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Abstract—The aim of this paper is to asses to what extent an 

optical tracking system (OTS) used for position tracking in 

virtual reality can be improved by combining it with a human 

scale haptic device named Scalable-SPIDAR. The main 

advantage of the Scalable-SPIDAR haptic device is the fact it is 

unobtrusive and not dependent of free line-of-sight. 

Unfortunately, the accuracy of the Scalable-SPIDAR is affected 

by bad-tailored mechanical design. We explore to what extent the 

influence of these inaccuracies can be compensated by collecting 

precise information on the nonlinear error by using the OTS and 

applying support vector regression (SVR) for calibrating the 

haptic device reports. After calibration of the Scalable-SPIDAR 

we have found that the average error in position readings 

reduced from to 263.7240±75.6207 mm to 12.6045±8.4169 mm. 

These results encourage the development of a hybrid haptic-

optical system for virtual reality applications where the haptic 

device acts as an auxiliary source of position information for the 

optical tracker. 

Keywords—virtual reality; Scalable-SPIDAR; support vector 

regression; hybrid tracking system 

I. INTRODUCTION 

Optical trackers provide a reliable and accurate position 
tracking for virtual reality applications. The optical tracking 
relies on measurements of reflected or emitted light [1]. It is 
therefore, evident, that there must be a clear free line-of-sight 
between the light source and camera assembly. This 
requirements turns out to be difficult to maintain at all times 
and a partial occlusion may turn out to be the biggest problem 
as it results in a tracking-loss. 

Scalable SPIDAR haptic device is not dependent on free 
line of sight, is suitable for a large-scale immersion and is 
significantly cheaper than commercial optical trackers. This 
device was used in virtual reality to track and measure motion 
of user’s hand as well as to enable large scale immersion. 
Unfortunately, previous experiments with Scalable-SPIDAR 
[2] have revealed significant inaccuracies between caused by 
design structure shortcomings. 

Our work focus on combining a human scale haptic device 
and an optical tracker in hybrid tracking system; this approach 
aims to overcome obstructions of line-of-sight while 
maintaining an interrupted and accurate tracking for 
applications in virtual reality. 

This paper deals with an important point in the feasibility 
of such a system. For efficient application of a hybrid tracking 
system sufficient registration accuracy between the two 
components has to be achievable. This essential since the 

Scalable-SPDIAR is intended to serve as secondary source of 
position information for the optical tracker and therefore have 
to be reported in the coordinate system of the optical tracker. 

Furthermore, it has to be assessed to what extent 
systematic errors in the Scalable-SPIDAR reading positions 
that stem from the bad-tailored mechanical design can be 
calibrated. 

II. PREVIOUS WORK 

In the last decade several hybrid tracking systems have 
been proposed in the literature. The suggested methods 
attempt to compensate for the shortcomings of each tracking 
technology by using multiple measurements to provide robust 
tracking. State et al’s [3] work developed a hybrid tracking 
scheme that has the registration accuracy of vision-based 
tracking systems and the robustness of magnetic tracking 
systems. Similar to this, in [4] the authors built a hybrid 
tracking system integrating optical and magnetic tracking. The 
built system is faster than a standalone optical tracker and 
outperforms a magnetic system in term of accuracy. 

You et al [5] presented a hybrid approach with integrated 
inertial and vision tracking technologies. They use the 
complementary nature of these two tracking technologies to 
overcome the shortcomings in each separate component. In 
[6], an image-based system is coupled with an inertial in order 
to provide robust and accurate tracking. In fact, in cases when 
the image based system fails due to abrupt movements, the 
inertial system takes over. 

