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Abstract—This paper compares the performance of our re-
cently proposed threshold based penalty function against its
dynamic and adaptive variants. These penalty functions are
incorporated in the update and replacement scheme of the
multiobjective evolutionary algorithm based on decomposition
(MOEA/D) framework to solve constrained multiobjective op-
timization problems (CMOPs). As a result, the capability of
MOEA/D is extended to handle constraints, and a new algorithm,
denoted by CMOEA/D-DE-TDA is proposed. The performance
of CMOEA/D-DE-TDA is tested, in terms of the values of IGD-
metric and SC-metric, on the well known CF-series test instances.
The experimental results are also compared with the three best
performers of CEC 2009 MOEA competition. Empirical results
show the pitfalls of the proposed penalty functions.

Keywords—Constrained multiobjective optimization; decomposi-
tion; MOEA/D; dynamic and adaptive penalty functions; threshold.

I. I NTRODUCTION

In this paper, we consider the following constrained mul-
tiobjective optimization problem (CMOP) [1]:

Minimize F (x) = (f1(x), f2(x), . . . , fm(x))T ;
Subject to gj(x) ≥ 0, j = 1, . . . , p;

lk ≤ xk ≤ uk, k = 1, . . . , n;
(1)

wherex = (x1, . . . , xn)
T ∈ Rn is an n dimensional vector

of decision variables,F is the objective vector function that
consists ofm real-valued objective functions, andgi(x) ≥ 0
are inequality constraints. The objective and constraint func-
tions, fi’s andgj ’s, could be linear or non linear real-valued
functions. lk and uk are the lower and upper bounds (also
called bound constraints) ofxk, k = 1, . . . , n, respectively,
which define the search region,S = {x = (x1, . . . , xn)

T | lk ≤
xk ≤ uk, k = 1, . . . , n}.

A solution x ∈ S satisfying all the inequality constraints
in (1) is called a feasible solution; otherwise, we call it an
infeasible solution. The set of all feasible solutions is called
the feasible region, denoted byF , and the set of all infeasible
solutions is called the infeasible region. Also, we define
feasible attainable objective set (AOS) by{F (x)|x ∈ F}.

Because the objectives in (1) often contradict one another, a
single solution in the feasible search region could not be found
that minimizes all the objectives simultaneously. Therefore,
a set of optimal compromising/tradeoff solutions that satisfy
all constraints (i.e., feasible solutions) is desired. The best
tradeoffs among the objectives can be defined in terms of
Pareto-optimality [2], [3].

A solutionx is said to Pareto-dominate or simply dominate
another solutiony, mathematically denoted asx � y, if
fi(x) ≤ fi(y), ∀i = 1, . . . ,m and fj(x) < fj(y) for at
least onej ∈ {1, . . . ,m}1. This definition of domination is
sometimes referred to as a weak dominance relation.
A solution x∗ ∈ F is Pareto-optimal to (1) if there is no
solution x ∈ F such thatF (x) � F (x∗). F (x∗) is then
called a Pareto-optimal (objective) vector. The set of all Pareto-
optimal solutions is called the Pareto Set (PS) in the decision
space and Pareto Front (PF) in the objective space [2].

A common way to deal with constraints in constrained
optimization is to use penalty functions. In a penalty func-
tion approach, the penalty coefficients balance the objective
and penalty functions. However, finding appropriate penalty
coefficients to strike the right balance is a big challenge in
itself [4]. They depend on the problems in hand. Thus, some
researchers suggested dynamic penalty functions [5]–[7] to
avoid the difficulty of setting penalty coefficients in static
penalty functions and to explore infeasible regions.

In dynamic penalty functions, the current generation num-
ber (or the number of solutions searched) is considered in the
calculation of the penalty coefficients. The penalty to infeasible
solutions is small at the beginning of the search due to the
initial small generation numbers used in the formulation, and
it then increases by the increase in the generation number.
As a result, these methods converge to feasible solution (s)
at the end of evolution. Generally, dynamic penalty functions
are effective, but they are not adaptive to the ongoing success
(or failure thereof) of the search and cannot guide the search

1One has to reverse all the inequalities if the goal is to maximize the
objectives in (1). By the term “dominate” we mean “better than”
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to particularly promising regions or away from unpromising
regions based on what has already been observed [6]. Fur-
thermore, like static penalty functions, they also need problem
specific tuning to perform well [6].

