
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

444 | P a g e  

www.ijacsa.thesai.org 

Load Balancing in Partner-Based Scheduling 

Algorithm for Grid Workflow

Muhammad Roman 

Institute of Information Technology 

Kohat University of Science and Technology 

Kohat, Pakistan 

Jawad Ashraf 

Institute of Information Technology 

Kohat University of Science and Technology 

Kohat, Pakistan 

Asad Habib 

Institute of Information Technology 

Kohat University of Science and Technology 

Kohat, Pakistan 

Gohar Ali 

Information Systems and Technology 

Sur University College 

Sur, Sultanate of Oman 

 

 
Abstract—Automated advance reservation has the potential to 

ensure a good scheduling solution in computational Grids. To 

improve global throughput of Grid system and enhance resource 

utilization, workload has to be distributed among the resources 

of the Grid evenly. This paper discusses the problem of load 

distribution and resource utilization in heterogeneous Grids in 

advance reservation environment. We have proposed an 

extension of Partner Based Dynamic Critical Path for Grids 

algorithm named Balanced Partner Based Dynamic Critical Path 

for Grids (B-PDCPG) that incorporates a hybrid and threshold 

based mechanism to achieve load balancing to an allowed value 

of variation in workload among the resources in Partner Based 

Dynamic Critical Path for Grids algorithm. The proposed load 

balancing technique uses Utilization Profiles to store the 

reservation details and check the loads from these profiles on 

each of the resources and links. The load is distributed among 

resources based on the processing element capacity and number 

of processing units on resources. The simulation results, using 

Gridsim simulation engine, show that the proposed technique has 

balanced the workload very effectively and has provided better 

utilization of resources while decreasing the workflow makespan. 

Keywords—Load Balancing; Advance Reservation; Resource 

Utilization; Workflow Scheduling; Job Distribution 

I. INTRODUCTION 

Large-scale distributed and parallel computing has been 
changed by the growth of the Internet, powerful computing 
and network speed. With the coordination of distributed 
computing power, resources and applications, Grid computing 
has emerged as distributed computing platform. It utilizes the 
power of wide range of heterogeneous distributed resources 
for execution of compute- and data-intensive applications. It 
provides consistent, inexpensive, and pervasive access to 
geographically widely distributed resources to solve large 
scale scientific, engineering, and commerce problems. The 
resources joining the Grid are independent of each other in 
terms of performance, memory speed, and bandwidths. They 
are owned and administered by different providers. The 
motivation of Grid computing is to provide users and 
applications a seamless access to a number of high 
performance resources by creating illusion of a single system 

image [1]. User submitted applications are distributed among 
various Grid resources and executed in parallel. This makes 
the execution of applications efficient. In order to decrease the 
overall execution time of the application, effective and 
efficient load balancing algorithms are needed to be designed 
for Grid computing. Advance reservation (AR) provides 
facility to the user to reserve CPU and bandwidth for an 
application before the actual execution of the application [2]. 
AR jobs cause other non-AR jobs to wait as the resources are 
reserved in advance. Also consecutive reservations may leave 
fragments between them which cannot be used by other jobs, 
leaving un-used empty time slots. This leads to the under 
utilization of Grid resources. We are trying to fit the jobs in 
such a way that it is balancing the load over resources by 
considering all resource’s load, which results in reducing 
empty fragments between the consecutive reservations. 
Although a lot of work has been done in non-AR environment 
for load balancing, yet there is a little contribution by the 
researchers in providing a solution for load balancing in 
advance reservation environment [3]. The objective is to 
prevent the condition where some of the resources are heavily 
loaded by the tasks submitted by users and others are lightly 
loaded or not being utilized at all [4]. The advantages of 
implementing good load balancing policies are better 
utilization of resources, low rejection rate, minimized wait 
time, high performance, maximized throughput, and reduced 
cost of job execution. Some of them are good for the resource 
providers, in terms of, resource utilization and throughput 
while others are good from Grid user’s perspective, in terms 
of, reduced cost and minimized completion time of 
application. 

Large scale scientific applications, modeled as workflow 
and represented as Directed Acyclic Graph (DAG), are 
submitted to Grid by using Workflow Management System 
[5]. For efficient execution of workflow good scheduling 
heuristics are trivial. Partner Based Dynamic Critical Path for 
Grids (PDCPG) proposed in [6], is one of the proposed 
algorithms for advance reservation environment in Grid and is 
based on Dynamic Critical Path for Grids (DCPG) [7]. 
PDCPG tries to schedule partner jobs on same resource in 

Sur University College, Sur, Sultanate of Oman (sponsor) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

445 | P a g e  

 www.ijacsa.thesai.org 

order to minimize the communication involved to transfer 
required files of the child jobs. This may lead the overall Grid 
to an un-balanced state in which some of the resources are 
highly utilized while others remain under-utilized. We have 
proposed a hybrid policy restricted load balancing technique 
named as B-PDCPG to solve the problem of load balancing in 
PDCPG. 

The rest of the paper is organized as follows: Section 2 
presents load balancing problem. Section 3 explains related 
work to solve load balancing problem. Section 4 defines 
keywords and explains system model. Section 5 explains 
proposed load balancing technique and section 6 discusses 
observations and results. The paper is concluded in Section 7 
and future work is discussed. 

