                   iFCH  iZ ; forward Z to respective FCH 

                             else 

                                   
iOHN

iFCH d ; data transfer from one hop neighbor to 

respective FCH 
           End 

           for all FCH 

                                   
FCH

measurement
iCS d ; column vector of order 

 1N   

                                        generate  Φ
FCHi

; Order (M×N), using node.id 

                                        set  Φ
FCHi FCHi

i dY   ; Order of Y is ( 1)M   

                                        save: iY  

                                   iSCH  iY ; data transfer from FCH to respective SCH 

            End 

              for all SCH 

                                     encode data using Huffman encoding 

                                     sink  huffman encoded( iY ); data transfer from SCH to 

sink 
            End 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 

Network size 100 100m m to 500 500m m  

Number of sensor node (n) 100 (minimum) and 900 (maximum) 

Sink position (200 m, 250 m) and (100 m, 100 m) 

Initial energy 0.5 j 

Transmitter/Receiver 

electronics( elecE ) 
50 nj/bit 

Data aggregation ( DAE ) 5 nj/bit/report 

Transmit amplifier ( fs
 ò ) 10 pj/bit/m2 

Sparse ratio of projection 

matrix ( ) 
 

2
/log N N  

Message size ( l ) 1024 bits 

  

V. RESULTS AND DISCUSSION 

To evaluate the performance of the proposed framework, 
simulations were performed for different scenarios and the 
outcomes were compared with different existing CS based data 
gathering schemes [23], [24] and [25]. 

A. Simulation Setup 

Lifetime of the network and the number of transmissions, 
in the proposed scheme, are tested with varying sink positions 
and are compared with the results presented in [23], [24] and 
[25]. Table I describes the parameters used for simulations. 

B. Communication and Load Distribution analysis 

The proposed HCS aims at optimizing the energy 
consumption by even distribution of the load over the network 
and maximizing the lifetime of the network by reducing the 
number of transmissions. The energy consumption at every 
node is mainly because of the following two kind of activities: 

 Transmissions received – A major portion of energy 
is utilized in receiving the bits from other connected 
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nodes in the network. Hence, the total number of 
transmissions received at every node is monitored and 
the activity of every node is mapped for each round of 
data transmission. 

 Transmissions sent – The received packets are 
processed and are forwarded to the next hop. The 
energy dissipated in processing the data is minimal and 
hence the data forwarding is the next major energy 
consuming task.  

Interestingly, in-network compression using CS allows 
minimum energy consumption for compression. The major 
energy consuming task being the recovery of the compressed 
data, is done at the sink which has sufficient energy resources. 
The proposed HCS exploits the advantages of CS in such a 
way that the load is evenly distributed over the network and the 
number of transmissions between the sensor nodes is 
minimum. Node activities are monitored and mapped for the 
following scenarios: 

Sink located outside 

The Fig. 3 shows a random deployment of 400 sensor 
nodes in 200 00m m   area. The sink is located at a corner 

outside the deployment area. The activity of each node is 
monitored for each data gathering round and is mapped for the 
number of transmissions in every round. The activity of each 
node in one such round, specifically for the deployment shown 
in Fig. 3, is shown in the activity map 1. 

As seen in the Fig. 3, the sink is located at the right corner 
(200, 250) while the nodes are randomly deployed in an area of 
200 200m m . While the FCHs (FCH) are many the SCH is 

only one for this round and is located at (81.78, 188.90). The 
number of transmissions i.e. sent and received, for every node 
is analysed and mapped to activity map shown in activity map 
1(a) and activity map 1(b) respectively. 

