
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

272 | P a g e

www.ijacsa.thesai.org

Improve Query Performance On Hierarchical Data.

Adjacency List Model Vs. Nested Set Model

Cornelia Győrödi

Department of Computer Science and Information

Technology, University of Oradea

Oradea, Romania

Romulus-Radu Moldovan-Dușe

Department of Computer Science and Information

Technology, University of Oradea

Oradea, Romania

Robert Győrödi

Department of Computer Science and Information

Technology, University of Oradea

Oradea, Romania

George Pecherle

Department of Computer Science and Information

Technology, University of Oradea

Oradea, Romania

Abstract—Hierarchical data are found in a variety of

database applications, including content management categories,

forums, business organization charts, and product categories. In

this paper, we will examine two models deal with hierarchical

data in relational databases namely, adjacency list model and

nested set model. We analysed these models by executing various

operations and queries in a web-application for the management

of categories, thus highlighting the results obtained during

performance comparison tests. The purpose of this paper is to

present the advantages and disadvantages of using an adjacency

list model compared to nested set model in a relational database

integrated into an application for the management of categories,

which needs to manipulate a big amount of hierarchical data.

Keywords—adjacency list model; nested set model; relational

database; MSSQL 2014; hierarchical data

I. INTRODUCTION

Most of the database developers have dealt with
hierarchical data in a relational database, and without a doubt,
they reached the conclusion that relational database is not
designed to manage data in a hierarchical way. Hierarchical
data can be found in a great variety of database applications
like the threads from forums or from emails, flowchart,
content management categories or products categories [5].

Relational databases are widely used in most of the
applications, and they have good performance when they
handle a limited amount of data. To handle a huge volume of
data like the internet, multimedia and social media the use of
traditional relational databases is inefficient. Thus, more and
more applications are beginning to use a non-relational
database because they provide a more flexible structure that
can shape after each user’ needs; they are designed to store
large amounts of data, and they have denormalized databases,
which increases performance [6].

The tables from a relational database are not hierarchical.
Hierarchical data have a parent-child relationship, which is not
normally represented in a relational database table. A
relational database does not store records in a hierarchical
way. Hierarchical data is a collection of data where each item
has a single parent and zero or more children, with the

exception of the root item, which has no parent, as presented
in [5].

These hierarchical data must also be stored in relational
databases to obtain easier and more intuitive navigation
through it [1] [8]. Because of these needs, there has always
been an attempt to find solutions as close as possible to the
application needs.

In this paper, we will examine two models dealing with
hierarchical data in relational database namely adjacency list
model and nested set model.

We will start with adjacency list model, and we will
consider an example of the hierarchy of categories from an ads
web-application as shown in Fig. 1.

Fig. 1. Hierarchical data structure

The adjacency list model is very easy to maintain but is
less efficient for queries. A hierarchical query is a method of
reporting the branches of a tree in a specific order.

If we need a better performance from queries, and the
hierarchical data does not have frequent changes in time,
nested set model was proved by tests conducted by us to be a
more efficient model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

273 | P a g e

www.ijacsa.thesai.org

In the next sections of this paper, we will describe the
adjacency list model compared to the nested set model, query
algorithm in adjacency list model compared to nested set
model, study and analyse performance and the final
conclusions.

II. DESCRIPTION OF THE NESTED SET MODEL COMPARED

TO THE ADJACENCY LIST MODEL IN RELATIONAL DATABASES

To be able to understand why one is better than the other
models in certain situations, we must first describe the two
models.

The adjacency list model is probably the most common
type of hierarchical structure found in databases and is
characterized by nodes and lines. The reason for the popularity
of this model is that it is easy to understand and maintain. The
connection between nodes is made via an attribute called
parent, that is the head of the hierarchy and has the parent
attribute set to NULL and the rest of the elements have values
corresponding to their parent’s ids. Based on the previous
section example, in Fig. 2 shows the hierarchical data
structure as an adjacency list model and each colour represents
a level in the hierarchy:

Fig. 2. Adjacency List Model exemplified on a four level hierarchical

structure

Unlike the adjacency list models, in nested set models we
will look at hierarchy in a different way. Each node in
hierarchy will contain all the children from the nodes that are
subordinated directly or indirectly to it. The nodes in the
hierarchy will have two attributes, which we call right and left
in which numbers will be stored to help us to identify all
children of a node. The numbering technique was proposed by
Joe Celko in [2], by starting from the element from the top of
the hierarchy, all elements will be numbered two times, saving
each value in the left, and right attributes, as you can see in the
example from Fig. 3.

