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Abstract—Recently, we proposed a new threshold based The feasible attainable objective set (AOS) can be defined as
penalty function. The threshold dynamically controls the penalty  {F(x)|x € F}.
to infeasible solutions. This paper implants the two different
forms of the proposed penalty function in the multiobjective evo- Since the objectives in (1) more often contradict each other,

lutionary algorithm based on decomposition (MOEA/D) frame-  so it is hard to find a single solution iR that could minimize
work to solve constrained multiobjective optimization problems. all the objectives at the same time. Instead, one looks for a
This led to a new algorithm, denoted by CMOEA/D-DE-ATP.  get of optimal compromising/tradeoff feasible solutions. The

The performance of CMOEA/D-DE-ATP is tested on hard CF- — pest tradeoffs among the objectives can be defined in terms of
series test instances in terms of the values of IGD-metric and Pareto-optimality [2], [3]

SC-metric. The experimental results are compared with the three

best performers of CEC 2009 MOEA competition. Experimental A solution is said to Pareto-dominate or simply dominate
resdullts shokvvthaltlthe Eroposed ?enfaltyfunctll(on is very promising,  5nother solutiony, mathematically denoted as < y, if
and it works well in the MOEA/D framework. fi@) < fiy), Vi = 1,....m and f;(z) < f;(y) for at
Keywords—Constrained multiobjective optimization; decompo-  least onej € {1,...,m}%. This definition of domination is
sition; MOEA/D; penalty function; threshold. sometimes referred to as a weak dominance relation.
A solution z* € F is Pareto-optimal to (1) if there is no
. INTRODUCTION solution = € F such thatF(z) < F(z*). F(z*) is then

called a Pareto-optimal (objective) vector. The set of all Pareto-
optimal solutions is called the Pareto Set (PS) in the decision
space and Pareto Front (PF) in the objective space [2].

In this paper, we consider the following constrained mul-
tiobjective optimization problem (CMOP) [1]:
Minimize  F(z) = (fi(2), f2(2), ..., fm(2))"; . . o
Subjectto g;(z) >0,j=1,...,p; (1) In the majority of constrained optimization problems, the
optimal solutions lie on the constraints’ boundaries. Thus,
) ) ) to arrive at these solutions, some algorithms evolve some
wherez = (z1,...,2,)" € R" is ann dimensional vector good infeasible solutions with less constraint violation along
of decision variablesf” is the objective vector function that \ith their feasible counterparts during the evolutionary process
consists ofm real-valued objective functions, angd(z) > 0 (e.g., see [4]-[6]). The primary purpose of evolving infeasible
are inequality constraints. The objective and constraint funcspjutions in the search procedure is to utilize the information
tions, fi's andg;’s, could be linear or non linear real-valued they transport. As EAs are stochastic search and optimization
functions./, andw,, are the lower and upper bounds (called methods, rejecting infeasible individuals might lead the EA

lkgxkguk,kzl,...,n,

bound constraints) ok, k = 1,....n, respectively, which  peing stuck in local optima, particularly in problems with
define the search regiafl = {z = (z1,...,2,)" | lx <21 < disconnected search space [7], [8]. Moreover, in some highly
ug, k=1,...,n}. constrained optimization problems, it could be a demanding

A solutionz € S is called a feasible solution, if it satisfies Problem to find a single feasible solution [9], [10]. There-
all the inequality constraints in (1). The set of all feasiblefore, constraint handling techniques used in multiobjective

solutions is called the feasible region. Mathematically, we caPPtimization (MOO) can be mainly distinguished by knowing
write: how infeasible solutions are mixed up and evolved in the

, evolutionary process.
F={xeSCcR"gx)>0,j=1,---,p}.

