
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

466 | P a g e

www.ijacsa.thesai.org

An Approach to Finding Similarity Between Two

Community Graphs Using Graph Mining Techniques

Bapuji Rao

PhD Scholar (CSE)

Biju Patnaik University of Technology (BPUT)

Rourkela, Odisha, India

Saroja Nanda Mishra

CSE & A

Indira Gandhi Institute of Technology (IGIT)

Sarang, Odisha, India

Abstract—Graph similarity has studied in the fields of shape

retrieval, object recognition, face recognition and many more

areas. Sometimes it is important to compare two community

graphs for similarity which makes easier for mining the reliable

knowledge from a large community graph. Once the similarity is

done then, the necessary mining of knowledge can be extracted

from only one community graph rather than both which leads

saving of time. This paper proposes an algorithm for similarity

check of two community graphs using graph mining techniques.

Since a large community graph is difficult to visualize, so

compression is essential. This proposed method seems to be

easier and faster while checking for similarity between two

community graphs since the comparison is between the two

compressed community graphs rather than the actual large

community graphs.

Keywords—community graph; compressed community graph;

dissimilar edges; self-loop; similar edges; weighted adjacency

matrix

I. INTRODUCTION

A graph arises in many situations like web graph of
documents, a social network graph of friends, a road-map
graph of cities. Graph mining has grown rapidly for the last
two decades due to the number, and the size of graphs has been
growing exponentially (with billions of nodes and edges), and
from it, the authors want to extract much more complicated
information. Graph similarity has numerous applications in
social networks, image processing, biological networks,
chemical compounds, and computer vision, and therefore it has
suggested many algorithms and similarity measures. Graph
similarity is that "a node in one graph is similar to a node in
another graph if their neighborhoods are similar" [1].

II. LITERATURE SURVEY

Graphs are general object model; graph similarity has
studied in many fields. Similarity measures for graphs have
used in systems for shape retrieval [2], object recognition [3] or
face recognition [4]. For all those measures, graph features
specific to the graphs in the application, are exploited to define
graph similarity. Examples of such features are given one to
one mapping between the vertices of different graphs or the
requirement that all graphs are of the same order.

A very common similarity measure for graphs is the edit
distance. It uses the same principle as the well-known edit
distance for strings [5, 6]. The idea is to determine the minimal
number of insertions and deletions of vertices and edges to

make the compared graphs isomorphic. In [7], Sanfeliu and Fu
extended this principle to attributed graphs, by introducing
vertex relabeling as a third basic operation beside insertions
and deletions. In [8], the measure is used for data mining in a
graph.

The main idea behind the feature extraction method is that
similar graphs probably share certain properties, such as degree
distribution, diameter, and Eigen values [9]. After extracting
these features, a similarity measure [10] is applied to assess the
similarity between the aggregated statistics and, equivalently,
the similarity between the graphs. In the iterative method "two
nodes are similar if their neighborhoods are also similar".

In each iteration, the nodes exchange similarity scores, and
this process ends when convergence has achieved. A successful
algorithm belongs to this category is the similarity flooding
algorithm by Melnik et al. [11] applies in database schema
matching. It solves the "matching" problem, and attempts to
find the correspondence between the nodes of two given
graphs. Another successful algorithm is SimRank [12], which
measures the self-similarity of a graph, i.e., it assesses the
similarities between all pairs of nodes in one graph.
Furthermore, another successful recursive method related to
graph similarity and matching is the algorithm proposed by
Zager and Verghese [13]. This method introduces the idea of
coupling the similarity scores of nodes and edges to compute
the similarity between two graphs.

A new method to measure the similarity of attributed
graphs proposed in [14]. This technique solves the problems
mentioned in similarity measures for attributed graphs and is
useful in the context of large databases of structured objects.
First, BP-based algorithm implemented for graph similarity [1]
uses the original BP algorithm as it is proposed by Yedidia
[15]. This algorithm is naive and runs in O (n

2
) time.

III. PROPOSED METHOD

In the literature survey the authors have studied thoroughly
the existing methods which checks for similarity of two graphs.
In this paper, the authors have proposed graph mining
techniques for checking of similarity between two community
graphs. Further, the authors have proposed a community graph
which is depicted in "Fig. 1". For similarity measure of two
community graphs, the authors have first compressed both the
community graphs. Then the compressed community graphs
are used for comparison for similarity. The authors have

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

467 | P a g e

www.ijacsa.thesai.org

adopted the compression of large community graph to smaller
one technique from [16].

The authors have proposed a village community graph
having ten communities namely C1 to C10, and the total number
of community members is 118. The black color edge represents
the edge among the community members of similar
communities. Whereas the blue color edge represents the edge
among the community members of dissimilar communities.