II. LOAD BALANCING 

Grid architecture involves a large number of 
geographically distributed worker nodes connected together to 
achieve a level of performance. However, increasing the 
number of worker nodes does not always guarantee increased 
level of computing power. The resources involved in the 
system must be used such that all of the resources are utilized 
appropriately. The unequal demands and heterogeneity of Grid 
resources leads to the problem of job distribution. Algorithms 
try to map jobs on resources such that all the resources are 
utilized equally and makespan of the applications is reduced. 
Workload is the amount of work to be done by resource which 
can be heavy, light or moderate. Load balancing is sometime 
confused with load sharing and load leveling. Load sharing 
confirms that there is no idle node when there is highly loaded 
node in the Grid. This is the most basic level of load 
distribution which only checks if there is a load available on a 
resource or not, i.e., it is viewed as a binary set. Load 
balancing is the finest form of load distribution which tries to 
achieve strictly balanced distribution of load among all of the 
resources of the system. Load leveling is in the middle of the 
two extremes of load distribution which seeks to avoid 
congestion on any of the resources in the system. 

For defining load balancing algorithm we need to 
implement certain policies. Following are some of the policies 
of load balancing [8]: 

A. Information Policy 

Defines what information is required for load balancing 
algorithm at what time and from where. It decides the type of 
information that will be collected, based on which algorithm 
will take decision. The information may include both static, 
like number of CPUs, size of memory, and dynamic 
information, like current load on the resources, memory being 
utilized. It also decides when to collect and update this 
information, to understand the current status of the system. 
Updating this information very frequently will lead to 
communication overhead. Normally a special information 
agent does this job either after a specific period of time or 
when an event is triggered [9]. Agents may directly or 
indirectly collect this information from the working nodes of 

the system. The effectiveness of load balancing algorithm is 
very much associated with how the load information is 
gathered. Simple load index calculates load based on one 
metric like CPU load, bandwidth utilization, or disk storage, 
while complex load index combines more than one metrics to 
aggregate them to single load information. The information 
gathered is then exchanged periodically, on demand, or when 
the state of a node has been changed [9]. 

B. Transfer type Policy 

Determines when to start load balancing and transfer of 
load from a sender to receiver of the load. It performs the 
classification of resources as source or receiver based on the 
information gathered from information policy and the current 
status of the working nodes based on a predefined threshold 
value [10]. The resource which is heavily loaded and is going 
to transfer load to another resource is called sender and the 
resource which is going to receive load from other resource is 
called receiver. 

C. Selection Policy 

Decides which of the processes should be transferred from 
overloaded nodes (source) to the idle nodes (receiver). The 
criteria of selection may be defined at sender or receiver nodes 
based on the type of initiation policy. In sender-initiated 
approach, the sender decides which tasks should be selected 
for transfer. In receiver-initiated approach, the receiver defines 
the selection policy in terms of what type of, how big, and 
how many. Normally the criteria is based on; shortest 
remaining time, longest remaining time, First-in-First-Out 
(FIFO), Last-in-First-Out (LIFO), or a process is randomly 
selected [8]. 

D. Location Policy 

The responsibility of location policy is to find a suitable 
partner node for the heavily loaded node for transferring some 
of its load to it. This policy works on the basis of information 
collected in information policy. In sender-initiated approach, 
heavily loaded node tries to find a lightly loaded node to share 
the load with it. In receiver-initiated approach lightly loaded 
node searches for a node which is heavily loaded. As the load 
information can be centralized or distributed, location selected 
decision can also be central or distributed. In case of 
distributed, each node tries to find a light resource in its 
neighbors and from the partial information saved at it. A node 
which has light load on it may not always be selected by 
location decision, other properties such as communication link 
and processing power are also consider for selecting it. 
Ultimately, the goal is to reschedule a job, which is already 
scheduled on a highly loaded resource, on a resource after 
which it will be executed earlier and will not delay other jobs 
or increase the makespan of the application. 

Load balancing problem is described by different 
terminologies by many literatures which gives different 
meanings to the same problem in different situations. In [8] a 
detailed hierarchical model of load balancing is defined, as 
shown in Fig. 1. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

446 | P a g e  

 www.ijacsa.thesai.org 

 
Fig. 1. Hierarchical Taxonomy for Load Balancing Approaches 

A. Static vs. Dynamic Load Balancing 

Static load balancing is based on the static information 
such as CPU capacity, memory size, link speed, and etc., 
whereas dynamic load balancing is based on the current status 
of the system and working nodes [11]. Static load balancing is 
good as it does not require information to be collected at all 
the time but this may lead to low utilization rate [12]. 
Dynamic load balancing algorithm may change the 
distribution of tasks among resources at runtime. This is 
similar to job re-scheduling, where the scheduled jobs are 
rescheduled after some changes are encountered in the system, 
like resource failure. In dynamic load balancing, if a resource 
is assigned large number of tasks and there are some lightly 
loaded resources available in the system, it will transfer some 
jobs to the resources which are lightly loaded or idle, selected 
on the bases of selection policy. A question arises, to which 
resource it has to be transferred and who will decide when to 
transfer them. There are two approaches in common: sender-
initiated and receiver-initiated. In sender-initiated, a heavily 
loaded node requests to transfer some of its load to an idle or 
lightly loaded resource. In receiver-initiated, an idle resource 
initiates the process of transfer [13]. In some cases a 
combination of these two is used in which both sender and 
receiver can initiate the process. The main problem of the 
dynamic load balancing is how to distribute work among the 
resources as the resources are continuously changing their 
status, especially in case of heterogeneous system like Grid 
where the number of resources and bandwidth changes more 
frequently. 

B. Centralized vs. Distributed 

The load balancing decision may be taken at a centralized 
location or this may be taken at various levels of the system as 
in [14] and [3] where Grid is represented as a tree having four 
different levels. Centralized algorithm is easy to implement 
but has the problem of scalability, fault tolerance, and also 
becomes a bottleneck as all the decisions are to be made at one 
central location. In distributed strategy the tasks are 
distributed among different locations, where each location 
takes decision of its own region and sometime communicates 
with each other to take a global decision. This approach is 
difficult to implement but is highly scalable, fault tolerant and 
the load is divided which prevents them from becoming a 
bottleneck. 