. . . o . 1This defnition of domination is for minimization. All the inequalities
However, If a solution is not feasible, we call it infeasible. should be reversed if the goal is to maximize the objectives in (1). “dominate”

The set of all infeasible solutions is called the infeasible regionmeans “be better than”.
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In [1], we introduced a new threshold based penaltyC. The Proposed Penalty Function
function in the replacement and update scheme of MOEA/D-
DE [11], an improved version of MOEA/D [12], to penalize
infeasible solutions. The threshold is adaptively adjusted b
using the minimum and maximum constraint violation in the  Suppose MOEA/D [12] decomposes the MOP infasub-
neighborhood of a solution. The infeasible solutions with conproblems. At each generation, MOEA/D retaii¥s solutions
straint violation less than the threshold are less penalized thart, ... 2", wherez? is the current solution to subproblein
the ones with constraint violation greater than the threshold.et P be the mating and update range set in MOEA/D. Then
As a result, we expect that some good infeasible solutiondefine [1]:
with less constraint violation will have a chance to evolve in Vinin = min{V (z),i € P}, (4)
the evolutionary process. The some preliminary experimental i
results, presented in [1], have proven the capability of the Vinar = max{V(z"),i € P}, ()
proposed algorithm for solving CF-series [13] test instancesyhere V' (2%) is the degree of constraint violation of solution
In this paper, we present detailed experimental results angi
comment on the pitfalls of the proposed algorithm.

The proposed penalty function uses a threshold vatue,
>f,or dynamically controlling the amount of penalty.

The threshold values is defined as [1]:
The rest of this paper is organized as follows. Section Il
presents some basic concepts and the two versions of the pro- o
posed penalty function. Section Il briefly introduces MOEA/D 7= Vinin + 5(Vimaz = Vimin), (6)
and the modified algorithmic framework of MOEA/D-DE. where the parametarcontrols the threshold value. In [1], we
Section IV discusses the experimental settings. Section Viseds = 0.3.
presents and discusses experimental results on CF-series [13] Our suagested penalty function encourages the algorithm
test instances. Section VI compares our experimental resul% search %ge feaslioble rey ion and the infea?sible re ign near
with the three best performers [14]-[16] of CEC 2009 MOEAth teasibl ion. Iti dgf' din the following t o?'ff t
competition. Finally, Section VII concludes this paper with an € Teasible region. 1 1S defined in the foflowing two difieren

outline of the work carried out. ways: Fori = 1,...,m
‘ filx) +s1V3(x), if V(x) <T;
fpl@)=q fil@) +si7%+ (7)
Il. BASIC CONCEPTS ANDTHE PROPOSEDPENALTY : s2(V(x) — 1), otherwise,
FUNCTION
A. Degree of Constraint Violation g (z|N, 2%) + s1V3(x), if V(z) <T;
te *\ te * 2
L . gri(x| A\, 2%) = ¢ gt (x| A, 2%) + s1T%+
The degree of constraint violation of a solutiore S can P so(V (@) — 1), otherwise,

be defined as [1], [3]: (8)

wheres; ands, are two scaling parameters with << ss. In
» the penalty functions, the penalty increases sharply viher)
V(z) = |Zmin(gj(:v),0)|. ) exceeds the threshpld. This is reali;ed by scaling 'ghe degree
e of constraint violation,V(z) of an infeasible solution by
relatively high value of parametei than parametes; in our
penalty function formulations. In Eq. 7, the penalty is added to
Obviously, if V(x) = 0, x is feasible; otherwise, it is individual objective function values of an infeasible solution,
infeasible. while in Eq. 8, it is added directly to Tchebycheff aggregation
function value of an infeasible solution. Furthermore, in [1],
we tested Eq. 8 only.
B. Tchebycheff Aggregation Function
[1l. M ULTIOBJECTIVE EVOLUTIONARY ALGORITHM
MOEA/D [12] decomposes an MOP into a number of BASED ONDECOMPOSITION

single objective subproblems. This paper uses the Tchebycheff . . -
aggregation function for this purpose, which is given as Z_ha_ng "’_‘nd Li [12] suggested_a simple yet efficient MOEA,
under [17]: multiobjective evolutionary algorithm based on decomposition

(MOEA/D). MOEA/D approximates the PF by explicitly de-

composing an MOP into several single objective optimization

subproblems. These subproblems are then optimized concur-
Minimize g™ (z|\, 2*) = maxi<;<m{Ni|fi(z) — 27|}; (3)  rently and collaboratively by evolving population of solutions.
- An EA is employed for this purpose. The Euclidean distances

Subject to zEFCRY between the aggregation coefficient vectors of these subprob-
where * — (27 2+ )7 is the reference point, i.ez" — lems are caIcuIatgd to identify the neighborhood_ of ea}ch

in{ f,(2)|z el’f}. ’W”L 1 m and A — (A T /\Z’Z ) subproblem. The information gathered from the neighboring
iI;m; v:/eight vector sugh t,ha$7 > 0 Vi — 11’ o 'h%nd subproblems is then used to optimize a subproblem.