Adaptive penalty functions not only incorporate the current
generation number (or search length), but they also consider
the feedback from the search in their formulations. Thus, they
are benefited from the search history. The penalty coefficients
in such methods are adjusted based on what has already been
accomplished.

In [1], [8], we proposed a novel threshold-based penalty
function for handling constraints in constrained multiobjective
optimization (CMOO). The threshold using the minimum
and maximum constraint violation in the neighborhood of a
solution and controlled by a scaling parameter dynamically
adjusts the penalty to infeasible solutions. Moreover, Infeasible
solutions with constraint violation less than the threshold are
less penalized than the ones with constraint violation greater
than the threshold. For this purpose, two additional parameters
are used.

In this paper, first we propose a parameterless threshold
value contrary to the one used in [8]. Secondly, we define the
dynamic and adaptive versions of the threshold based penalty
function [8]. These penalty functions are then implemented in
one of the improved frameworks of MOEA/D [9], MOEA/D-
DE [10] to solve hard CF-series [11] test instances.

The remainder of this paper is organized as follows. Section
II presents the Tchebycheff aggregation function and the
threshold-based penalty function and its dynamic and adaptive
variants. Section III briefly introduces MOEA/D and modifies
the algorithmic framework of MOEA/D-DE [10] for CMOPs.
Section IV discusses the experimental settings. Section V
presents and discusses experimental results on CF-series [11]
test instances. Section VI compares our experimental results
with the three best performers [12]–[14] of CEC 2009 MOEA
competition. Finally, Section VII outlines a summary of the
paper.

II. T CHEBYCHEFFAGGREGATIONFUNCTION AND
THRESHOLDBASED PENALTY FUNCTIONS

A. Tchebycheff Aggregation Function

MOEA/D [9] needs to decompose a multiobjective opti-
mization problem (MOP) into a number of scalar objective
subproblems. For this purpose, this work uses the Tchebycheff
aggregation function. The reasons for choosing this function
include: first, it is less sensitive to the shape of PF. Second, it
can be used to find the Pareto-optimal solutions in both convex
and nonconvex PFs. It is defined as follows [15]:

Minimize gte(x|λ, z∗) = max1≤i≤m{λi|fi(x)− z∗i |};

Subject to x ∈ F ⊂ Rn;

wherez∗ = (z∗
1
, . . . , z∗m)T is the reference point, i.e.,z∗i =

min{fi(x)|x ∈ F} ∀i = 1, . . . ,m and λ = (λ1, . . . , λm)T

is a weight vector such thatλi ≥ 0 ∀i = 1, . . . ,m and
∑m

i=1
λi = 1.

Theorems describing the Pareto-optimality conditions of
Tchebycheff aggregation function are available in [2].

B. Threshold Based Penalty Functions

The proposed penalty function in [1], [8] uses a threshold
value,τ for dynamically controlling the amount of penalty to
infeasible solutions. It is computed as follows.

Assume that MOEA/D [9] decomposes the given MOP into
N subproblems. In each iteration, MOEA/D keepsN individ-
ual solutionsx1, . . . , xN , wherexi is the current solution to
subproblemi. If P is supposed to be the mating and update
range in MOEA/D (for details, please see Algorithm 1, Section
III). Then we define [1], [8]:

Vmin = min{V (xi), i ∈ P}. (2)

Vmax = max{V (xi), i ∈ P}. (3)

Where V (xi) = |
∑p

j=1
min(gj(x

i), 0)| is the degree of
constraint violation of solutionxi. Note that the constraints
are normalized before calculating this value.

The threshold value,τ is defined as [1], [8]:

τ = Vmin + s(Vmax − Vmin), (4)

where parameters controls the threshold value,τ .

The proposed threshold based penalty function encourages
the algorithm to search the feasible region and the infeasible
region near the feasible region. It is defined as follows [1], [8]:
For i = 1, . . . ,m

f i
p(x) =

{

fi(x) + s1V
2(x), if V (x) < τ ;

fi(x) + s1τ
2 + s2(V (x) − τ), otherwise. (5)

In [8], we have tested the algorithm with a fixed value of
parameters (i.e., we useds = 0.3 in Eq. 4). However, due to
the changing values ofVmin andVmax during the evolutionary
process, the resulting threshold value,τ still remains adaptive.