Fig. 1. Community graph with communities {C1, C2, C3, C4, C5, C6, C7,

C8, C9, C10}

Fig. 2. Compressed community graph of Fig.1

To compress the community graph to a smaller one
depicted in "Fig. 1", the authors have adopted the logic from
[16]. The compressed community graph is depicted in “Fig. 2".
Then its corresponding adjacency matrix is represented in the
memory and depicted in "Fig. 3". In this weighted adjacency
matrix, the self-loop of the community has some weight and
considered as a total number of edges among the community
members of that particular community. Similarly, the edge
between the pair of communities as the total number of edges
between the community members of dissimilar communities.
For this proposed approach, the authors have considered "Fig.

1" community graph as the principle community graph for
comparison with six more community graphs namely CG2 to
CG7. Before comparison, these six community graphs, i.e.,
CG2 to CG7’s adjacency matrices are compressed and
represented in the memory. Finally, the principle community
graph CG1’s compressed adjacency matrix has compared with
all the six community graphs, i.e., CG2 to CG7’s compressed
adjacency matrices for similarity check. The details of all the
seven community graphs, CG1 to CG7 has considered as
datasets for the proposed algorithm is listed in "Table I".

Fig. 3. Adjacency matrix of Fig.2

IV. PROPOSED ALGORITHM

The proposed algorithm has three phases. Phase-1 is to
open for reading four dataset files. The dataset files
commun1.txt and commun2.txt for reading number of
communities, and community code and their total number of
community members of two community graphs CG1 and CG2,
and assign to the matrices NCM1[][] and NCM2[][]
respectively. Similarly two more dataset files data1.txt and
data2.txt for reading edge details of two community graphs
CG1 and CG2, and assign to the matrices CMM1[][] and
CMM2[][] respectively. So Phase-1 is about read data and
creation of community member matrices, and creation of initial
form of compressed community matrices.

Pahse-2 for counting edges of community members of
same communities by calling procedure SCED() and counting
edges of community members of dissimilar communities by
calling procedure DCED(). Using procedures SCED() and
DCED(), the compressed community adjacency matrices
CCM1[][] and CCM2[][] are assigned with the edge values and
self loop values.

Finally, Phase-3 for comparison of both the compressed
community matrices by calling procedure CS(). Further, it
returns a numerical value i.e., from 0 to 3. So based on the
numerical value, the similarities of both of community graphs
are judged. The numerical value 1 for similarity; whereas
values 0, 2, and 3 for no similarity between communities graph
CG1 and CG2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

468 | P a g e

www.ijacsa.thesai.org

A. Algorithm for Community Graph Similarity

Algorithm Community_Graph_Similarity ()

Algorithm Convention [17]

//CG1, CG2: Given two community graphs with 'n1' and 'n2'
//number of community members.

//tcm1, tcm2: To assign total community members of
//community graphs CG1 and CG2.

//NCM1[n1][2], NCM2[n2][2]: Matrices to hold community
//member’s community number and number of community
//members of CG1 and CG2.

//CMM1[tcm1+1][tcm1+1], CMM2[tcm2+1][tcm2+1]:
//Adjacency matrices of CG1 and CG2.

//CCM1[n1][n1], CCM2[n2][n2]: Adjacency matrices of
//compressed community graphs of CG1 and CG2.

//commun1.txt, commun2.txt: Text file contains number of
//communities, and community code and their total number of
//community members of CG1 and CG2.

//data1.txt, data2.txt: Text file contains edge details of CG1
//and CG2.

//flag: To assign the similarity check value from 0 to 3.

{

 n1:=RCD (NCM1, "commun1.txt"); // CG1 details

 n2:=RCD (NCM2, "commun2.txt"); // CG2 details

 tcm1:=ACMC (NCM1, n1, CMM1, CCM1);

 tcm2:=ACMC (NCM2, n2, CMM2, CCM2);

 CMMatrix (CMM1, tcm1, "data1.txt");

 CMMatrix (CMM2, tcm2, "data2.txt");

 SCED (NCM1, n1, CMM1, CCM1);

 SCED (NCM2, n2, CMM2, CCM2);

 DCED (NCM1, n1, CMM1, tcm1, CCM1);

 DCED (NCM2, n2, CMM2, tcm2, CCM2);

 flag:=CS (CCM1, n1, CCM2, n2);

if(flag=0) then write("Both the Community Graphs are not

Similar");

if(flag=1) then write("Both the Community Graphs are

Similar");

if(flag=2) then write("Both the Community Graphs are Similar

on Similar Edges");

if(flag=3) then write("Both the Community Graphs are Similar

on Dissimilar Edges");

}

B. Procedure for Community Data Read

Procedure RCD (NCM, FileName)

// n: To assign number of communities.