 

Fig. 3. Random deployment of nodes in 200 00m m  area (sink outside) 

  
(a)                                                 (b) 

Activity map 1: Activity of nodes (a) sending transmissions (b) receiving 

transmissions 

As seen in the activity map 1(a), data sending activity is 
marked all around the map leading to the mapping of moderate 
transmissions (between 80 and 135) by the sensor nodes at 
different locations in the map. The two dark patches around 
(81.78, 188.90) and (22.24, 90.01) signify relatively higher 
activity. The reason for this high activity around (81.78, 
188.90) can be understood from the fact that the proposed HCS 
allows only the SCHs to communicate with the sink. Since, for 
this deployment, the SCH is located at (81.78, 188.90) hence it 
is responsible for sending all the information obtained from its 
member nodes. This distribution of ability to communicate 
with the sink allows all the other nodes to save a lot of energy 
which would have been dissipated by them otherwise. Huge 
activity is seen around (22.24, 90.01) because the FCH located 
at this position is the only one in the region and is responsible 
for sending the data from a large number of nodes. Moderate 
patches over the map show low number of transmissions 
(between 80 and 135) between the FCHs and respective SCHs. 
The sink at the corner shows no activity as it only receives data 
from the SCH. An important conclusion that can be drawn 
from this map is that the number of transmissions at every node 
is moderate and varies between 100 and 150. As seen in the 
activity maps every node shares the load equally and hence the 
number of sending activity along with the transmission load on 
every node is distributed evenly throughout the network. 

As seen in the activity map 1(b), data receiving activity is 
marked all around the map leading to the mapping of moderate 
transmissions (between 400 and 500) by the sensor nodes at 
different locations in the map. It must be noticed that moderate 
receiving activity is seen at all the one hop neighbours and 
FCHs. The proposed HCS ensures that the number of received 
transmissions at every node is reduced to a low value (around 
400 in this case) except at the SCH. The reduced amount of 
receiving activity at various FCH shows the advantage of 
applying CS at the one hop neighbours. The SCH, at (81.78, 
188.90), shows the highest number of receiving activity for 
obvious reasons as it receives data from all the FCHs. As seen 
in the activity map 1(b), the SCH receives about 1200 
transmissions but careful observation reveals that the sink at 
the corner (200, 250) receives about 300 transmissions only. 
Comparing the activity maps 1(a) and (b), it becomes clear that 
although the second level cluster receives a large number of 
transmissions (in this case about 1200) but with the proposed 
HCS, the outgoing traffic is reduced to nearly 300. With such a 
distribution of transmissions, the nodes save a lot of energy and 
hence the network lifetime is enhanced significantly. A 
significant deduction from this activity map is that the 
application of CS at one hop neighbours and at FCHs prevents 
the nodes from transmitting huge amount of data within the 
network. Thus, the activity maps proves that with reduced 
number of transmissions the proposed HCS can enhance the 
network lifetime significantly. 

Sink located at the centre 

The Fig. 4 shows a random deployment of 400 sensor 
nodes in 200 200m m  area. The sink is located at the centre 

of the deployment area. The activity of each node is monitored 
for each data gathering round and is mapped for the number of 
transmissions in every round. The activity of each node in one 
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such round, specifically for the deployment shown in Fig. 4, is 
shown in the activity map 2. 

 

Fig. 4. Random deployment of nodes in 200 00m m  area (sink outside) 

 
(a)                                                   (b) 

Activity map 2: Activity of nodes (a) sending transmissions (b) receiving 

transmissions 

As seen in the activity map 2(a), data sending activity is 
marked all around the map leading to the mapping of moderate 
transmissions (between 55 and 110) by the sensor nodes at 
different locations in the map. The two dark patches around 
(144.56, 62.76) and (0, 151.01) signify relatively higher 
activity. The reason for this high activity around (144.56, 
62.76) is the presence of SCH. Since the SCH sends majority 
of the data to the sink, the number of transmissions being sent 
by the SCH is relatively high (about 300 in this case). A small 
patch of relatively lower transmissions is seen around (161.08, 
2.23) which is the location of the second SCH. The activity at 
this location is moderate because as seen in the deployment 
diagram (figure 6) the majority of the FCHs lie closer to 
(144.56, 62.76) and hence they send their data to it. Thereby 
leaving only a few FCH to send their data through the SCH at 
(161.08, 2.23), thus less data to send to the sink. Huge activity 
is seen around (0, 151.01) because the FCH located at this 
position is the only one in the region and is responsible for 
sending the data from a large number of nodes. A patch with 
moderate activity is seen around (50, 62.7) as there are 
relatively less number of FCHs in the region and hence 
increased two hop transmissions. The sink at the centre shows 
no activity as it only receives data from the SCHs. As 
compared to the activity map 1(a) the nodes in the activity map 
2(a) have lower transmission values ranging between 55 and 
110 and the load is more evenly distributed throughout the 
area. The advantage of having the sink at the centre of the 
deployment area is the significant reduction in the transmission 
distance for the SCH. With almost equal activity at every node 
the load is evenly distributed throughout the area. With sink at 
the centre the results tend to improve and the effect of this 
reduction is seen in the lifetime of the network. Another round 