Fig. 3. Nested set model in a four level hierarchical structure

A. Adding and deleting of nodes in a nested set model

The values of the left and right attributes of the nested set
model must be recalculated when a new node is added or
deleted in the hierarchy. When adding a new node in the
hierarchy the left and right attributes from the parent node that
will contain the new element must always be taken into
consideration [3]. If we want to add a new category called
Opel in the hierarchy in Fig. 3, which belongs to the category
Cars, according to the numbering technique, in the new node
the value 8 will be stored in the left attribute and the value 9 in
the right attribute. Therefore, all left, and right attributes with
values greater than or equal to the value of the right attribute
of the new category Cars will be incremented by 2, as shown
in Figure 4.

Fig. 4. Adding a subcategory in the nested set model

When we delete a node in the hierarchy, we must take into
consideration the left and right attribute of the deleted node.
Suppose we want to remove the Real-estate category in the
hierarchy in Fig. 3. When deleting a category we must also
take in consideration its subcategories, because they will also
be deleted from the hierarchy when the category that they
belong to is deleted [3]. An exact identification of all the
subcategories that belong to the Real-estate category will be
made based on the left and right attribute. We can see that all
the subcategories from Real-estate have the left and the right
attributes between 14 and 19. After we deleted the whole
Real-estate branch, all the categories that have the value of the
left and right attributes greater than 19, will be decremented
with the difference between the right attribute and the left of
the deleted category plus the value 1, in our case this will be
19-14+1 as you can see in the Fig. 5.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

274 | P a g e

www.ijacsa.thesai.org

Fig. 5. Deleting a subcategory in the nested set model

III. QUERIES IN THE ADJACENCY LIST MODEL VS. THE

NESTED SET MODEL

A. Getting a subtree in the hierarchical data structure

We consider hierarchical structure presented above to
exemplify queries. One of the most common queries, in this
case, is to get all the subcategories that belong to a specific
category.

If we want to get the subcategories that belong to the
Electronics category, and we are considering the adjacency
list model we have two options. First we could use self-join, in
this case we must know the number of levels in the structure
of categories and make one self-join for each level to get the
categories from the lower level. For the second option we
could use common table expression to build a recursive query
which will return all the sublevels of category without needing
to know the number of the levels existing.

The self-join query allows us to see the full path through
our hierarchical data structure as shown below and in [5]:

SELECT t1.name AS nivel1, t2.name as nivel2,

t3.name as nivel3, t4.name as nivel4

FROM category AS t1

LEFT JOIN category AS t2 ON t2.ParentId = t1.Id

LEFT JOIN category AS t3 ON t3.ParentId = t2.Id

LEFT JOIN category AS t4 ON t4.ParentId = t3.Id

WHERE t1.name = 'Electronics';

SQL Server Execution Times:

 CPU time = 16 ms, elapsed time = 28 ms.

Table 'Workfile'. Scan count 0, logical reads 0,

physical reads 0, read-ahead reads 0, lob logical reads 0,

lob physical reads 0, lob read-ahead reads 0.

Table 'Worktable'. Scan count 0, logical reads 0,

physical reads 0, read-ahead reads 0, lob logical reads 0,

lob physical reads 0, lob read-ahead reads 0.

Table 'Category'. Scan count 3, logical reads 59,

physical reads 0, read-ahead reads 0, lob logical reads 0,

lob physical reads 0, lob read-ahead reads 0.

The main limitation of such an approach is that you need
one self-join for every level in the hierarchy, and performance
will naturally degrade with each level added as the joining
grows in complexity, as presented in [5].

We use a recursive query to obtain all the sublevels of the
category without needing to know the number of the existing
levels.

Recursive query:

with CategoryBranch as (

 select Id, Name,ParentId

 from Category

 where name = 'Electronics'

union all

 select c.Id, c.Name, c.ParentId

 from Category c

 join CategoryBranch p on c.ParentId = p.Id

)select Name from CategoryBranch order by

ParentId;

 SQL Server Execution Times:

 CPU time = 94 ms, elapsed time = 89 ms.