It might also possible that if the values ofVmin and
Vmax are quite away from one another, then the resulting
threshold value,τ will be large. Consequently, more infeasible
solutions will have a chance to propagate in the evolution
process, and the search might quickly converge to the feasible
region. As a result, the low quality optimal solutions might
be obtained. Thus, in order to avoid such situation, this paper
sets the threshold value,τ equal to the mean value of the
degree of constraint violations of all infeasible solutions in
the neighborhood of a solution. That is [1]:

τ =
1

ninf

∑

i∈P

V (xi), (6)

where ninf is the number of infeasible solutions in the
neighborhood of a solution. This reduces the effort to choose
various values for parameters.

Eq. 5 employs two additional fixed penalty parameters,s1
and s2, where s1 << s2, to penalize infeasible solutions.
Infeasible solutions whose degree of constraint violation is
smaller thanτ are less penalized than the ones with degree of
constraint violation greater thanτ . This is realized by scaling
the respective violations by parameterss1 and s2. However,
this paper adjustss1 and s2 dynamically and adaptively. As
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a result, the dynamic and adaptive variants of Eq. 5 are
established. These variants are defined as follows [1]
For i = 1, . . . ,m

f i
p(x) =







fi(x) + (g/G)2V 2(x), if V (x) < τ ;
fi(x) + (g/G)2τ2+
(g/G)(V (x)− τ), otherwise,

(7)

wheref i
p(x) is the i-th penalized objective function value,g

is the current generation number and G is the total number of
generations.
Whenrinf 6= 0,

f i
p(x) =







fi(x) + (rinf )
2V 2(x), if V (x) < τ ;

fi(x) + (rinf )
2τ2+

(rinf )(V (x)− τ), otherwise,
(8)

wheref i
p(x) is thei-th penalized objective function value and

rinf is the infeasibility ratio (i.e., the ratio of the number
of infeasible solutions to the total number of neighboring
solutions) in the neighborhood of a solution.

Initially in Eq. 7, infeasible solutions are less penalized
due to smallg values. Thus, infeasible solutions with degree of
constraint violation less thanτ get particularly more chances to
evolve. As a result, infeasible regions are well explored in the
beginning of the search. However, later on with the increase
in generation number,g, the penalty to infeasible solutions
increases. As a result, the search converges to the feasible
region at the later stage of the algorithmic run.

On the other hand in Eq. 8, the penalty to infeasible
solutions depends on the number of infeasible solutions in the
neighborhood of a solution. Thus, the less is the number of in-
feasible solutions in the neighborhood of a solution, the smaller
the penalty is; otherwise, it will increase with the increase in
the number of infeasible solutions. Here again, because of the
employed penalty parameters, infeasible solutions with degree
of constraint violation less thanτ get more opportunities to
evolve.

Algorithm 1 Pseudo-code of Update Scheme of CMOEA/D-
DE-TDA. nr is the number of solutions updated by a better
child solution.

1: Each new child solutiony updatesnr solutions from the
setP of its neighboring solutions as follows:

2: Setc = 0 and then do the following:
3: if c = nr or P is emptythen
4: return;
5: else
6: Randomly pick an indexj from P ;
7: Compute the Tchebycheff aggregation function val-

ues ofy andxj with the new objective values of Eqs.
5, 7, and 8;

8: if gte(y|λj , z) ≤ gte(xj |λj , z) then
9: xj = y, F (xj) = F (y), V (xj) = V (y), and

c = c+ 1;
10: end if
11: Removej from P and go to step3;
12: end if

III. MOEA/D AND CMOEA/D-DE-TDA

Zhang and Li [9] proposed a simple but efficient MOEA
called MOEA/D. It approximates the PF by explicitly de-
composing an MOP into a number of scalar objective opti-
mization subproblems (e.g., Tchebycheff aggregation function
is employed for this purpose). These subproblems are then
optimized concurrently and collaboratively by evolving a pop-
ulation of solutions. An EA is employed for this purpose. The
neighborhood relations among these subproblems are defined
based on the Euclidean distances between their aggregation
coefficient vectors. Optimization of a subproblem uses the
information, mainly from its neighboring subproblems.

MOEA/D-DE [10] is an updated and efficient version of
MOEA/D. The framework of this algorithm is altered for
CMOPs. The modified framework is denoted by CMOEA/D-
DE (pleas see [16] for more details).