of data gathering might result in different number of FCHs and 
SCHs with different positions. 

As seen in the activity map 2(b), data receiving activity is 
marked all around the map leading to the mapping of moderate 
transmissions (between 350 and 500) by the sensor nodes at 
different locations in the map. Important deduction from this 
activity map is the better distribution of the transmission load 
as compared to the activity map 1(b) for sink outside the 
deployment area. The SCH, at (144.56, 62.76), shows the 
highest number of receiving activity as it receives data from all 
the majority of the FCHs. As discussed in activity map 2(a) the 
SCH at (161.08, 2.23) shows relatively low receiving activity 
as majority FCHs are near to the SCH at (144.56, 62.76). The 
receiving activity at the sink shows that the number of 
transmissions received at the sink is almost same as in activity 
map 1(b) but the difference being the distance between the 
SCHs and the sink. With sink at the centre, the energy 
consumption in transmitting the data is relatively low and 
hence is much better. 

C. Transmission Analysis 

The sink position remaining the same i.e. at the centre, the 
total number of packets circulating within the network for the 
proposed HCS is compared with the mixed algorithm proposed 
in [23]. The performance of the proposed algorithm is also 
compared with the other approaches i.e. Distributed 
compressed sensing (DCS) and Pack and forward (PF) 
strategies as used in [23]. The Fig. 5 shows the behaviour of 
the proposed HCS and the three existing approaches as the 
nodes are increased from 9 to 900. 

The figure shows a gradual increase in the number of 
transmissions as the number of nodes is increased. However, 
Fig. 5 (a) clearly shows that with the proposed HCS, the 
number of packets within the network is far less as compared 
to the mixed algorithm proposed in [23] and DCS and PF 
schemes used for comparison in [23]. Even for a small 
network, the number of packets in the proposed HCS is much 
better than the mixed algorithm. Interestingly, a sudden burst, 
in the number of sent packets, is seen for a particular network 
size in the mixed algorithm, DCS and PF scheme. However, 
the proposed HCS remains unaffected with the network size, 
proving its efficiency over the existing approaches. As seen in 
Fig. 5 (b), the average number of transmitted packets per node 
ranges between 0.1175968 and 0.58376 which is much better 
than the mixed algorithm [23] where the range of per node 
packet ranges approximately between 0.333856 to 1.1625. The 
proposed HCS has better performance than the existing 
approaches, presenting very less number of sent packets which 
is always better than the mixed algorithm [23], DCS and PF as 
used in [23]. 

D. Energy and Network Lifetime analysis 

The lifetime of the network is analyzed for both the 
discussed scenarios. The stability period, first dead and final 
dead are considered as the parameters for the energy and 
lifetime analysis. 

Sink located outside 

The Fig. 6 shows the lifetime of the network with the 
proposed HCS, with sink outside the deployment area. 
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(a)                                                  (b) 

Fig. 5. Comparison among proposed HCS, mixed algorithm, DCS and PF 

(sink at the centre). (a) Total number of packets circulating within the network. 
(b) Average number of transmissions per node 

 

Fig. 6. The number of living nodes over rounds (sink outside) 