Table 'Category'. Scan count 1, logical reads

2151, physical reads 0, read-ahead reads 0, lob

logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'Worktable'. Scan count 2, logical reads

679, physical reads 0, read-ahead reads 0, lob

logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

In the nested set model, the hierarchical data is maintained,
as parent categories contain all the children from the nodes
that are subordinated directly or indirectly to it. We can
represent this form of hierarchical data in a table through the
use of TreeLeft and TreeRight values.

CREATE TABLE NestedCategory (

 category_id INT AUTO_INCREMENT PRIMARY KEY,

 name VARCHAR(20) NOT NULL,

 TreeLeft INT NOT NULL,

 TreeReft rgt INT NOT NULL

);

We can see the full path of our hierarchical data using of a
self-join that connects parents with nodes based on the fact
that a node’s TreeLeft value will always appear between its
parent’s left and right values as also shown in [5]:

SELECT node.name FROM NestedCategory AS node,

NestedCategory AS parent
WHERE node.TreeLeft BETWEEN parent.TreeLeft AND

parent.TreeRight
AND parent.name = 'Electronics'
ORDER BY node.TreeLeft;

 SQL Server Execution Times:

 CPU time = 0 ms, elapsed time = 2 ms.

Table 'NestedCategory'. Scan count 1, logical reads

233, physical reads 0, read-ahead reads 0, lob logical

reads 0, lob physical reads 0, lob read-ahead reads 0.
We can see from the performed tests and displayed

parameters that query execution time for this type of query is
the best when using the nested set model.

B. Finding all the leaf nodes

This type of query refers to obtaining all the categories
from the tree that do not contain other subcategories. Thus we
need all the parents who do not have children.

In the case of the adjacency list models, we need a self-
join to get parent categories that have no children [5].

SELECT parent.name FROM category AS parent

LEFT JOIN category as child ON parent.Id =

child.ParentId

WHERE child.Id IS NULL;

 SQL Server Execution Times:

 CPU time = 16 ms, elapsed time = 387 ms.

Table 'Category'. Scan count 2, logical reads 38,

physical reads 0, read-ahead reads 0, lob logical

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

275 | P a g e

www.ijacsa.thesai.org

reads 0, lob physical reads 0, lob read-ahead reads

0.

For nested set model, this type of query is simpler, because
it is based on a rule from this model which says that leaf node
has the left and right attributes with consecutive values. Thus
we have to look at the categories where left + 1 = right [5].

SELECT name

FROM NestedCategory

WHERE TreeRight = TreeLeft + 1;

SQL Server Execution Times:

 CPU time = 16 ms, elapsed time = 371 ms.

Table 'NestedCategory'. Scan count 1, logical

reads 22, physical reads 0, read-ahead reads 0, lob

logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

The execution time is insignificant distinct between those
two models but the execution plan is clearly better for the
nested set model, as shown in Fig. 6.

Fig. 6. Execution plan for the nested set model vs. adjacency list model

There are situations where working with adjacency list
model directly in SQL can be difficult, such as the cases
where we necessarily need self-joins and the exact number of
existing levels in the tree or the level of the node to which we
refer. In such a situation, it would be necessary to calculate the
level on that is each node in the tree.

In the case of nested set model, to calculate the level of
each category from the tree, we will be doing COUNT
function on the parent nodes of each category based on the
same rule that says any subcategory will have the left attribute
value between the left and right values of the parent category.

SELECT node.name, COUNT(parent.name) AS

CategoryLevel

FROM NestedCategory AS node,

NestedCategory AS parent

WHERE node.TreeLeft BETWEEN parent.TreeLeft AND

parent.TreeRight

GROUP BY node.name

ORDER BY CategoryLevel;

A special case occurs when on the hierarchical data
structure, we have assigned data from another table, and we
want to know how they are distributed on each node in the
structure. Supposing that we have a relational table with ads,
and each ad belongs to a "leaf" category, if we want to display

a list of all the categories and the number of ads each
category, for the parent node categories we will consider the
number of ads from each child subcategory that belongs to it.