Birkfellner et al [7] developed a hybrid tracking system 
that combines an electromagnetic tracking system and optical 
tracker in order to avoid obstructions of the line-of-sight 
necessary for the operation of the OTS while maintaining an 
interrupted tracking and the accuracy needed in computer 
aided-surgery. More recently Harders et al [8] introduced a 
hybrid tracking method that combines the IR optical tracker 
with a vision based tracking approach 

III. VIRTUAL REALITY SETUP 

For our experiment, we used an infrared 6DOF optical 
tracking system (ARTrack1/Dtrack) with an accuracy from 0.4 
to 1.4 mm. The infrared (IR) cameras ARTrack1 illuminate 
the measurement volume by an IR flash. They are able to 
recognize retro reflective markers and they compute the 
marker positions in image coordinate (2D) with high precision 
[9]. 
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The IR optical tracker is combined with a human scale 
haptic device called Scalable-SPIDAR [10] for Space 
Interface Device for Artificial Reality. The device is derived 
from the original desktop SPIDAR which was developed by 
Hirata and Sato [11]. The scalable-SPIDAR is composed of a 
cubic frame that encloses a cave-like space, where the use can 
move around to perform large scale movements. The front 
side of the device holds a large screen where a generated 
virtual world is displayed. The device has 8 couples of DC 
motor/rotary encoder mounted in the corners of the cubic 
frame. Position of the user’s hands can be measured by the 
length of the strings. The length of a string is known by reading 
the values from the rotary encoder. The Scalable-SPIDAR 
haptic device is however is subject to inaccuracies due 
shortcomings in the mechanical structure design. 

 
Fig. 1. View depicting all the components of our VR setup. The IR optical 

tracker (ARTrack1) was mounted below the Scalable-SPIDAR haptic device 

IV. METHODS 

In order to access the achievable accuracy from this hybrid 
tracking setup, we had to perform the following steps: 

 Register the coordinate systems RefHaptic and RefOptical 

in order to merge the data from the different systems 
modalities such that the position data from the Scalable 
SPIDAR are reported in RefOptical. 

 Compensate erroneous position readings from the 
Scalable-SPIDAR caused by bad-tailored design. 

A. Registration of tracking systems 

The IR optical tracker determines the coordinates of retro 
reflective markers within the measurement volume. In order to 
acquire 3D point measurements of the haptic point in the 
world (i.e. Optical tracker) coordinate system an IR marker is 
attached at the end of the Scalable-SPIDAR grip. 

A custom procedure allows the user to accomplish the 
Scalable-SPIDAR initialization in precise and repeated 
manner. Using the IR optical tracker, the user can accurately 
place to fixed known location within the working volume: the 
Scalable-SPIDAR origin. 

Following his, we are able to report the same location in a 
common world coordinate system. Let pi

RefOptical
 and pi

RefHaptic
 

represent the position of the grip, to which attached an IR 
marker, respectively in the haptic and optical coordinate 
systems. The position of the grip is determined by:   

Ref Refp  p tOptical Haptic  where t  is the translation vector 

between the Optical Tracker and the Scalable-SPIDAR 
origins. 

B. Calibration of the Scalable-SPIDAR haptic device 

Scalable-SPIDAR is a multi-modal haptic device for large 
scale virtual environment. It provides a workspace that is large 
enough to cover almost the measurement volume seen by the 
infrared cameras. However, due to various limitations, it is 
subject to inaccuracies and therefore cannot provide faithful 
data rendering. Problems are mainly caused by shortcomings 
in mechanical structure design. The calibration method 
involves several steps: characterizing the Scalable-SPIDAR 
haptic device and then applying methods to correct errors in 
the reported position. With our setup, we calibrated the 
Scalable-SPIDAR for a working volume of 1m x 1m x 1m. 

1) Characterization Protocol 
In order to characterize the Scalable-SPIDAR haptic 

device, we collect tuples that consist of the tracked data and 
the "truth values" what a convenient reference should an 
accurate reference report. The accuracy of these truth values is 
crucial of the calibration method. Therefore, we use the IR 
optical tracker available within our setup. To provide for well-
distributed data that can be collected, a volumetric calibration 
protocol is proposed. To this end, the screen of our setup is 
filled by a virtual grid divided into a sequence of a small 
cubes. Each small cube corresponds to a sub-space of the 
Scalable-SPIDAR workspace. 