// cc: To assign community code.

// tcm: To assign total community members

{

 open(FileName);

 read(n);

 for i:=2 to (n+1) do

 {

 read(cc, tcm);

 NCM[i-1][1]:=cc;

 NCM[i-1][2]:=tcm;

 }

 close(FileName);

 return(n);

}

C. Procedure for Assignment of Community Member Codes

Procedure ACMC (NCM, n, CMM, CCM)

// k: index variable, tcm: to count total community members

{

 k:=2;

 tcm:=0;

 for i:=1 to n do

 {

 tcm:=tcm+NCM[i][2];

 for j:=1 to NCM[i][2] do // assignment of community codes

 // in community member matrix

 {

 CMM[1][k]:=CMM[k][1]:=j;

 k:=k+1;

 }

 }

//assignment of community codes in compressed community

//matrix CCM[][]

 for i:=2 to (n+1) do

 {

 CCM[i][1]:= CCM[1][i]:= NCM[i-1][1];

 }

 return(tcm);

}

D. Procedure for Community Member Matrix Creation

Procedure CMMatrix (CMM, tcm, FileName)

{

 open(FileName);

 i:=2;

 j:=2;

 while (i ≠ (tcm+1)) do

 {

 read(data);

 if (j=(tcm+1)) then { i:=i+1; j:=2; }

 CMM[i][j]:=data;

 j:=j+1;

 }

 close(FileName);

}

E. Procedure for Same Community Edge Detection

Procedure SCED (NCM, n, CMM, CCM)

{

 d:=1;

 s:=0;

 for i:=1 to n do

 {

 s:= s + NCM[i][2];

 for j:=d to s do

 for k:=d to s do

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

469 | P a g e

www.ijacsa.thesai.org

 if (CMM[j+1][k+1]=1) then

 CCM[i+1][i+1]:=CCM[i+1][i+1]+1; //check for edge

 // at CMM[j+1][k+1]

 d:=s;

 }

}

F. Procedure for Counting Dissimilar Edges

Procedure DCED (NCM, n, CMM, tcm, CCM)

{

 a:=1;

 b:=NCM[1][2];

 c:=b;

 d:=b;

 for i:=2 to (n+1) do

 {

 d:= d + NCM[i][2];

 // to count dissimilar communities edges

 Count_Edge (i-1, a, b, c, d, NCM, CMM, tcm, CCM);

 a:=b;

 b:=b + NCM[i][2];

 c:=d;

 }

}

G. Procedure to Count Dissimilar Communities Edges

Procedure Count_Edge (p, a, b, c, d, NCM, CMM, tcm, CCM)

// a, b: Initial and final index of row.

// c, d: Initial and final index of column.

// p: Initial index of CCM[][].

{

 x:= c;

 y:=d;

 k:=p+1;

 for i:=a to b do

 {

 k:=p+1;

 Bapu:

 for j:=c to d do

 if(CMM[i+1][j+1]=1) then

 {

CCM[p+1][k+1]:=CCM[p+1][k+1]+1; // row-side dissimilar

 // community edges counting

CCM[k+1][p+1]:=CCM[k+1][p+1]+1; // column-side

 // dissimilar community edges counting

 }

 k:=k+1;

 if(d<tcm) then

 {

 c:=d;

 d:=d+NCM[k][2];

 goto Bapu;

 }

 c:=x;

 d:=y;

 }

}

H. Procedure for Similarity Check Between Community

Matrices

Procedure CS (CCM1, n1, CCM2, n2)

{

 flag:=flag1:=flag2:=count:=0;

 if(n1 ≠ n2) then return(0); // both the community graphs are

 // dissimilar

 else

 {

 // arrange both matrices in ascending order

 Arrange(CCM1, n1);

 Arrange(CCM2, n2);

 // check for dissimilar communities

 for i:=2 to (n1+1) do

 for j:=2 to (n2+1) do

 if(CCM1[1][i]=CCM2[1][j]) then count:=count+1;

 if(count=n1) then flag:=1; else flag:=0;

 // check for same communities

 if(flag=1) then

 {

 // check for same number of edges of each communities

 for i:=2 to (n1+1) or (n2+1) do

 if(CCM1[i][i] ≠ CCM2[i][i]) then

 {

 flag1:=1;

 break;

 }

 // check for different number of edges among communities

 for i:=2 to (n1+1) do

 for j:=2 to (n2+1) do

 if(j>i) then

 if(CCM1[i][j] ≠ CCM2[i][j]) then

 {

 flag2:=1;

 break;