>, A = 1. Some theorems related to the Pareto-optimality In this work, we employed the penalty functions defined
of Tchebycheff aggregation function can be found in [2]. by Egs. 7, 8 in the update scheme of MOEA/D-DE [11], one
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of the efficient versions of MOEA/D to solve CF-series [13] found by CMOEA/D-DE-ATP with Egs. 7, 8. These statistics
test instances. This resulted in a new algorithm, denoted bgre based on 30 independent runs. As it can be seen from
CMOEA/D-DE-ATP (For details of CMOEA/D-DE, please see this table that CMOEA/D-DE-ATP can find better best values
[18]). The pseudo-code of the modified update scheme is givewith Eq. 7 for one 2-objective, CF6 and three 3-objective,
in Algorithm 1. CF8-CF10 and with Eq. 8 for four 2-objective, CF2, CF4,
CF5, and CF7 test instances. The best values for test instance
Algorithm 1 Pseudo-cde of the update scheme of CF1 are identical. This table also shows that CMOEA/D-DE-

CMOEA/D-DE-ATP.

ATP with both Egs. 7, 8 performs similarly on test instance

1: Each new child solutiony updatesn, sdutions from the CF3. However, improved mean and st. dev. values can be

set P of its neighboring solutions as follows:

found when CMOEA/D-DE-ATP employs Eq. 7 for most of
the test instances. In particular, the improved performance

2: Setc = 0 and then do the following: e .
3. if ¢ =mn, or P is emptythen can be seen for the three 3-objective test instances, CF8-
4 return: CF10. This suggests that adding the penalty to individual
5 else objective function values as is done in Eq. 7 before calculating
6: Randomly pick an indey from P; the aggregation function values is a good choice for better
7: Compute the Tchebycheff aggregation function val-Performance on CF-series test instances.
ues ofy andz’ with the new objective values of Eg. It can also be seen from Table | that CMOEA/D-DE-ATP
7 (or the new aggregation function valuesypnd  jith poth Egs. 7, 8 finds small values for the mean of IGD-
) with Eq. 8); B metric on CF1, CF2, CF4, CF6, CF8, CF9. Empirically, these
8: if gylX,2) < g"(@’|V,2) (or g,7(y[N,2) < results illustrate that the final nondominated solutions found
g, (2’ |N, z) ) then _ by CMOEA/D-DE-ATP for these test instances approximate
o: ¥ = y, F(a?) = F(y), V(2?) = V(y), and  the PF very well in a sense.
c=c+1;
10: end if
11 Removej from P and go to step: TABLE II: THE AVERAGE SET COVERAGE BETWEEN
o end if CMOEA/D-DE-ATP WITH EQ. 7 AND WITH EQ. 8 ON

CF-SERIES TEST INSTANCES. THE RESULTS IBOLD-

FACE INDICATE THE BETTER RESULTS; IF NOT, THEY
ARE IDENTICAL.

IV. EXPERIMENTAL SETTINGS

In our exgeriments, we use the same parameters’ settings
and weight vectors’ selection criteria as is used in [13]. Further,
we use statistics of the inverted generational distance metric
(IGD-metric) [12], [19] for comparing results on CF-series
test instances, CF1-CF10. Also, the set coverage metric (SC-
metric) [12] is used to compare the nondominated solutions
obtained by different algorithms. Unless otherwise stated, we
will use Eqg. 6 withs = 0.7 and Egs. 7, 8 withs; = 0.01 and

s9 = 20 in all experiments.

V. EXPERIMENTAL RESULTS

TABLE I: THE IGD-METRIC STATISTICS OF CMOEA/D-
DE-ATP USING EQS. 7, 8. THE RESULTS IBOLDFACE

INDICATE THE BETTER RESULTS; IF NOT, THEY ARE
IDENTICAL.