In nested set model, as usual, we will use all of the
attributes of the left and right to get the parent-child
relationship between the categories and a join operation
between the child table and table with articles to refer to
articles assigned to a category and add a COUNT function in
each category.

SELECT parent.name, COUNT(Articles.Id)

FROM NestedCategory AS child ,

 NestedCategory AS parent,

 Articles

WHERE child.TreeLeft BETWEEN parent.TreeLeft AND

parent.TreeRight

 AND child.Id = Articles.NestedCategoryId

GROUP BY parent.name

ORDER BY parent.name;

IV. IMPLEMENTATION AND PERFORMANCE ANALYSIS

The application we developed using Microsoft SQL Server
2014 Management Studio [7] has 4 sections. The first section
we exemplified the navigation through the categories and the
listing of ads from a selected category. In the second and the
third sections we implemented the management of categories
using the two models described above and in a fourth section
we displayed response times to queries on ads comparing the
performance of the two hierarchical data models.

Because the test results depend on the computer on which
these tests are carried out, it is important to note that all the
results presented below were obtained from studies conducted
on a computer with the following characteristics: Windows 10
Home Edition 64-bit, processor Intel Core i5 (2.4 GHz), 4 GB
RAM memory. The database contains 2902 categories and
310 818 ads distributed by category.

Fig. 7. Main page of the application

A. Navigation section

For this section of the application, we used two queries
that highlight the usefulness of nested set models. For both
queries, we used stored procedures,
sp_GetNestedCategoryIncludingCountArticles and
sp_GetArticlesByNestedCategoryId.

The first procedure, named
sp_GetNestedCategoryIncludingCountArticles is used in the
navigation menu on the left, where besides displaying the
hierarchical data structure of categories is also shows the
number of ads in each category. Thus,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

276 | P a g e

www.ijacsa.thesai.org

sp_GetNestedCategoryIncludingCountArticles procedure
returns a structure of categories with the number of ads in
each category, as shown in Fig 8.

CREATE PROCEDURE

[dbo].[sp_GetNestedCategoryIncludingCountArticles]

 @ParentId int

AS

BEGIN

 SET NOCOUNT ON;

 SELECT parent.Id, parent.Name,

parent.ParentId, parent.TreeLeft, parent.TreeRight,

COUNT(Articles.Id) as CountArticles

FROM NestedCategory AS node,

 NestedCategory AS parent,

 Articles

WHERE node.TreeLeft BETWEEN parent.TreeLeft AND

parent.TreeRight AND node.Id =

Articles.NestedCategoryId AND parent.ParentId =

@ParentId

GROUP BY parent.Id, parent.Name, parent.ParentId,

parent.TreeLeft, parent.TreeRight

ORDER BY parent.Id;

END

The second procedure, entitled
sp_GetArticlesByNestedCategoryId is used to return from the
database a list of ads for the selected category including
subordinate categories. Thus,
sp_GetArticlesByNestedCategoryId procedure returns ads that
belong to certain categories respectively subcategories within
the given category.

CREATE PROCEDURE

[dbo].[sp_GetArticlesByNestedCategoryId]

 @NestedCategoryId int,

 @FromArticleId int = null

AS

BEGIN

 SET NOCOUNT ON;

IF(@FromArticleId is null) SET

@FromArticleId = 0

 DECLARE @TreeLeft int

 DECLARE @TreeRight int

select @TreeLeft=TreeLeft, @TreeRight=TreeRight

from NestedCategory where id = @NestedCategoryId

 select top 10

Id, CategoryId, NestedCategoryId, Title, Body

 from Articles

where Id > @FromArticleId and

NestedCategoryId in (select id from

NestedCategory where TreeLeft >= @TreeLeft

and TreeRight <= @TreeRight)

 ORDER BY Id

END

Fig. 8. Browse on categories and list the ads

B. Categories management section

In this section of the application shown in Fig. 9, we can
add or delete categories from the two hierarchical data
structures.

Fig. 9. Categories management page

The management interface is identical between the two
hierarchical models, but at level database specific stored
procedures are called for each model. In the adjacency list
model the procedure that makes adding a new category has as
input parameters the parent category name and the name of the
new category, identify ParentId in the category table and then
insert the new category. For the deleting a category in the
adjacency list model, we used a stored procedure that has as
input parameters the category name to identify the first Id of
category and then delete the category and its children (all the
categories which have ParentId identical with Id of category).