C. Adaptive vs. Non-Adaptive 

In adaptive techniques the decision is based on the past 
and current system behavior and is based on the previously 
taken decisions and the changes in the environment. 
Confusion may arise as to differentiate between dynamic and 
adaptive techniques. The dynamic load balancing technique 
keeps into account the current status of the system at that time. 
On the other hand, adaptive technique considers the 
environmental stimuli in taking load balancing decision. 

D. Local vs. Global 

In local load balancing, each processing element gets 
information from its neighbor nodes and makes the decision 
based on this locally gathered information. In global load 
balancing, information from all or part of the system is 
collected to take the balancing decision. This may require a lot 
of information exchange. 

E. Initialization 

The task migration can by initialized by the sender, 
receiver or both (symmetric). In sender-initiated model, the 
resource which is highly overloaded transfers some of its 
selected processes to an idle or under loaded resource. In 
receiver-initiated model, the under loaded resource requests 
the system that it has the capacity to engage some more jobs. 
The probability of finding a lightly loaded resource is high in 
case of a lightly loaded system, therefore, sender-initiated 
algorithms works better in lightly loaded systems. In contrast, 
receiver-initiated algorithms are good in case of heavily 
loaded systems, as the probability of finding a highly loaded 
node is higher (heavily loaded nodes are more than lightly 
loaded nodes) [10]. A combination of these two policies is 
used in symmetrically initiated approach. The nodes behave 
intelligently by working as sender-initiated in low system load 
and receiver-initiated in highly loaded system. 

F. Co-operative vs. Non-cooperative 

Both in static as well as dynamic load balancing, nodes 
may or may not work together in taking balancing decision. In 
co-operative mode the nodes work together in order to make a 
decision that is based on the collective objectives of the 
overall system. In non-cooperative mode, however, individual 
system works autonomously in taking decision keeping their 
own objectives in account, irrespective of the effects on the 
rest of the system. 

III. RELATED WORK 

There are various ways to balance load over the resources 
connected to a Grid, mainly categorized as static and dynamic 
load balancing techniques. There are fewer studies on static 
approaches for Grid environment [15] due to the heterogeneity 
of the system. Dynamic load balancing is considered better for 
such systems, as it responds better to the changes in the 
system [16]. In dynamic load balancing, if a resource is 
assigned large number of tasks and there are some lightly 
loaded resources available in the system, it will transfer some 
jobs to the resources which are lightly loaded or idle, selected 
as per selection policy of the algorithm. The disadvantages of 
dynamic load balancing algorithms are clear; these policies are 
more complex and require a lot of communication to share 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

447 | P a g e  

 www.ijacsa.thesai.org 

dynamic state information. A good dynamic load balancing 
algorithm tries to minimize this cost in order to decrease the 
overhead and yet achieve the best load balancing. Some of the 
algorithms use combination of these two in order to make 
scheduling decisions, called hybrid load balancing algorithms 
[17]. In [18], a hybrid technique is proposed based on table of 
effectiveness to keep information of each Grid resource. When 
a resource is requested for a job, dispatcher selects it based on 
the information in the table of effectiveness and maps the job 
to the selected resource. If the resource is overloaded, 
dispatcher updates the table of effectiveness accordingly. In 
[9], the table of effectiveness is updated after a fix interval; 
consequently the execution of the task is not delayed. This 
algorithm keeps only static information of nodes, like 
remaining capacity of CPU and remaining memory. Reference 
[19] also updates the table on timely bases, the difference is 
that it stores dynamic load information rather than static load 
information. 

Some other algorithms are developed based on fuzzy 
algorithms which are easy to implement and provide fast 
response time with good load balancing results [20]. Fuzzy 
algorithms are rule based algorithms and use knowledge of 
experts in creation of rules for a specific domain. Genetic 
based algorithms are also used for load balancing which 
performs the mapping of jobs to nodes by genetic operators 
which include three operators of reproduction, exchange and 
mutation [21]. Reference [22] combines the features of genetic 
algorithm, simulated annealing, and clonal selection algorithm  
and introduces genetic clonal annealing algorithm to task 
scheduling problem. Hierarchical load balancing algorithms 
try to achieve load balancing at different levels of Grid while 
representing the Grid as a tree model [14]. Agent based 
algorithms try to achieve load balancing by using agents 
working together to find load balancing [23]. Policy based 
approaches try to get an optimized scheduling under the 
constraint of load on a resource policy [24]. 

Our objective is to propose a load balancing mechanism in 
advance reservation environment. Partner Based Dynamic 
Critical Path for Grid (PDCPG), proposed in [6], is based on 
Dynamic Critical Path for Grid (DCPG) for AR environment. 
For job selection, it uses same technique as of DCPG. For 
resource mapping, it gets all the scheduled partner jobs of the 
selected most critical job in reverse order of their criticality. It 
calculates the completion time of the selected job on the 
resource on which its partner is scheduled. If the completion 
time is less than combined execution time and data transfer 
time of a partner job minus data transfer time of the selected 
job on that resource, then the resource is selected. Otherwise 
the next partner job is considered. In case, there was no 
partner job of a job or none of them was already scheduled on 
a resource, then a resource that gives minimum completion 
time is selected.  In this way, PDCPG tries to minimize the 
communication overhead involved in transferring the required 
data files from parent jobs to the child jobs in a workflow. It 
encourages majority of the jobs to get scheduled on a single 
most efficient resource. This may lead to the problem of un-
equal load on resources; some of the resources get highly 
loaded while the rest of them are under-loaded. We tried to 

balance the load in PDCPG by introducing a policy based 
technique. 