Test Instance| C(Eq. 7, Eq. 8) | C(Eq. 8, Eq. 7)
CF1 0.46 0.48
CF2 0.13 0.13
CF3 0.65 0.65
CF4 0.26 0.28
CF5 0.19 0.22
CF6 0.17 0.21
CF7 0.24 0.24
CF8 0.05 0.04
CF9 0.03 0.03
CF10 0.39 0.31

Table II presents the average set coverage between the
nondominated solutions of CMOEA/D-DE-ATP with Eq. 7 and
Eq. 8. The results of this table reveal that, in terms of the
SC-metric, the nondominated solutions found by CMOEA/D-
DE-ATP with Eq. 8 are better than those obtained with Eq.
7 for test instances CF1, CF4-CF6, but are worse for test

instances CF8 and CF10 vice versa. The table also shows

hat the nondominated solutions acquired from CMOEA/D-

best (lowest) mean st. dev.

Test Instance Eq. 7 Eq. 8 Eq. 7 Eqg. 8 Eq. 7 Eqg. 8
CF1 0.0003 0.0003 0.0006 0.0005 0.0003 0.0002
CF2 0.0028 0.0027 | 0.0037  0.0041 0.0013 0.0019
CF3 0.0632 0.0632 0.1382 0.1382 0.0441 0.0441
CF4 0.0060 0.0051 0.0097 0.0095 | 0.0042 0.0043
CF5 0.0406 0.0297 0.1606 0.1663 0.1084 0.1107
CF6 0.0049 0.0053 0.0197 0.0192 0.0141 0.0144
CF7 0.0344 0.0304 | 0.1188 0.1310 0.0729 0.0722
CF8 0.0332 0.0356 0.0370 0.0371 0.0020 0.0010
CF9 0.0428 0.0434 0.0468 0.0479 0.0022 0.0030
CF10 0.1068 0.1108 0.1509 0.1630 0.0396 0.0409

E-ATP with both Eqgs. 7, 8 are same for test instances CF2,
CF3, CF7, and CF9. However, looking at the results of this
able, it can be inferred that the performance of CMOEA/D-

DE-ATP is comparable with both Egs. 7, 8, as there is no big
difference in the SC-metric values.

Figures 1 and 2 show, in the objective space, the distribu-
ions of the100 and 150 nondominated population members
for the sever2-objective, CF1-CF7, and the thr8eobjective,

CF8-CF10, CF-series test instances. These solutions are se-
lected based on the criteria as mentioned in [13] from the final

Table | presents the best (i.e., lowest), mean, and standambpulation of the run with the best (i.e., lowest) IGD-metric
deviatian of the IGD-metric values for CF-series test instancesvalue among th80 independent runs. These figures also show
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Fig. 1: Plots of the nondominated front with the best IGD value ahthal30 final nondominated fronts found by CMOEA/D-
DE-ATP when using Eq. 7 (columns 1 and 3) and Eq. 8 (columns 2 and 4) for CF1-CF6.
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Fig. 2: Plots of the nondominated front with the best IGD value and alBth&nal nondominated fronts found by CMOEA/D-
DE-ATP when using Eq. 7 (columns 1 and 3) and Eq. 8 (columns 2 and 4) for CF7-CF10.

all the 30 final nondominated fronts of these seleci®d and Iutions in the current population. This figure shows that
150 nondominated solutions. CMOEA/D-DE-ATP with both Egs. 7, 8 converges at the

. . same rate in terms of IGD-metric values for six CF-series test
It is very clear from these figures that CMOEA/D-DE-ATP instances CF1, CF3, CF4, CF6, CF8 and CF9. However, it

with both Egs. 7, 8 found good approximations for the fOurconverges slightly faster in terms of IGD-metric values for the

%Egjeé,t:i\ée{ CtFl tCFZ’ CE'A" and CtF6’ ?nd t\Z(ij/(Dbjecltive, ; ther four CF-series test instances CF2, CF5, CF7, and CF10
, est instances. However, it performed poorly on tesf ., Eq. 7 than with Eq. 8.

instances CF3, CF5, CF7, and CF10. It is also apparent from
the plots 0f30 nondominated fror)ts of test instances CF4 gnd Figure 4 depicts the average generation feasibility versus
CF6 that CMOEA/D-DE-ATP fails to find the whole PF in  generations’ graphs. This figure demonstrates that CMOEA/D-
some runs. DE-ATP with both Egs. 7, 8 approaches to the feasible regions
The PF of CF3 is concave and discontinuous. Thereforeat the same rate for test ir)stances CF1—CI_36. It converges slower
it could be hard for the algorithm than all other 2-objective© the feasible regions with Eq. 7 than with Eq. 8 for the test
test instances. Although the PFs of CF4 and CF5, CF6 antpstances CF7-CF10. This permits further exploration of the
CF7, and CF9 and CF10 are identical, the poor performanC’@feasible regions near the PF and could be one of the reasons
of CMOEA/D-DE-ATP on test instances CF5, CF7 and CF10for the better performance of CMOEA/D-DE-ATP with Eq. 7
could be due to the presence of harder objective and constraifif! the three 3-objective test instances, CF8-CF10.
functions in these test instances than test instances CF4, CF6, As it can be seen from Figure 4 thag % or more of