 
Fig. 2. Display in the Scalable-SPIDAR of boxes to collect. The virtual grip 

(the red sphere) is moved inside colored box to collect point 

A user holds the device’s grip s reasonably straight and 
moves it until the virtual grip ranges inside the cube. Programs 
record then the position given by the IR optical tracker and the 
haptic device. Once these positions recorded, the cube 
vanishes ensuring that only one measurement was associated 
to this sub-space. In practice a volume of 1 m

3
 is considered. 

This volume is divided into 4096 small cubes. Hence 4096 
point measurements are sampled inside the virtual grid. The 
proposed protocol sounds well for gathering a large number of 
data points with pretermitted distribution using a quasi-static 
collection mode. 

IR optical tracker 

Scalable SPIDAR 

Grip 
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At each of the resulting 4096 points, measurements 
reported by the two devices were taken, and the position error 
was determined as the distance between the tracked position 
by the Scalable-SPIDAR and the corresponding reference 
position as reported by the optical tracking system (OTS): 

 

 2 2 2

pos OTS S_SPIDAR OTS S_SPIDAR OTS S_SPIDARerr = (x -x ) +(y -y ) +(z -z )  (1.1) 

Where 
_ _ _( , , )S SPIDAR S SPIDAR S SPIDARx y z is the position 

reported by the Scalable-SPIDAR and ( , , )OTS OTS OTSx y z is the 

reference position. 

Fig 3 represents the position errors spatially at each 

reference position ( , , )OTS OTS OTSx y z , with the error magnitudes 

proportional to the corresponding circle diameters. The plot 
clearly shows that errors are more pronounced when the grip 
is manipulated away from the center of the workspace toward 
the edges of the cubic frame. 

 
Fig. 3. Distance errors represented spatially 

 
Fig. 4. Distance errors represented in Sequence 

In figure 4, position errors are plotted as a function of the 
sequence in which they were collected from the front of the 
volume to the back. Plotting distance errors as 1D plot results 
in the loss of a lot of spatial information, but still shows the 
same trend, and from the plot’s periodicity we can infer that 
errors increase at the volume edges. Note the clusters of large 

error in the upper left and right corner of plot, these groups of 
outliers are removed using boxplot method. 

 

2) Calibration technique: Support Vector regression 

(SVR) 
A function approximation problem can be expressed as to 

find a function f from a set of observations, 

1 1 2 2{( , ),( , ),...., ( , )}N NX x y x y x y  with 
m

ix R  and 
iy R  

where N is the number of training data, ix is the i  input 

vector, and iy  is the desired output for the input ix . Based on 

the support vector machine theory, SVR is to approximate the 
given observations in an m -dimensional space by a linear 

function in another feature space. The function in SVR is 
determined as  [12]: 

 ( , ) . ( )f x x b      (1.2) 

Where .,.  is an inner product defined on ,  (.)F   is 

nonlinear mapping function from  to mR F , F   is a weight 

vector to be identified in the function, and b is a threshold. 
Generally, the considered cost function is [31] [32]: 

 
2

[ ] [ ] .SV empR f R f C     (1.3) 

where
1 1

1 1
[ ] ( ( , )) ( )

N N

emp i i ii i
R f L y f x L e

N N


 
   

[13], [14], ( ( , ))i iL y f x  is the loss function measuring the 

error between y and the estimated output ( , )if x  for a given

x , and 0C  is a regular constant. The goal of adding the 

regularization term is to maintain the weight vector as small as 
possible in the approximation process. When over fitting 
phenomena happens, some undesirable information, has been 
modeled in the function. Those undesirable signals usually are 
not smooth, and as result, some parameters may become large 
to accommodate such behaviors. Therefore, in (1.3) the cost 

function has incorporated the intention to minimize , which 

in turn, reduces the model complexity. In other terms, the 
regularization term in (1.3) controls the tradeoff between the 
approximation accuracy and the model complexity in order to 
provide good generalization performance accuracy [15]. 