The procedure, entitled sp_InsertNestedCategory is used
in the nested set model to add a category in the hierarchical
data structure. The procedure has as input parameters the
parent category name and the name of the new category,
identify ParentId in the table, then left and right nodes
updated with new values and then insert the new category.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

277 | P a g e

www.ijacsa.thesai.org

CREATE PROCEDURE [dbo].[sp_InsertNestedCategory]

 @ParentName nvarchar(50),

 @Name nvarchar(50)

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @ParentId int

SET @ParentId = (select Id from

NestedCategory where Name = @ParentName)

if (@ParentId is null or @Name is null or

exists(select * from NestedCategory where

Name = @Name))

 return;

 DECLARE @parentTreeLeft INT

 DECLARE @parentTreeRight INT

 DECLARE @countChilds int

SET @parentTreeLeft = (SELECT TreeLeft

FROM NestedCategory WHERE id = @ParentId)

SET @parentTreeRight = (SELECT TreeRight

FROM NestedCategory WHERE id = @ParentId)

SET @countChilds = (select 2*count(*)

from NestedCategory where TreeLeft >

@parentTreeLeft and TreeRight <

@parentTreeRight)

 BEGIN TRAN

 UPDATE NestedCategory

 SET TreeLeft = CASE WHEN TreeLeft >

@parentTreeRight

 THEN TreeLeft + 2

 ELSE TreeLeft END,

TreeRight = CASE WHEN TreeRight >=

@parentTreeRight

 THEN TreeRight + 2

 ELSE TreeRight END

 WHERE TreeRight >= @parentTreeRight

INSERT INTO NestedCategory(TreeLeft,

TreeRight, ParentId, Name)

VALUES(@parentTreeLeft + @countChilds + 1,

@parentTreeLeft + @countChilds + 2,

@ParentId, @Name);

 IF @@ERROR != 0

 ROLLBACK TRAN

 ELSE

 COMMIT TRAN

END

For the deleting a category in the nested set model we used
a stored procedure entitled sp_DeleteNestedCategory, that has
as input parameters category name to identify first Id of
category, then the category will be deleted along with related
subcategories, and left and right nodes updated by difference
between TreeRight and TreeLeft + 1 of removed category.

CREATE PROCEDURE [dbo].[sp_DeleteNestedCategory]

 @Name nvarchar(50)

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @Id int

SET @Id = (select id from NestedCategory

where Name = @Name)

 if (@Id is null) return;

 DECLARE @treeLeft INT

 DECLARE @treeRight INT

 DECLARE @parentId INT

 DECLARE @treeWidth INT

SET @treeLeft = (SELECT TreeLeft FROM

NestedCategory WHERE id = @Id)

SET @treeRight = (SELECT TreeRight FROM

NestedCategory WHERE id = @Id)

 SET @treeWidth = @treeRight - @treeLeft + 1

SET @parentId = (SELECT ParentId FROM

NestedCategory WHERE id = @Id)

 BEGIN TRAN

UPDATE Articles SET NestedCategoryId =

@parentId WHERE CategoryId in (select id

from NestedCategory where TreeLeft >=

@treeLeft and TreeRight <= @treeRight)

DELETE FROM NestedCategory where TreeLeft

between @treeLeft and @treeRight

UPDATE NestedCategory SET TreeLeft =

TreeLeft - @treeWidth WHERE TreeLeft >

@treeRight

UPDATE NestedCategory SET TreeRight =

TreeRight - @treeWidth WHERE TreeRight >

@treeRight

 IF @@ERROR != 0

 ROLLBACK TRAN

 ELSE

 COMMIT TRAN

END

C. Performance analysis of the queries

For this analysis, we considered the stored procedures used
for the ads listing from a specified category for the two
models studied. The two stored procedures
sp_GetArticlesByCategoryId and
sp_GetArticlesByNestedCategoryId, are described below.
Each of the two procedures returns ten ads that are from the
specified category.