The main contribution of this paper is to design a policy to 
get an optimized job scheduling solution under the constraint 
of resource usage policy. We adopt some ideas from DCPG 
and PDCPG to design our algorithm in AR environment for 
Grid. 

IV. PROPOSED LOAD BALANCING ALGORITHM 

Before going into the detailed discussion of the problem 
and proposed solution, we explain the workflow models, 
resource model and other related terminology used in the 
proposed work. 

DAG Workflow: Large business and scientific applications 
are submitted to Grid in the form of workflows, usually 
represented by DAG,G=(V,E), where V is the set of v nodes 
representing jobs and E is the set of e edges/lines connecting 
two nodes; parent (predecessor) and child(successor). The 
order in which parent and child nodes are connected shows the 

interdependency of the jobs. Edge(i,j) ∈E shows that job j is 

dependent on job i, therefore, job i must be completed before 
scheduling job j. A job is said to be dependent on another job 
if it uses a file generated after execution of that job. The entry 
job is the only job which takes as input an already existing 
file, so having no incoming edge, while the rest of the jobs get 
the files as inputs which are generated by other jobs. F= {f1, f2, 
f3, ….., fg} is the set of files which are submitted as required 
files to jobs and generated as result of execution of jobs in the 
workflow.     

 denotes the size of a file fi in bits, where 1 ≤ i 

≤ g.                          is the set of partner jobs of 

job i, where jobs are said to be partners if they have at least 
one common direct child job. Job computation length is 
described in Million Instructions (MI) and resource speed is 
described in Million Instructions per Second (MIPs). Each 
workflow has a single entry job and single exit job; in case 
there are more than one entry jobs, a 0 MI length job is added 
to the start and end of the workflow. The average of the ratio 
of the computation cost and communication cost of the jobs in 
a workflow is called granularity of a job, except for the exit 
job snk having no child jobs. 

             
 

     
(∑

         

      

     
   ) 

Grid Resources: All the resources in the proposed work 
support advance reservation and is represented as a set 
of                . Resource r has   CPUs of same 
speedof   . The user who submits the workflow for execution 
is connected to r0, where       . Workflow is submitted to 
the system from this resource and the starting files are also 
stored on it. All the resources are connected by a set of links 
L={l1,l2,.....,ln}, which support advance reservation. Capacity 
of the link li is measured in Mbps and denoted by    

, whereas 

delay is measured in milliseconds and denoted by    
. Our 

proposed work uses Optical Burst Switching (OBS) network 
architecture which is suitable for Grids supporting advance 
reservation [25]. In OBS, the files are transmitted in a single 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

448 | P a g e  

 www.ijacsa.thesai.org 

burst from source to destination. Resources and links can be 
requested and reserved by a user in advance. The reservation 
details are stored in utilization profiles [26] stored at each 
resource and link, called UPr and UPl, respectively. The 
reservation request can be made for a CPU called      or for a 

bandwidth called   . The availability of resource and link is 
checked against the utilization profile which contains the 
information of number of reserved CPUs and reserved 
bandwidth at time t. Further details of how to maintain 
reservation details and processing reservation request can be 
found in [24]. 

We have proposed a technique that prevents PDCPG from 
taking the overall system into an un-balanced state. It is a 
policy based technique which tries to schedule jobs on 
resources while implementing a policy to stop a resource from 
being over-loaded. The job selection technique is the same as 
inherited by PDCPG from DCPG. The resource selection 
technique of PDCPG has been modified to balance the load on 
the computing resources of the Grid. For implementing 
information policy; all the reservations and current load 
information of the system is kept in utilization profiles of the 
computing resources and communication links. At the time of 
resource selection this information is used to check the percent 
load on each of the resource, calculated as: 

        
∑             

  
   

            
      

where Zr is the total size of UPr. Loadr is the percent load 
on the resource r. UPr (t) is the number of CPUs already 
reserved at time t in the dimension Zr. PEr is the number of 
processing elements on resource r. PSr in the numerator and 
denominator can be cancelled out, but they are shown in the 
calculation for better understanding. For selecting a resource 
Ri for a job j, it is checked if some of the partner jobs of job j 
PTRj have already been scheduled. The resource, on which job 
j’s most critical job partner is scheduled, is selected. The 
selected job is mapped onto this resource if the following 
condition [18] is met: 

      
 

              
          

        

where      
 

      is the expected completion time of the 

job j on the resource on which i
th

 partner job of j is scheduled. 
      

 is the completion time of i
th

 partner job on that 

resource,         
being the communication time required to 

transfer the output file generated by the i
th

 partner job of j to 
the common child job and       is the communication time 

required to transfer the output file from the job j to the 
common child job [27]. 

If the condition is not satisfied, the next most critical 
partner job is considered. By doing so, the communication 
time will decrease for the most critical child job. However, 
this may increase the probability of scheduling more jobs on 
single resource, the resource on which the very first partner 
job was scheduled. This shall un-balance the load in Grid 
resources and some of the resource will get overloaded while 
others lightly loaded or not being used at all. To prevent this 
state, the resources selected after satisfying condition in (3) is 
checked whether its load is going beyond a predefined 
allowed variance from the load of other resources in the Grid. 
To check this, percent load on the selected resource       is 
calculated as in (2). Then standard deviation of the loads on 
resources       

 is determined, excluding the resource on 

which load is begin checked. Based on this data the resource is 
selected if the following condition is satisfied: 

 (      
∑      

   
   

   
)            

              
 

Where          
is the variation of loads on resources 

from the mean load of all the resources, excluding the load on 
the resource itself, calculated as standard deviation. 
             

 is the allowed threshold value of standard 

deviation, provided by the algorithm as input parameter. The 
allowed threshold controls the variation in the loads in Grid 
system. Keeping the threshold value too small ensures that all 
the resources are strictly balanced and before assigning any 
extra load to a resource the rest of the resources also gets 
similar load. But this may lead to selecting a resource which is 
not very fast and may delay the completion time of the job. 
Keeping the threshold value too large relaxes the policy and 
allows the resource selector to make decision without 
considering the load balancing. Setting a threshold value helps 
us in tuning the overall functionality of the algorithm as per 
the preferences and goals (better resource utilization and 
throughput) of the Grid owner. 