We employ the penalty functions defined by Eqs. 5, 7, and
8 with τ given by Eq. 6 in the replacement and update scheme
of CMOEA/D-DE to solve CF-series [11] test instances. This
resulted in a new algorithm, denoted by CMOEA/D-DE-TDA.
The pseudo-code of the update scheme of CMOEA/D-DE-
TDA is given in Algorithm 1 [1].

IV. EXPERIMENTAL SETTINGS

In our experiments, the same parameters’ settings are used
as in [16]. The weight vectors used in Eq. (2) are set as per
criteria mentioned in [11]. We employ the inverted generational
distance metric (IGD-metric) [9], [17] statistics for comparing
the obtained results. For calculating the IGD-metric values, we
select100 feasible nondominated solutions in the case of 2-
objective and150 in the case of 3-objective test instances from
each final population. The final solution setP is selected as
per criteria given in [11]. We also employ the set coverage
metric (SC-metric) [9] to compare the obtained nondominated
solutions. One of the reasons for choosing these metrics is
that they could measure both convergence and diversity of the
approximated solutions in a sense. Secondly, the algorithms in
comparison have also used these performance metrics.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
from CMOEA/D-DE-TDA on CF-series test instances.

Table I presents the best (i.e., lowest), mean, and standard
deviation of the IGD-metric values based on 30 independent
runs found by CMOEA/D-DE-TDA with Eqs. 5, 7, and 8 for
CF-series test instances. As it can be seen from this table that
CMOEA/D-DE-TDA with Eq. 5 found better statistics for three
test instances CF1, CF6, and CF7 except the standard deviation
value on CF7. The table also shows that the algorithm with
Eq. 7 found better results than those obtained with Eqs. 5, 8
for test instances CF2, CF4 and CF5 except the best values
on CF2 and CF5. Similarly, it showed superior performance
with Eq. 8 for the 3-objective test instances except the standard
deviation value and best value for test instances CF9 and
CF10, respectively. The performance of the algorithm may be
considered as comparable with all three formulations for test
instances CF2, CF8, and CF9, as there is a marginal difference
in the IGD-metric statistics for these test instances.
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TABLE I : COMPARISON OF THE IGD-METRIC STATISTICS OF THE ALGORITHM FOR CF1-CF10. THE
RESULTS INBOLDFACE AND IN ITALIC INDICATE THE BETTER AND THE SECOND BETTER RESULTS.

best (lowest) mean st. dev.

Test Instance Eq. 5 Eq. 7 Eq. 8 Eq. 5 Eq. 7 Eq. 8 Eq. 5 Eq. 7 Eq. 8

CF1 0.0003 0 .0034 0.0035 0.0005 0 .0051 0.0076 0.0002 0 .0017 0.0027

CF2 0.0026 0 .0028 0.0026 0 .0038 0.0037 0.0045 0 .0014 0.0011 0.0020

CF3 0.0632 0.0632 0.0632 0.1382 0.1382 0.1382 0.0441 0.0441 0.0441

CF4 0 .0056 0.0054 0.0062 0 .0083 0.0076 0.0106 0 .0018 0.0016 0.0041

CF5 0.0326 0.0526 0 .0328 0.1560 0.1175 0 .1356 0.0932 0.0348 0 .0921

CF6 0.0069 0.0423 0 .0387 0.0220 0.1667 0 .1241 0.0160 0.1162 0 .0303

CF7 0.0374 0 .0551 0.0556 0.1227 0 .1474 0.1567 0.0787 0.0684 0 .06590

CF8 0.0344 0 .0336 0.0335 0.0380 0 .0359 0.0357 0.0017 0 .0016 0.0013

CF9 0 .0431 0.0433 0.0429 0.0475 0 .0473 0.0471 0 .0023 0.0022 0.0025

CF10 0.1020 0 .1054 0.1062 0.1602 0 .1487 0.1430 0.0464 0 .0380 0.0308

Overall, the algorithm is to be run with Eq. 5 for better
best IGD-metric values on most of the CF-series test instances.
However, it is to be run with Eq. 7 or with Eq. 8 for the better
mean and standard deviation values.