CREATE PROCEDURE

[dbo].[sp_GetArticlesByCategoryId]

@CategoryId int,
@FromArticleId int = null
AS
BEGIN
 SET NOCOUNT ON;
 IF(@FromArticleId is null) SET

@FromArticleId = 0;

 with CategoryBranch as (
 select Id
 from Category
 where Id = @CategoryId
union all
 select c.Id
 from Category c
 join CategoryBranch p on c.ParentId = p.Id
)
select top 10
 Id, CategoryId, NestedCategoryId, Title, Body
from Articles
where Id > @FromArticleId and CategoryId in

 (select Id from CategoryBranch)
ORDER BY Id;
END

CREATE PROCEDURE

[dbo].[sp_GetArticlesByNestedCategoryId]

 @NestedCategoryId int,
 @FromArticleId int = null
AS
BEGIN
SET NOCOUNT ON;

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

278 | P a g e

www.ijacsa.thesai.org

IF(@FromArticleId is null) SET @FromArticleId = 0
DECLARE @TreeLeft int
DECLARE @TreeRight int

select @TreeLeft=TreeLeft,

@TreeRight=TreeRight from NestedCategory

where id = @NestedCategoryId

 select top 10
 Id, CategoryId, NestedCategoryId, Title,

Body
 from Articles
 where Id > @FromArticleId and

NestedCategoryId in(select id from NestedCategory

where TreeLeft >= @TreeLeft and TreeRight <=

@TreeRight)
 ORDER BY Id
END

In the graphs from Fig 10 and Fig. 11, we can see the
response time for the two stored procedures from runs with
one iteration to runs with ten iterations. We noticed that the
response time is affected by the total number of the ads from
the sub-branch on which the search is made, but always the
best execution time is obtained by the nested set model as
shown in Fig 11.

Fig. 10. Query performance for the adjacency list model

Fig. 11. Query performance for the nested set model

We can see that if we grow the number of iterations the
difference of time is higher between the two models and the
nested model has the best performance between the two.

V. CONCLUSIONS

When we work with hierarchical data structures with more
than 2 levels, and the number of levels varies from one branch
to another of the hierarchy, then it is better to store the
hierarchical data as a nested set model in the database. In the
nested set model is more difficult to do the adding, moving
and deleting of nodes because we need to update every time
the value of the left and right attributes to keep the integrity of
the hierarchy. However, the advantage is pretty big because
the number of the queries on the relational table is the same no
matter the number of hierarchy levels from the nested set
model, on the other hand, the number of queries for the
adjacency list model is equal to the number of levels of
hierarchy.

In case the hierarchical structure is large, it is suggested to
break it into smaller hierarchical structures that are to be
stored in separate tables, thus allowing a better administration
of each hierarchical structure.

As an extension of our study, we would like to compare
the performance of the nested set model with the hierarchical
data model implemented in Microsoft SQL Server 2012.

REFERENCES

[1] Joe Celko “Trees and Hierarchies in SQL for Smarties”, 2nd Edition
Morgan-Kaufmann, 2012, ISBN 978-0-12-387733-8

[2] Joe Celko, “Trees in SQL”, Available:
http://www.ibase.ru/devinfo/DBMSTrees/sqltrees.html (dec. 2015)

[3] T. Stryja, “Nested set model practical examples, part I”, Available:
http://we-rc.com/blog/2015/07/19/nested-set-model-practical-examples-
part-i (nov. 2015)

[4] T. Stryja, “Nested set model practical examples, part II”, Available:
http://we-rc.com/blog/2015/07/19/nested-set-model-practical-examples-
part-ii (nov. 2015)

[5] Mike Hillyer, “Managing Hierarchical Data in MySQL”, Available:
http://mikehillyer.com/articles/managing-hierarchical-data-in-mysql/
(dec. 2015)

[6] Cornelia Győrödi, Robert Győrödi, George Pecherle, Andrada Olah, “A
comparative study: MongoDB vs. MySQL”, IEEE - 13th International
Conference on Engineering of Modern Electric Systems (EMES), 2015,
Oradea, Romania, 11-12 June 2015, ISBN 978-1-4799-7649-2, pag. 1-
6.

[7] Microsoft SQL Server 2014 Management Studio, Available:
https://www.microsoft.com/en-us/download/details.aspx?id=42299 (dec
2015)

[8] Joe Celko's “SQL for Smarties”, 5th Edition, Morgan-Kaufmann, 2014,
ISBN 9780128008300.