In classic SVR, the    insensitive function is used as the 

loss function (1.3). It was first presented in the original SV 
algorithm [16], [17]. The    insensitive function is defined 

as  

 
0,  for 

( )
,  otherwise

e
L e

e





 
 



  (1.4) 

It was mentioned in [16] that the solution of the above 
problem can be formulated in terms of support vectors, 

1

( )
N

i i

i

x 


   and the function f is then written as: 
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1

( , ) ( ), ( )
N

i i

i

f x x x b 


      (1.5) 

In (1.5) , the inner product ( ), ( )ix x   in the feature 

space is considered as kernel function ( , )iK x x [18]. The 

choice of the kernel function is usually left for users. The 
kernel function chosen in our work is Gaussian and is defined 
as: 

 

2

2
( , ) exp[ ]

2

i

i

x x
K x x



 
   (1.6) 

Where   is a constant. The coefficients 
i  in (1.5) can be 

solved by quadratic programming methods with suitable 
transformation of the above problem into constraint 
optimization problems and properly rearranging the equation 
into a matrix form [19],[20] . 

According to SVM theory, Support vector regression has 
the advantage of self-determining its structure. Therefore, 
there are no initialization problems for SVR. For training data 
with certain noise distributions the   insensitive function 

[21]. Nevertheless, the robust effects against training data sets 
with outliers are not obvious in SVR. In this study, we use 
informal box plots to pinpoint the outlying points in the 
current training data. 

V. RESULTS 

A. Data preprocessing 

Before applying the regression technique, input data need 
to be prepared. One essential task is to eliminate outliers. 
Training data without awareness may lead to unwanted data 
and may jeopardize function approximation.  A close 
examination of the 1D plot shows that observations with large 
errors are inconsistent with the majority of other observations. 

Thus, we need a way to detect these observations and 
deflate their influence. To this end, we use informal box plots 
[22] to pinpoint the outlying observations. Taking advantage 
we eliminate around 700 observations. The distance error 
distribution without outliers is plotted as frequency histogram. 
Some of the representative statistics that describe much of this 
distribution error are given in Table1. 

 
Fig. 5. Distance errors represented as a frequency histogram 

TABLE I.  ERROR STATISTICS FOR UNCALIBRATED SCALABLE-SPIDAR 

Position error 
Scalable-

SPIDAR 

Mean (mm) 263.7240 

Standard derivation (mm) 75.6207 

Maximum (mm) 444.2114 

The other data preprocessing consideration is scaling. The 
task of training of regression algorithm is significantly 
simplified if data lie within a small range. We scale all inputs 
to have mean zero and standard deviation one. 

 
_ _ _ _

(( ). / )

(( ). / )

S SPIDAR S SPIDAR S SPIDAR S SPIDAR

OTS OTS OTS OTS

N P

N P

  

  




  (1.7) 

Where 

S_SPIDAR S_SPIDAR S_SPIDARS_SPIDAR
Γ = γ .J  and  = σ .J    

OTS OTS OTS
Γ = γ .J  and  =σ .JOTS   

S_SPIDARγ : Matrix of means of components of the matrix of 

positions given by the Scalable-SPIDAR haptic device. 

γOTS : Matrix of means of components of the matrix of 

positions given by the Optical Tracking System. 

S_SPIDARP : Positions returned by the Scalable-SPIDAR 

haptic device. 

OTSP : Positions returned by the Optical Tracking System 

J: Identity matrix 

S_SPIDARN : Standardized positions of the Scalable-SPIDAR 

haptic device. 

OTSN : Standardized positions of the Optical Tracking 

System. 

B. Calibration using Support Vector Regression 

In the following section, we applied support vector 
regression (SVR) for calibrating the Scalable-SPIDAR haptic 
device. The convergence of support vector machine depends 
on the selection of a kernel function. Kernel functions projects 
the data into high dimensional feature space. This work uses 
the Gaussian kernel to perform mapping between Scalable-
SPIADR and optical tracking system (OTS) data. In the 
following, trials Gaussian kernel were applied: 

2

2
( , ) exp[ ]

2

i

i

x x
K x x



 
  

Where   is a constant. 