Moreover, the small values for the mean of IGD-metric
for test instances CF1, CF2, CF4, CF8, CF9 show that the
final nondominated solutions obtained by the algorithm with
all three Eqs. 5, 7, and 8 approximate the PF very well for
these test instances, in a sense.

TABLE II: THE AVERAGE SET COVERAGE AMONGST
EQs. 5 (S), 7 (D), 8 (A) WHEN USED BY THE ALGO-
RITHM. THE RESULTS IN BOLDFACE INDICATE THE
BETTER RESULTS; IF NOT, THEY ARE IDENTICAL.

Test Instance C(S, D) C(D, S) C(S, A) C(A, S) C(D, A) C(A, D)
CF1 0.01 0.94 0.11 0.84 0.82 0.16

CF2 0.19 0.22 0.18 0.20 0.19 0.22

CF3 0.65 0.65 0.65 0.65 0.65 0.65

CF4 0.26 0.32 0.30 0.27 0.34 0.26

CF5 0.22 0.18 0.21 0.21 0.21 0.21

CF6 0.03 0.08 0.03 0.06 0.09 0.04

CF7 0.26 0.23 0.22 0.21 0.25 0.22

CF8 0.03 0.06 0.04 0.06 0.05 0.05

CF9 0.03 0.04 0.02 0.03 0.03 0.03

CF10 0.28 0.39 0.31 0.37 0.36 0.31

Table II presents the average set coverage among the
nondominated solutions of CMOEA/D-DE-TDA obtained with
Eqs. 5, 7, and 8. The results of this table disclose that, in
terms of the SC-metric, the nondominated solutions found by
CMOEA/D-DE-TDA with Eq. 7 are better than those obtained
with Eq. 5 except for test instances CF5 and CF7. However,
due to a small difference in the SC-metric values, the non-
dominated solutions found by the algorithm with both Eqs. 5,
7 may be considered as comparable for all CF-series test
instances except CF1 and CF10. The difference in the SC-
metric values is much bigger in case of test instance CF1, while
it is reasonably big in case of test instance CF10. Similarly,
by the same reason, the nondominated solutions obtained with
Eqs. 5, 8 may be considered as comparable except CF1 and
CF10, and the ones obtained with Eqs. 7, 8 may be thought as
similar except CF1.

Figures 1–5 show, in the objective space, the distributions
of the100 and150 nondominated population members for the
seven2-objective, CF1-CF7, and the three3-objective, CF8-

CF10, CF-series test instances, respectively. These solutions
are selected based on the criteria given in [11] from the final
population of the run with the best (i.e., lowest) IGD-metric
value among the30 independent runs. These figures also show
all the30 final nondominated fronts of these selected100 and
150 nondominated solutions.

From these figures, it is very clear that CMOEA/D-DE-
TDA with all three Eqs. 5, 7, and 8 found good approximations
of the PFs for the three2-objective, CF1, CF2, and CF4
and two 3-objective, CF8, CF9, test instances. However, it
performed poorly on three2-objective, CF3, CF5, CF7, and
one 3-objective, CF10 test instances. The algorithm found
good approximation of the PF for test instance CF6 with Eq. 5
than those obtained with the other two equations Eqs. 7, 8.
In the latter case, solutions in the lower part of the PF are
not found. Furthermore, it is also evident from the plots of30
nondominated fronts of test instance CF4 that CMOEA/D-DE-
TDA fails to find the whole PF in some runs.

Since the PF of CF3 is discontinuous and concave, so,
it might be harder as compared to all other2-objective test
instances for the algorithm. Furthermore, although the PFs of
CF4 and CF5, CF6 and CF7, and CF9 and CF10 are identical,
the poor performance of CMOEA/D-DE-TDA with all three
Eqs. 5, 7, and 8 on test instances CF5, CF7 and CF10 could be
due to the presence of relatively harder objective and constraint
functions in these test instances than test instances CF4, CF6,
and CF9 (see [11]).

Figure 6 presents the evolution of the average IGD-
metric values versus function evaluations of the nondominated
solutions in the current population. This figure shows that
CMOEA-DE-TDA with Eq. 5 converges faster, in terms of
IGD-metric values, than with Eqs. 7, 8 for test instances CF1,
CF6 and CF7.