If the condition is not satisfied for the given resource, the 
next partner will be checked to see if it satisfies both of the 
conditions. If no partner job was scheduled or none of the 
partner jobs satisfy the conditions, then the resource that gives 
earliest completion time is selected. In this way, resource 
utilization is improved and also in most of the cases makespan 
of the workflow is also reduced. Makespan is the difference 
between submission time of the workflow and completion 
time of the last job of the workflow. The complete process is 
described in Algorithm 1. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

449 | P a g e  

 www.ijacsa.thesai.org 

Algorithm 1: Pseudo-Code for Balanced-PDCPG 

1                              

2                                  

3                                  

4  
      

  

                                                

5                    (     
)      

6 

      
 

       

                                      
 

7          
                                  

 

8            
                             

9  
                                                      

 

10            
 

              
          

 

             

11                 
 // selected this resource 

12            

13           

14                

15  
                                                   

16               

 

17                              

18                      

19             
∑      

   
   

   
   

20                                          

21                                  
 

             
      

22               // resources in not overloaded 

23       

24               // resource is overloaded 

25         

26               

V. EVALUATION 

The proposed algorithm is compared with PDCPG and 
DCPG. The algorithms are compared in different working 
environments of workflow and loads. The comparison is based 
on utilization of resources and makespan of the workflows. 
This section explains the experimental environment followed 
by the results. 

A. Environment 

The simulation is carried out by using Gridsim [28] 
simulator in advance reservation environment under OBS 
network architecture. The underlying machine configurations 
are; 2.7 GHz (8 CPUs) Core i7 with 8 GB primary memory 
running Windows 7 Professional64 bit Operating System. The 
resources are connected with 100 Mbps link. For every 
reservation request the requested number of CPUs is one and 
requested bandwidth is 10 Mbps. The users connected to 

resource 0 submit a workflow with the objective of earliest 
completion time and the Grid trying to complete the job while 
utilizing all of the resources equally. Multiple users are 
connected to the Grid submitting workflows at the same time 
in order to check the load balancing in the Grid on the 
resources. At start, the utilization profiles are empty and there 
are no reservations in them, to check how each of the 
algorithms makes reservations in the utilization profile. As we 
are mainly interested to balance the resource load and increase 
throughput, we have provided enough bandwidth at each of 
the links. 

B. Workflow 

To compare the algorithms in different situations there are 
various workflows selected to be submitted to the system as 
application. E-protien has minimum number of 15 jobs, and is 
selected from real world applications [29]. Job60PSPLIB, 
Job90PSPLIB, and Job120PSPLIB having 60, 90, and 120 
jobs, respectively, are taken from Project Scheduling Problem 
Library (PSPLIB) [30]. LIGO, Montage, SIPHT, and 
Cybershake [31] have 83, 25, 30, and 21 jobs respectively. For 
each of these workflows, jobs are created with different 
granularity settings. For every setting simulation is run 100 
times and mean values are taken to remove the errors in 
individual simulation execution. During every execution, job 
lengths are randomly assigned ranging from 20,000 to 50,000 
MI, based on the number of the jobs in a workflow. The output 
file size is given randomly according to the granularity. For 
low granularity the output file size ranges from 420 to 450 MB 
and for higher granularity it ranges from 80 to 120 MB. The 
number of users submitting jobs in each 100 rounds is kept the 
same and ranges from 5 to 45 users based on the number of 
jobs in the workflow. This is to keep the load in the 
reservation profile of the resources always from 60% to 95%. 
For small workflows like e-protein we have submitted jobs by 
45 users to populate the utilization profiles with reservations in 
them and check how the load is balanced among all the 
resources of the Grid. 

VI. RESULTS 

Our main objective is to observe the effectiveness of our 
load balancing policy and see the effects of this balancing 
technique on makespan of different workflows. To understand 
this, we have experimented our proposed technique on low 
granularity workflow followed by higher granularity 
workflows. We have studied the improvement in resource 
utilization and have also studied the effects of this on 
makespan of individual workflows, as listed above. As we are 
trying to balance the load, the balancing policy will disparate 
the idea of selecting a resource on which a partner job has 
already been scheduled. Apparently, this may increase the 
communication cost and increase the makespan of a workflow. 
In contrast, the results show that makespan has also been 
decreased in many cases by using our proposed balancing 
technique, because of better resource utilization and future 
optimal approach. The results contain the average of 100 
simulations for each of the settings. For low granularity we 
have taken mean of 0.25, 0.5, and 0.75 granularities, 
calculated as in (1).  For each of the granularities we have 
simulated 100 times and then taken mean of them. This means 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

450 | P a g e  

 www.ijacsa.thesai.org 

that we have simulated 300 times for low granularity for each 
of the algorithms, and similarly for high granularity as well. 
For understanding the effects of our proposed balancing 

technique, we have embedded our load balancing policy in 
DCPG and PDCPG named Balanced-DCPG (B-DCPG) and 
Balanced-PDCPG (B-PDCPG), respectively. 