and CF9. the initial populations for test instances CF1, CF2, CF4 and
Figure 3 shows the evolution of the average IGD-metricCF5 are feasible. These feasible solutions are propagated in the
values versus function evaluations of the nondominated scsubsequent generations by the replacement and update scheme
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Fig. 3: Evolution of the IGD-metric values versus function evaluations when CMOEA/D-DE-ATP uses Egs. 7, 8 for CF1-CF10.

of the algorithm and thus produce better feasible solutions dupopulations for test instances CF6-CF10 is feasible. Here,
to the DE operator. Furthermore, the feasibility ratio becomeshe proposed constraint handling technique has more chances
1 after the initial 30 to 40 generations for these test instanceso evolve better infeasible solutions during the evolutionary
The reason for the quick convergence to the feasible regioprocess. Particularly, in the two 3-objective test instances CF8
is the higher adopted update number of neighboring parergnd CF9, the average feasibility ratio at the last generations
solutions (as in our settings. = 6 when7T = 60 andn,, = 10 of the algorithmic runs is 0.6 and about 0.9, respectively (see
whenT = 100) that are replaced by a better child solution in Figure 4). This way the infeasible regions near the feasibility
the update scheme of the algorithm. This speedy convergent®undaries in these two instances are well explored and could
to the feasible region is good for test instances like CF1, CF2)e a reason for the better performance of the algorithm on
and CF4, but it causes problems for harder test instance likénese two instances.
CF5. The PF of CF5 is a piecewise continuous curve with three
pieces like CF4, but its objective and constraint functions are Moreover, in test instance CF6, the feasibility ratio of
quite different and harder than CF4. CMOEA/D-DE-ATP with both Egs. 7, 8 becomes 1 after the
initial 40 generations, while in test instance CF7, it takes 200
On the other hand, abo®5 % or below of the initial generations of CMOEA/D-DE-ATP with Eq. 7 and 50 gener-
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Fig. 4: Evolution of the generation feasibility versus generations when CMOEA/D-DE-ATP uses Egs. 7, 8 for CF1-CF10.

ations with Eq. 8 to become 1. Thus, the quick convergenceVl. COMPARISON WITH THE THREE BEST PERFORMERS
to the feasible region is good in case of CF6, but could be a OF CEC 2009 MOEA OMPETITION
reason for the poor performance of CMOEA/D-DE-ATP with

both Egs. 7, 8 in case of CF7. In this section, we compare the results of CMOEA/D-DE-

ATP with Egs. 7, 8 with the three best performers [14]—[16] in
CEC 2009 MOEA competition on the CF-series test instances.

Table 11l compares the best (i.e., lowest), mean, and stan-
dard deviation values of the IGD-metric obtained from our
In test instance CF10, the feasibility ratio takes about 14@lgorithm, CMOEA/D-DE-ATP with Egs. 7, 8, and the three
generations of CMOEA/D-DE-ATP with Eq. 7 and about 80 best performers [14]-[16] in CEC 2009 MOEA competition
generations of CMOEA/D-DE-ATP with Eq. 8 to become 1. for the CF-series test instances. The table clearly shows that
Again, the less exploration of the infeasible regions could beCMOEA/D-DE-ATP has found the best (i.e., lowest) IGD-
the reason for the poor performance of CMOEA/D-DE-ATP metric values for four test instances CF1, CF6, CF8 and CF9
on test instance CF10. and the second best value for one test instance CF3 with Eq.
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TABLE 1ll: COMPARISON BETWEEN CMOEA/D-DE-ATP WITH EQ. 7 (INDICATED BY JZ1) AND WITH EQ. 8
(INDICATED BY JZ2), TSENG AND CHEN'S [14] (INDICATED BY TC), LIU AND LI'S [15] (INDICATED BY LL), AND
LIU ET. AL'S [16] (INDICATED BY LI) ALGORITHMS IN TERMS OF THE IGD VALUES BASED ON 30 INDEPENDENT
RUNS. THE RESULTS INSOLDFACE AND IN ITALIC INDICATE THE BETTER AND THE SECOND BETTER RESULTS.

best (lowest) mean st. dev.