As evident from the Fig. 6, the proposed HCS is able to 
improve the lifetime of the network to almost 200 % as 
compared to EEBCDA as proposed in [24]. The first node with 
the proposed HCS dies in the 1362

nd
 round whereas with 

EEBCDA [24] the first node dies in the 591
st
 round. The 

proposed HCS outperforms the EECS [25] and EEBCDA [24], 
both in terms of stability period and lifetime of the network. 
The simulations are run until only 10 nodes are alive and, with 
the proposed scheme, the 390

th
 node dies in the 5380

th
 round 

after which the network is considered to be dead. An important 
aspect of EEBCDA [24] and EECS [25] is the even distribution 
of the load over the network. The relatively small unstable 
region i.e. the duration between the first and the last dead, in 
EEBCDA [24] signifies efficient traffic load balancing within 
the network. However, in the proposed HCS, with sink at the 
corner outside the deployment area, the SCHs spend huge 
amount of energy in transmitting their data to the sink. Over 
the lifetime of the network, every node becomes a SCH and 
bears this heavy energy consumption. Hence, although the load 
is distributed efficiently for almost all the nodes in the network, 
there might be one or more (depending upon the number of 
SCHs) nodes dissipating huge amount of energy in data 
transmission to the sink. The presence of such nodes, in every 
round of data collection, does not allow the proposed HCS to 
achieve its true potential in terms of stability period and 
lifetime. The effect is seen in the duration between the first and 
the last dead of the proposed HCS. After the first node dies in 
the 1362

nd
 round, the last considered alive node i.e. 390

th
 node 

dies in the 5380
th
. Thus, in the current scenario, though the 

lifetime of the network is improved greatly but the advantage 
of distributing the load throughout the network is lost. 

Changing the position of the sink can not only facilitate the 
load distribution in the network but can also improve the 
stability period of the network. 

Sink located at the centre 

The Fig. 7 shows the lifetime of the proposed HCS with 
sink at the centre. 

 
Fig. 7. The number of living nodes over rounds (sink at centre) 

As evident from the figure, with sink at the centre, not only 
a perfect distribution of the load is obtained but the stability 
period is doubled as well. In the current scenario, the first node 
dies in the 3873

rd
 round whereas when the sink is placed 

outside the deployment area, the first node dies in the 1362
nd

 
round. The proposed HCS, in the current scenario, is able to 
improve the stability period of the network to almost 200 % as 
compared to the scheme proposed in scenario 1. The 
simulations are run until 10 nodes are alive and the 390

th
 node 

dies in the 5878
th
 round and after this the network is considered 

to be dead. Comparing the lifetime of EEBCDA proposed in 
[24] with the proposed HCS (both scenarios), it becomes clear 
that the proposed HCS (with sink at the centre) improves the 
lifetime of the network significantly and is able to achieve 
about 300 % efficiency over EEBCDA [24] and is even better 
than EECS [25]. With sink at the centre, the proposed HCS is 
able to efficiently distribute the load throughout the network 
and hence better traffic load balancing in the network. The 
effect of this even distribution is seen in the reduced unstable 
region. Thus, in the current scenario, not only the advantage of 
distributing the load throughout the network is achieved but the 
stability period is also improved significantly. Changing the 
position of the sink to the centre allows the proposed HCS to 
achieve better results both in terms of network lifetime and 
reliability as well. 

VI. CONCLUSION 

This paper addressed the problem of network lifetime and 
uneven energy consumption in large scale WSNs. A 
Hierarchical Compressed Sensing (HCS) scheme is proposed 
to achieve efficient traffic load balancing and reduced in-
network communication. A major concern for the existing CS 
based methods is the point of application of CS and this has 
been successfully resolved in the proposed scheme. HCS is 
able to reduce and uniformly distribute the number of 
transmissions in the network. The effect is seen in the lifetime 
of the network which grows significantly as compared to the 
existing approaches. Due to efficient load distribution among 
the nodes of the WSN the availability of all the nodes for data 
gathering is increased significantly i.e. the stability period is 
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improved. The same has been validated through results. The 
results prove that the proposed HCS outperforms the existing 
CS based schemes. 

VII. FUTURE WORK 

We continue to extend our work to analyse the performance 
of the proposed HCS in a real world deployment. A 
mathematical model to determine the compression ratio and the 
communication overhead, remains to be developed in the 
future. 
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