 
Fig. 2. Standard Deviation of Loads on Resources 

Fig 2, shows a comparison of how different algorithms 
have distributed load on resources of the Grid. The values 
shown are the standard deviations of the loads. We have 
compared the variation of loads on resources of the Grid in 
DCPG to that of B-DCPG and similarly PDCPG to that of B-
PDCPG. It can be observed that the load on resources has 
been distributed equally with negligible difference in balanced 
version of DCPG and PDCPG. The results are very similar in 
low and high granularities; therefore, we have combined them 
in a single chart. It can be seen that PDCPG has a very large 
variation in load distribution, which shows that the load is not 
equally distributed among the resources of the Grid system. In 

other words, PDCPG does not guarantee a good utilization of 
resources. 

The balancing technique has achieved significant 
improvement in utilization of resources. As discussed above, 
the allowed variance can be controlled by setting the allowed 
threshold in balancing mechanism. Here we set a very small 
value of allowed threshold value, to check how much we can 
balance the loads on Grid resources. 

To check the effects of load balancing on execution time 
required for a single application, we have also measured the 
effects of this load balancing technique on individual 
makespans of the user applications. 

TABLE I.  AVERAGE MAKESPAN OF THE WORKFLOWS IN LOW GRANULARITY 

2
.5

0
 

3
.9

6
 

2
.3

9
 2
.9

6
 

0
.9

3
 

3
.8

1
 

4
.0

0
 

1
.9

8
 

0
.1

5
 0
.6

9
 

0
.3

5
 

0
.4

2
 

0
.3

2
 0
.8

5
 

0
.9

3
 

0
.3

4
 

5
.2

3
 

5
.4

1
 

5
.5

0
 6
.1

0
 

2
.0

0
 

6
.9

6
 

5
.2

0
 

4
.3

0
 

0
.3

0
 0
.9

1
 

0
.6

3
 

0
.7

8
 

0
.2

2
 

1
.2

0
 

0
.8

6
 

0
.2

6
 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

eProteinWF Job60PSPLIB Job90PSPLIB Job120PSPLIB LIGO Montage25 SIPHT30 CyberShake

St
an

d
ar

d
 D

e
vi

at
io

n
 o

f 
Lo

ad
s 

o
n

 R
e

so
u

rc
e

s 

Workflows 

DCPG

B-DCPG

PDCPG

B-PDCPG

WF 
MAKESPANS PERCENT IMPROVEMENT 

DCPG B-DCPG PDCPG B-PCPG 
B-DCPG over 

DCPG 

B-PDCPG 

over PDCPG 

PDCPG 

over DCPG 

B-PCDPG 

over DCPG 

eProteinWF 631.67 630.67 622.67 623.00 0.16 -0.05 1.45 1.39 

Job60PSPLIB 976.67 962.00 957.33 955.33 1.52 0.21 2.02 2.23 

Job90PSPLIB 1364.00 1363.33 1343.00 1345.33 0.05 -0.17 1.56 1.39 

Job120PSPLIB 1114.00 1114.00 1094.67 1093.67 0 0.09 1.77 1.86 

LIGO 1175.33 1177.33 1176.00 1172.67 -0.17 0.28 -0.06 0.23 

Montage25 480.57 480.30 470.87 470.33 0.06 0.11 2.06 2.18 

SIPHT30 424.33 422.33 420.67 419.00 0.47 0.4 0.87 1.27 

CyberShake 373.67 374.67 372.67 370.67 -0.27 0.54 0.27 0.81 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

451 | P a g e  

 www.ijacsa.thesai.org 

 

Fig. 3. Average Makespan of the Workflows in Low Granularity 

Table 1 and Fig. 3, explains the effects of load balancing 
on makespans of workflows in low granularity jobs. It can be 
seen that the overall execution time required to complete an 
application is unchanged in most of the cases and has even 
been reduced in some cases, especially in the workflows 
which have more breadth rather than depth. Although the 
completion time of individual jobs may get delayed due to 
increased communication cost in our proposed balancing 

technique, it has no effect on the overall execution time of a 
workflow. Table 1 and Fig. 3, also shows the percent 
improvements in the makespans of the workflows. We can see 
that there are some cases in which our balanced approached 
has not achieved any improvement but that is not our goal at 
all. Our objective is not to achieve improvements in makespan 
reduction, but to show that our balancing technique has no 
effect on individual makespan of the workflows. 