Test Instange JZ1 | JZ2 | TC | LL LI Jz1 | Jz2 TC LL LI Jz1 | JZ2 TC LL LI
CF1 0.0003/0.0003|0.0139|0.0007|0.0071{0.0006 |0.0005|0.0192|0.0009|0.0113 {0.0003 | 0.0002 |0.0026 [0.0001|0.0028
CF2 0.0028]0.0027|0.0041|0.0027/0.001 6| 0.0037|0.0041{0.02680.00420.0021{0.0013{0.0019{0.0147{0.0026 |0.0005
CF3 0.0632|0.0632|0.0753(0.0908/0.0381(0.1382]0.1382|0.1045|0.1829]0.0563|0.0441|0.0441| 0.0156|0.0421 |0.0076
CF4 0.0060(0.0051/0.0089(0.0090| 0.0055|0.0097|0.0095| 0.0111|0.01420.0070{0.0042 |{0.0043 [0.0014{0.0033 | 0.0015
CF5 0.0406(0.0297|0.0176/0.0588/0.0079|0.1606 |0.1663 | 0.0208|0.1097|0.0158(0.1084 {0.1107 {0.0024{0.0307 | 0.0067
CF6 0.0049(0.0053 0.0096/0.0090| 0.0062|0.0197{0.0192|0.0162|0.0139|0.0150{0.0141|0.0144 | 0.0060 [0.0026{0.0065
CF7 0.0344(0.0304 |0.0187/0.0535|0.0104{0.1188(0.1310{0.0247 {0.1045|0.0191{0.0729|0.0722|0.0047|0.0351 | 0.0061
CF8 0.0332(0.0356|0.6220/0.0473|0.0388|0.0370] 0.0371|1.0854|0.0607|0.0475|0.00200.0010{0.2191 {0.0130|0.0064
CF9 0.0428]0.0434(0.0721/0.0460{0.1191|0.0468| 0.0479|0.0851|0.0505|0.1434 [0.0022{ 0.0030{0.0082|0.0034 |0.0214
CF10 0.1068(0.1108 |0.1173]0.1055|0.0984|0.1509{0.1630(0.1376{0.1974{0.1621 | 0.0396 | 0.0409 0.0092|0.0760 | 0.0316

7. It has also found the best IGD-metric values for two test
instance<CF1 and CF4 and the second best values for four tes 1
instances CF2, CF3, CF8, and CF9 with Eq. 8. Particularly,
for test instances CF1, CF8 and CF9 better statistics are found
by our algorithm except the standard deviation value on CF1[
(although both our standard deviation values are very close to
the best standard deviation value). [3]

VII.

A penalty function that penalizes infeasible solutions based
on an adaptive threshold value has been introduced into thes)
update and replacement scheme of MOEA/D-DE. This resulted
in a new algorithm, CMOEA/D-DE-ATP for CMOO. The
proposed penalty function is presented in two forms given by
Egs. 7, 8. The performance of CMOEA/D-DE-ATP is tested on (6]
CF-series test instances in terms of the values of IGD-metric
and SC-metric.

CONCLUSIONS [4]

From the experimental results in this paper, we can make
the following conclusions.

e Overall, CMOEA/D-DE-ATP produced better results
with the proposed penalty function defined by Eq. 7
than when it is defined by Eq. 8. That is, it is better to
add the penalty to individual objective function values [qg]
before calculating the aggregation function values than
directly adding the penalty to aggregation function
values of an infeasible solution for better performance10]
achievement on CF-series test instances.

e The comparison of CMOEA/D-DE-ATP with the three t
best performers in CEC 2009 special session and
competition indicated that CMOEA/D-DE-ATP has [12]
found the best (i.e., lowest) IGD-metric values for
five test instances CF1, CF4, CF6, CF8 and CF9 and
the second best values for two test instances CF2 ands!
CF3. In particular, our algorithm overall found better
statistics for tests instances CF1, CF8, and CF9.

[7]

(8]
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