For test instances CF2 and CF4, the IGD-metric values
obtained by the algorithm with Eq. 8 are higher than those ob-
tained with Eqs. 5, 7. Although initially different, the algorithm
with latter two equations performs similarly. Particularly, the
IGD-metric values obtained by the algorithm are almost the
same in the later generations.

For test instance CF5, the algorithm with Eq. 8 can con-
verge faster in terms of IGD-metric values than with the other
two Eqs. 5, 7.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

659 | P a g e
www.ijacsa.thesai.org 



0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

CF1 Pareto Front

 

Real PF
Obtained PF

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

CF1 Pareto Front

 

Real PF
Obtained PF

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

CF1 Pareto Front

 

Real PF
Obtained PF

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2
CF1

f1

f2

 

Real PF
Obtained PFs

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2
CF1

f1

f2

 

Real PF
Obtained PFs

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2
CF1

f1

f2

 

Real PF
Obtained PFs

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

CF2 Pareto Front

 

Real PF
Obtained PF

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

CF2 Pareto Front

 

Real PF
Obtained PF

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

CF2 Pareto Front

 

Real PF
Obtained PF

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2
CF2

f1

f2

 

Real PF
Obtained PFs

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2
CF2

f1

f2

 

Real PF
Obtained PFs

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2
CF2

f1

f2

 

Real PF
Obtained PFs

Fig. 1: Plots of the nondominated front with the best IGD value andall the30 final nondominated fronts found by the algorithm
with Eq. 5 (left column), Eq. 7 (middle column), and Eq. 8 (right column) for CF1 and CF2.

Figure 6 also shows that the algorithm with all three Eqs. 5,
7, and 8 converges at the same rate in terms of IGD-metric
values for the three3-objective test instances, CF8-CF10.

Figure 7 shows the average generation feasibility versus
generations’s graphs. This figure shows that CMOEA-DE-TDA
with Eq. 5 converges to the feasible region faster than with
Eqs. 7, 8 for all test instances except CF10, where it converges
to the feasible region at the same rate with all three Eqs. 5,
7, and 8. Specifically, the feasibility ratio equates to 1 by
generations 10 to 50 for test instances CF1-CF7.

The algorithm approaches to the feasible region faster with
Eq. 7 than with Eq. 8 for test instances CF1, CF5, CF7, while

the situation is vice versa for test instances CF4 and CF6.
Moreover, it converges to the feasible region at the same rate
for the test instances CF2, CF8, and CF9 with both Eqs. 7, 8.

Figure 7 shows that50 % or more of the initial popula-
tions for test instances CF1-CF5 is feasible. These feasible
solutions propagate quickly in the subsequent generations of
the algorithm with Eq. 5, and the feasibility ratio becomes 1
by generations 10-50. However, the algorithm retains infeasible
solutions until the end of the algorithmic runs with Eqs. 7, 8,
and the final feasibility ratios remain in the range (0.6 1) for
these test instances. Additionally, with Eq. 7, the feasibility
ratio initially remains small even in some cases drops to very
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Fig. 2: Plots of the nondominated front with the best IGD value and all the30 final nondominated fronts found by the algorithm
with Eq. 5 (left column), Eq. 7 (middle column), and Eq. 8 (right column) for CF3 and CF4.

low value and then goes on increasing and approaching 1 from
there (see Figure 7 for feasibility ratio graphs of test instances
CF1 and CF2). The quick convergence to the feasible region
is advantageous for test instances like CF1, CF2, and CF4, but
can cause problems for harder test instance like CF5, where the
PF is a piecewise continuous curve with three pieces like CF4,
but its objective and constraint functions are quite different and
harder than CF4 (see [11]).

On the other hand, about25 % or below of the initial
populations for test instances CF6-CF10 is feasible. Because
of the threshold defined in this paper and individually defined
scaling factors in the three penalty functions, the algorithm

has more chances to evolve better infeasible solutions during
the evolutionary process in these test instances. Particularly, in
the two 3-objective test instances CF8 and CF9, the average
feasibility ratio at the last generations of the algorithmic runs
is about 0.6 and about 0.85 with Eqs. 7, 8 and about 0.7 and
about 0.9 with Eq. 5, respectively (see Figure 7). This way the
infeasible regions near the feasibility boundaries in these two
instances are well explored and could be a reason for the better
performance of the algorithm on these two instances with all
three equations.