TABLE II.  AVERAGE MAKESPAN OF THE WORKFLOWS IN HIGH GRANULARITY 

DCPG, 631.67 

DCPG, 976.67 

DCPG, 1364 

DCPG, 1114 

DCPG, 1175.33 

DCPG, 480.57 

DCPG, 424.33 

DCPG, 373.67 B-DCPG, 630.67 

B-DCPG, 962 

B-DCPG, 1363.33 

B-DCPG, 1114 

B-DCPG, 1177.33 

B-DCPG, 480.3 

B-DCPG, 422.33 

B-DCPG, 374.67 PDCPG, 622.67 

PDCPG, 957.33 

PDCPG, 1343 

PDCPG, 1094.67 

PDCPG, 1176 

PDCPG, 470.87 

PDCPG, 420.67 

PDCPG, 372.67 B-PCPG, 623 

B-PCPG, 955.33 

B-PCPG, 1345.33 

B-PCPG, 1093.67 

B-PCPG, 1172.67 

B-PCPG, 470.33 

B-PCPG, 419 

B-PCPG, 370.67 

0

200

400

600

800

1000

1200

1400
eProteinWF 

Job60PSPLIB 

Job90PSPLIB 

Job120PSPLIB 

LIGO 

Montage25 

SIPHT30 

CyberShake 

DCPG

B-DCPG

PDCPG

B-PCPG

WF 

MAKESPAN PERCENT IMPROVEMENT 

DCPG B-DCPG PDCPG B-PCPG 

B-DCPG 

over 

DCPG 

B-PDCPG 

over 

PDCPG 

PDCPG 

over 

DCPG 

B-PDCPG over 

DCPG 

eProteinWF 637.67 637.67 636.67 636.67 0 0 0.16 0.16 

Job60PSPLIB 1324.33 1324.33 1322.00 1322.00 0 -0.05 0.18 0.13 

Job90PSPLIB 1340.67 1337.67 1333.33 1333.33 0.22 -0.4 0.55 0.15 

Job120PSPLIB 1575.00 1575.00 1566.67 1566.67 0 0.11 0.53 0.64 

LIGO 1731.33 1731.00 1735.67 1735.67 0.02 0.08 -0.25 -0.17 

Montage25 626.10 626.47 622.00 622.00 -0.06 0.02 0.66 0.68 

SIPHT30 556.67 553.67 556.33 556.33 0.54 0.48 0.06 0.54 

CyberShake 485.00 484.67 484.33 484.33 0.07 0.07 0.14 0.21 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

452 | P a g e  

 www.ijacsa.thesai.org 

 
Fig. 4. Average Makespan of the Workflows in High Granularity 

Table 2 and Fig. 4 below, explains the effects of load 
balancing on makespans of workflows in high granularity 
jobs. For high granularity, we have taken mean of simulations 
with 1.0, 1.25, 1.50, and 1.75 granularities and combined them 
together. The results show that, like PDCPG, B-PDCPG is 
also providing very small percentage improvement over 
DCPG. The reason is that there is not much communication 
involved in high granularity jobs. 

It has been observed that the standard deviation of the 
makespans also reduces by balancing the loads on resources. 
What this means, is that PDCPG completes some of the 
workflows in a very short time by scheduling most of its jobs 
(especially partner jobs) on the fastest resource, while others 
are scheduled on relatively slower resources resulting in large 
completion time. By balancing the workload on resources the 
makespan is not that much different from each other, as the 
balancing policy stops a workflow from reserving all of the 
slots on a high speed resource. 

VII. CONCLUSION AND FUTURE WORK 

In this study, we have addressed the problem of load 
balancing in advance reservation environment. We have 
proposed a policy based dynamic and centralized load 
balancing technique for balancing the loads on different 
resources of the Grid. We have observed that by trying to 
reduce communication, PDCPG leads the overall system to an 
un-balanced state where some of the resources are highly 
reserved in advance while the rest are rarely used or idle. This 
can result in resource under-utilization and increased rejection 
rate at some time. To solve this problem we have presented a 
technique based on a policy restriction while assigning job of 
a workflow to a resource. Simulation results shows that the 

proposed technique enhances the performance of PDCPG and 
increase utilization of resources and jobs throughput. 

Future work will consider a distributed and adaptive 
technique that will implement the load balancing policy at 
different level of the Grids in a hierarchy while adapting itself 
to the changes. The implementation of proposed technique in 
non-advance reservation environment will also be considered. 

ACKNOWLEDGEMENT 

The authors would like to thank Sur University College 
(Sur, Sultanate of Oman) for support and sponsorship of this 
research. 

REFERENCES 

[1] B. Yagoubi and Y. Slimani, "Task load balancing strategy for grid 
computing," Journal of Computer Science, vol. 3, no. 3, pp. 186-194, 
2007.  

[2] M. Siddiqui, A. Villazon and T. Fahringer, "Grid capacity planning with 
negotiation-based advance reservation for optimized QoS," in 
Proceedings of the 2006 ACM/IEEE conference on Supercomputing, 
2006.  

[3] S. F. El-Zoghdy, "A load balancing policy for heterogeneous 
computational grids," International Journal of Advanced Computer 
Science and Applications, vol. 2, no. 5, 2011.  

[4] D. S. Gawande, R. C. Dharmik and C. Panse, "A load balancing in grid 
environment," International Journal of Engineering Research and 
Applications (IJERA), vol. 2, no. 2, pp. 445-450, 2012.  

[5] V. Curcin and M. Ghanem, "Scientific workflow systems - can one size 
fit all?," in Biomedical Engineering Conference, 2008. CIBEC 2008. 
Cairo International, 2008.  

[6] J. Ashraf and T. Erlebach, "A new resource mapping technique for grid 
workflows in advance reservation environments," in High Performance 
Computing and Simulation (HPCS), 2010 International Conference on, 
2010.  

DCPG, 637.67 

DCPG, 1324.33 

DCPG, 1340.67 

DCPG, 1575 

DCPG, 1731.33 

DCPG, 626.1 

DCPG, 556.67 

DCPG, 485 

B-DCPG, 637.67 

B-DCPG, 1324.33 

B-DCPG, 1337.67 

B-DCPG, 1575 

B-DCPG, 1731 

B-DCPG, 626.47 

B-DCPG, 553.67 

B-DCPG, 484.67 

PDCPG, 636.67 

PDCPG, 1322 

PDCPG, 1333.33 

PDCPG, 1566.67 

PDCPG, 1735.67 

PDCPG, 622 

PDCPG, 556.33 

PDCPG, 484.33 

B-PCPG, 636.67 

B-PCPG, 1322 

B-PCPG, 1333.33 

B-PCPG, 1566.67 

B-PCPG, 1735.67 

B-PCPG, 622 

B-PCPG, 556.33 

B-PCPG, 484.33 

0

200

400

600

800

1000

1200

1400

1600

1800
eProteinWF 

Job60PSPLIB 

Job90PSPLIB 

Job120PSPLIB 

LIGO 

Montage25 

SIPHT30 

CyberShake 

DCPG

B-DCPG

PDCPG

B-PCPG



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

453 | P a g e  

 www.ijacsa.thesai.org 

[7] M. Rahman, S. Venugopal and R. Buyya, "A dynamic critical path 
algorithm for scheduling scientific workflow applications on global 
grids," in e-Science and Grid Computing, IEEE International 
Conference on, 2007.  