A search was performed for the most effective capacity 
parameter C to improve generalization accuracy of the 
regression technique. The capacity measures the flexibility or 
richness of regression functions and gives the protection 
against over fitting. In our experiments, the capacity was set to 
values between 30 and 100. Another parameter used in the 
training of support vector regression is epsilon, which checks 
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the insensitivity of the regression. The algorithm assumes that 
estimations that lie within epsilon distance of their true values 
are enough accurate. Epsilon was chosen to be equal to 0.05. 

To assess the performances of the support vector 
regression technique, we plot the distribution of position 
errors but after calibration using support vector regression 
method. Figure 6 shows that SVR is quite efficient and 
exhibits lower errors in the overall workspace. 

 
Fig. 6. Distribution of position errors as a function of distance to the 

Scalable-SPIDAR’s origin (before and after SVR calibration) 

We can see from the table below that the SVR calibration 
was successful in reducing the mean error in tracked position 
form 263.7240±75.6207 mm to 12.6045±8.4169 mm. The 
maximum possible error is about 57.5928 mm 

TABLE II.  ERROR STATISTICS BEFORE AND AFTER APPLYING SUPPORT 

VECTOR REGRESSION TECHNIQUE 

Position error 
 

Raw 

 

 

SVR 

Mean (mm) 263.7240 12.6045 

Standard derivation (mm) 75.6207 8.4169 

Maximum (mm) 444.2114 57.5928 

After testing support vector regression technique with 
training data, we need to measure its ability to handle unseen 
data. The driving idea is to build a testing dataset. To this end, 
the grip of the Scalable-SPIDAR haptic device was moved in 
random trajectories of sequential points. These paths represent 
groups of data points within our predetermined working space. 
Following this, 512 corresponding point measurements of both 
the Scalable-SPIDAR and the IR optical tracker can be 
obtained, therefore allowing evaluating the generalization 
capability of our technique. 

TABLE III.  ERROR STATISTICS IN GENERALIZATION 

Position error 
 

Raw 

 

 

SVR 

Mean (mm) 267.2019 11.6649 

Standard derivation (mm) 75.5131 3.8349 

Maximum (mm) 436.1809 22.1889 

Table 3 shows that SVR keeps convenient performance 
when handling unseen data. The mean and standard derivation 
error position values guaranteed by the SVR are good 

VI. HYBRID TRACKING SYSTEM 

Due to obstructions of line-of-sight, tracking data reported 
by the IR optical tracking could be incorrect which leads to a 
loss of tracking. As a sequence, the consistency between 
physical and virtual environments is affected, which is 
revealed by breaks in presence. To overcome this problem, we 
combine IR optical tracking system (OTS) with a human scale 
haptic device. The main goal is to maintain an interrupted 
tracking. In the following section, we provide details on our 
hybrid system. 

Fig 7 illustrates of the pipeline of our hybrid system. 

 
Fig 7. A flow diagram of the hybrid system 

Once a request is being sent from the virtual reality 
application, the system checks whether it can provide data 
from the OTS.  If this optical component loses track then the 
hybrid system requests position from the haptic component.  
In this case, the system checks the validity of data and 
calibrates the Scalable-SPIDAR using the Support vector 
regression technique. Switching between the two components 
depends on the optical tracking activity. 

VII. CONCLUSION 

In this paper, we have presented a hybrid tracking system 
for virtual reality applications.  The use of support vector 
regression technique allows for compensation for nonlinear 
errors in Scalable-SPIDAR position readings. The results 
show that is possible to reduce the average error between the 
expected true position and the calibrated position from 
263.7240 ±75.6207 mm to 12.6045 ± 8.4169 mm 

These results encourage the development of a hybrid 
optical- large-scale haptic system for virtual reality 
applications where the haptic device acts as an auxiliary 
source of position information for the optical system. 
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