Moreover, in test instance CF6, the feasibility ratio of
CMOEA/D-DE-TDA with Eq. 5 becomes 1 after the initial 20

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

661 | P a g e
www.ijacsa.thesai.org 



0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

CF5 Pareto Front

 

Real PF
Obtained PF

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

CF5 Pareto Front

 

Real PF
Obtained PF

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

CF5 Pareto Front

 

Real PF
Obtained PF

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2
CF5

f1

f2

 

Real PF
Obtained PFs

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2
CF5

f1

f2

 

Real PF
Obtained PFs

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2
CF5

f1

f2

 

Real PF
Obtained PFs

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

CF6 Pareto Front

 

Real PF
Obtained PF

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

CF6 Pareto Front

 

Real PF
Obtained PF

0.0 0.2 0.4 0,6 0.8 1.0 1.2
0.0

0.2

0.4

0,6

0.8

1.0

1.2

f1

f2

CF6 Pareto Front

 

Real PF
Obtained PF

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2
CF6

f1

f2

 

Real PF
Obtained PFs

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2
CF6

f1

f2

 

Real PF
Obtained PFs

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2
CF6

f1

f2

 

Real PF
Obtained PFs

Fig. 3: Plots of the nondominated front with the best IGD value and all the 30 final nondominated fronts found by the algorithm
with Eq. 5 (left column), Eq. 7 (middle column), and Eq. 8 (right column) for CF5 and CF6.

generations, and it remains mostly in the range (0.60 0.80)
with Eqs. 7, 8, while in test instance CF7, it takes 50 gen-
erations of CMOEA/D-DE-TDA with Eq. 5 to become 1 and
finally approaches to about 0.72 and about 0.8 with Eq. 8 and
Eq. 7, respectively. Thus, the quick convergence to the feasible
region and as a result more exploration of it is beneficial in case
of Eq. 5 for test instances CF6 and CF7. While, retaining more
infeasible solutions could be a reason for a comparatively poor
performance of CMOEA/D-DE-TDA with Eqs. 7, 8 on these
two test instances.

In test instance CF10, the feasibility ratio takes about 200
generations of CMOEA/D-DE-TDA with Eq. 5 and about 250
generations of CMOEA/D-DE-TDA with Eqs. 7, 8 to become

1. Here, the less exploration of the feasible region could be
the reason for the poor performance of CMOEA/D-DE-TDA
on this test instance.

VI. COMPARISON WITH THETHREE BEST PERFORMERS
OF CEC 2009 MOEA COMPETITION

In this section, the results of CMOEA/D-DE-TDA are
compared with the three best performers [12]–[14] in CEC
2009 MOEA competition on the CF-series test instances.

Table III compares the best, mean, and standard devia-
tion values of the IGD-metric obtained from our algorithm,
CMOEA/D-DE-TDA with Eqs. 5, 7, and 8 and the three best
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Fig. 4: Plots of the nondominated front with the best IGD value and all the 30 final nondominated fronts found by the algorithm
with Eq. 5 (left column), Eq. 7 (middle column), and Eq. 8 (right column) for CF7 and CF8.

performers [12]–[14] in CEC 2009 MOEA competition for the
CF-series test instances. It is clear that CMOEA/D-DE-TDA
has achieved the best (i.e., lowest) IGD-metric value with Eq. 5
for test instance CF1, with Eq. 7 for test instance CF4, and with
Eq. 8 for test instances CF8 and CF9. The table also shows
that the algorithm has found the second best values for three
test instances CF2, CF6, and CF10. Particulary, better statistics
are found by our algorithm for test instances CF1, CF8 and
CF9 except the standard deviation value on CF1 (It may be
noted that our standard deviation value obtained with Eq. 5 is
very close to the best standard deviation value). Further, our
algorithm is the second best performer in terms of the mean
and standard deviation IGD-metric values with Eq. 8 for test

instance CF10.

VII. C ONCLUSIONS

In this paper, the performance of our proposed algorithm,
CMOEA/D-DE-TDA is evaluated with three penalty functions
given by Eqs. 5, 7, and 8 on the CF-series test instances.
Here, Eqs. 7, 8 are the dynamic and adaptive versions of
Eq 5. The performance metrics used for comparison of the
obtained results were IGD-metric and SC-metric. Moreover,
the experimental results are compared with the three best
performers of CEC 2009 MOEA competition.