[8] B. Yagoubi and Y. Slimani, "Load balancing strategy in grid 
environment," Journal of Information Technology and Applications, vol. 
1, no. 4, pp. 285-296, 2007.  

[9] L. Mohammad Khanli, "A new hybrid load balancing algorithm in grid 
computing systems," International Journal of Computer Science & 
Emerging Technologies, vol. 2, no. 5, 2011.  

[10] L. M. Khanli, S. Razzaghzadeh and S. V. Zargari, "A new step toward 
load balancing based on competency rank and transitional phases in grid 
networks," Future Generation Computer Systems, vol. 28, no. 4, pp. 
682-688, April 2012.  

[11] Deepika, D. Wadhwa and N. Kumar, "Performance analysis of load 
balancing algorithms in distributed system," Advance in Electronic and 
Electric Engineering, vol. 4, no. 1, pp. 59-66, November 2014.  

[12] B. Yagoubi and M. Meddeber, "Towards hybrid dependent tasks 
assignment for grid computing," Java in Academia and Research, 
iConcept Press.  

[13] P. Bindu, R. Venkatesan and K. Ramalakshmi, "Perspective study on 
resource level load balancing in grid computing environments," in 
Electronics Computer Technology (ICECT), 2011 3rd International 
Conference on, 2011.  

[14] J. C. Patni, M. S. Aswal, O. P. Pal and A. Gupta, "Load balancing 
strategies for grid computing," in Electronics Computer Technology 
(ICECT), 2011 3rd International Conference on, 2011.  

[15] S. Penmatsa and A. T. Chronopoulos, "Cooperative load balancing for a 
network of heterogeneous computers," in Parallel and Distributed 
Processing Symposium, 2006. IPDPS 2006. 20th International, 2006.  

[16] J. Balasangameshwara and N. Raju, "A hybrid policy for fault tolerant 
load balancing in grid computing environments," Journal of Network 
and Computer Applications, vol. 35, no. 1, pp. 412-422, 2012.  

[17] Y. Li, Y. Yang, M. Ma and L. Zhou, "A hybrid load balancing strategy 
of sequential tasks for grid computing environments," Future Generation 
Computer Systems, vol. 25, no. 8, pp. 819-828, 2009.  

[18] K.-Q. Yan, S.-C. Wang, C.-P. Chang and J. Lin, "A hybrid load 
balancing policy underlying grid computing environment," Computer 
Standards & Interfaces, vol. 29, no. 2, pp. 161-173, 2007.  

[19] S. Zikos and H. D. Karatza, "Communication cost effective scheduling 
policies of nonclairvoyant jobs with load balancing in a grid," Journal of 
Systems and Software, vol. 82, no. 12, pp. 2103-2116, 2009.  

[20] Y.-K. Kwok and L.-S. Cheung, "A new fuzzy-decision based load 
balancing system for distributed object computing," Journal of Parallel 
and Distributed Computing, vol. 64, no. 2, pp. 238-253, 2004.  

[21] V. Di Martino and M. Mililotti, "Sub optimal scheduling in a grid using 
genetic algorithms," Parallel computing, vol. 30, no. 5, pp. 553-565, 
2004.  

[22] Z. Wenpeng and L. Hongzhao, "A load balancing method based on 
genetic clonal annealing strategy in grid environments," in Educational 
and Network Technology (ICENT), 2010 International Conference on, 
2010.  

[23] J. Cao, D. P. Spooner, S. A. Jarvis and G. R. Nudd, "Grid load balancing 
using intelligent agents," Future generation computer systems, vol. 21, 
no. 1, pp. 135-149, 2005.  

[24] J. U. In, S. Lee, S. Rho and J. H. Park, "Policy-based scheduling and 
resource allocation for multimedia communication on grid computing 
environment," Systems Journal, IEEE, vol. 5, no. 4, pp. 451-459, 2011.  

[25] E. M. Varvarigos, V. Sourlas and K. Christodoulopoulos, "Routing and 
scheduling connections in networks that support advance reservations," 
Computer Networks, vol. 52, no. 15, pp. 2988-3006, 2008.  

[26] K. Christodoulopoulos, N. Doulamis and E. Varvarigos, "Joint 
communication and computation task scheduling in grids," in Cluster 
Computing and the Grid, 2008. CCGRID'08. 8th IEEE International 
Symposium on, 2008.  

[27] J. Ashraf, "Partner-based scheduling and routing for grid workflows," 
University of Leicester, 2012. 

[28] A. Sulistio, C. S. Yeo and R. Buyya, "Visual modeler for grid modeling 
and simulation (gridsim) toolkit," in ICCS 03 Proceedings of the 2003 
International Conference on Computational, Berlin, 2003.  

[29] A. O'Brien, S. Newhouse and J. Darlington, "Mapping of scientific 
workflow within the e-protein project to distributed resources," in UK e-
Science All Hands Meeting, 2004.  

[30] F. Wittemann, "The Library PSBLIB," December 2015. [Online]. 
Available: http://www.om-db.wi.tum.de/psplib/library.html. [Accessed 5 
January 2015]. 

[31] January 2015. [Online]. Available: 
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator. 
[Accessed 3 January 2015]. 