We can conclude the following points from our experiments
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Fig. 5: Plots of the nondominated front with the best (lowest) IGD value and all the30 final nondominated fronts found by the
algorithm with Eq. 5 (left column), Eq. 7 (middle column), and Eq. 8 (right column) for CF9 and CF10.

conducted in this paper.

• CMOEA/D-DE-TDA with all three penalty functions
works well even if there are few feasible solutions in
the initial population.

• CMOEA/D-DE-TDA with the dynamic and adaptive
penalty functions fails partly if there are few infeasible
solutions in the initial population.

• The comparison of CMOEA/D-DE-TDA with the
three best performers in CEC 2009 special session
and competition indicated that CMOEA/D-DE-TDA
has attained the best (i.e., lowest) IGD-metric value

with Eq. 5 for test instance CF1, with Eq. 7 for test
instance CF4, and with Eq. 8 for test instances CF8
and CF9. The algorithm has also found the second
best values for three test instances CF2, CF6, and
CF10. Specifically, our algorithm overall found better
statistics for test instances CF1, CF8, and CF9.
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Fig. 7: Evolution of the generation feasibility versus generations when CMOEA/D-DE-TDA uses Eqs. 5, 7, and 8 for CF1-CF10.

TABLE III: COMPARISON BETWEEN CMOEA/D-DE-TDA WITH EQS. 5, 7, AND 8 (INDICATED BY JZ1, JZ2, JZ3,
RESPECTIVELY), TSENG AND CHEN’S [12] (INDICATED BY TC), LIU AND LI’S [13] (INDICATED BY LL), AND LIU
ET. AL’S [14] (INDICATED BY LI) ALGORITHMS IN TERMS OF THE IGD VALUES BASED ON30 INDEPENDENT
RUNS. THE RESULTS INBOLDFACE INDICATE THE BEST VALUES AND THE RESULTS INITALIC INDICATE THE
SECOND BEST RESULTS.

best (lowest) mean st. dev.

Test Instance JZ1 JZ2 JZ3 TC LL LI JZ1 JZ2 JZ3 TC LL LI JZ1 JZ2 JZ3 TC LL LI

CF1 0.0003 0.0034 0.0035 0.0007 0.0071 0 .0005 0.0005 0.0051 0.0076 0.0192 0 .0009 0.0113 0 .0002 0.0017 0.0027 0.0026 0.0001 0.0028

CF2 0 .0026 0.0028 0 .0026 0.0041 0.0027 0.0016 0.0038 0 .0037 0.0045 0.0192 0.0009 0.0113 0.0014 0 .0011 0.0020 0.0147 0.0026 0.0005

CF4 0.0056 0.0054 0.0062 0.0089 0.0090 0 .0055 0.0083 0 .0076 0.0106 0.0111 0.0142 0.0070 0.0018 0.0016 0.0041 0.0014 0.0033 0 .0015

CF5 0.0326 0.0526 0.0328 0 .0176 0.0588 0.0079 0.1560 0.1175 0.1356 0 .0208 0.1097 0.0158 0.0932 0.0348 0.0921 0.0024 0.0307 0 .0067

CF6 0 .0069 0.0423 0.0387 0.0096 0.0090 0.0062 0.0220 0.1667 0.1241 0.0162 0.0139 0 .0150 0.0160 0.1162 0.0303 0 .0060 0.0026 0.0065

CF7 0.0374 0.0551 0.0556 0 .0187 0.0535 0.0104 0.1227 0.1474 0.1567 0 .0247 0.1045 0.0191 0.0787 0.0684 0.06590 0.0047 0.0351 0 .0061

CF8 0.0344 0 .0336 0.0335 0.6220 0.0473 0.0388 0.0380 0 .0359 0.0357 1.0854 0.0607 0.0475 0.0017 0 .0016 0.0013 0.2191 0.0130 0.0064

CF9 0 .0431 0.0433 0.0429 0.0721 0.0460 0.1191 0.0475 0 .0473 0.0471 0.0851 0.0505 0.1434 0 .0023 0.0022 0.0025 0.0082 0.0034 0.0214

CF10 0 .1020 0.1054 0.1062 0.1173 0.1055 0.0984 0.1602 0.1487 0 .1430 0.1376 0.1974 0.1621 0.0464 0.0380 0 .0308 0.0092 0.0760 0.0316
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