 }

 if(flag1=1 and flag2=1) then return(0); // same number

 // communities but different number of similar and

 // dissimilar edges

 else if(flag1=0 and flag2=1) then return(2); // similarity on

 // similar edges

 else if(flag1=1 and flag2=0) then return(3); // similarity on

 // dissimilar edges

 else return(1); // same number of similar and dissimilar

 // edges

 }

 else

 return(0); // number of communities same but not its

 // community codes (numbers)

 }

}

I. Procedure for Sorting of Compressed Community Matrix

Procedure Arrange (mat, n)

// t[]: temporary array for swap.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

470 | P a g e

www.ijacsa.thesai.org

{

 // row-side community code arrangement

 for i:=2 to n do

 for j:=i+1 to (n+1) do

 if(mat[i][1]>mat[j][1]) then

 for k:=1 to (n+1) do

 {

 t[k]:=mat[i][k];

 mat[i][k]:=mat[j][k];

 mat[j][k]:=t[k];

 }

 // column-side community code arrangement

 for i:=2 to n do

 for j:=i+1 to (n+1) do

 if(mat[1][i]>mat[1][j]) then

 for k:=1 to (n+1) do

 {

 t[k]:=mat[k][i];

 mat[k][i]:=mat[k][j];

 mat[k][j]:=t[k];

 }

}

V. EVALUATION OF ALGORITHM AND RESULTS

To evaluate the performance of the proposed algorithm, the
authors have considered seven community graphs namely CG1
to CG7, where 1

st
community graph CG1 is considered as

principle community graph for comparison with the remaining
six community graphs for finding similarities.

For the seven examples of community graphs, two sets of
dataset files were created for each example of community
graphs. The 1

st
 dataset file contains community graph details

such as number of communities, community number, and
number of community members. So for the seven community
graphs, these dataset files were from datacom1.txt to
datacom7.txt. Similarly the 2

nd
 dataset file contains community

graphs edge details i.e., edge between community members
which only consist of 1s and 0s. So for the seven community
graphs, these dataset files were from dataedg1.txt to
dataedg7.txt. These fourteen dataset file details are depicted in
"Table I".

The algorithm was written in C++ and compiled with
TurboC++ and run on Intel Core I5-3230M CPU +2.60 GHz
Laptop with 4GB memory running MS-Windows 7. The
comparison results of CG1 with CG2 to CG7 are depicted from
"Fig. 6" to "Fig. 17".

The datasets for community graphs CG1 to CG7 are in text
files from datacom1.txt to datacom7.txt and for datacom1.txt is
depicted in "Fig. 4", which contains the total number of
communities, community numbers, and a total number of
community members. Similarly, the datasets for community
graphs CG1 to CG7 are in text files from dataedg1.txt to
dataedg7.txt and for dataedg1.txt is depicted in "Fig. 5", which
contains the edge details, i.e., 0s (no edge) and 1s (edge)
between the community members of similar communities as
well as dissimilar communities of the community graphs.

TABLE I. DATASET TABLE

Fig. 4. Dataset file of CG1

Fig. 5. Dataset of CG1 contains edge details of community members C1 to

C10

The authors have studied the existing techniques of Danai
Koutra et al. method [1], Sergey Melnik et al. method [2],
Glen Jeh et al. method [12], L Zager et al. method [13], and
Hans-Peter Kriegel et al. method [14] for graph similarity.

In Danai Koutra et al. method [1], two graphs G1(N1, E1)
and G2(N2, E2), with possibly different number of nodes and
edges for similarity check, then adopting belief propagation
(BP) into the proposed method for finding similarity between
two graphs which finally returns a similarity value i.e., a real
number between 0 and 1.

In Sergey Melnik et al. method [2], the matching of two
graphs based on a fixed point computation. It takes two graphs
as input, which is preferably a schema or catalog or other data
structures for similarity check. Finally, it produces the result as
mapping between the corresponding nodes of the graphs.
Depending on the matching goal, a sub-set of the mapping is
chosen using some filtering methods. Moreover, it allows the
user to adjust the results if it is necessary.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

471 | P a g e

www.ijacsa.thesai.org

In Glen Jeh et al. method [12], to find similarity between
two objects based on their relationships. Two objects are said
to be similar, if they are related to similar objects. This
similarity measure is called SimRank. This method is based on
the simple graph-theoretic model.

In L Zager et al. method [13], it is a node-edge coupling,
i.e., two graph elements is similar if their neighborhoods are
similar. So edge score is constructed "when an edge in G1 is
like an edge in G2 if their respective source and terminal nodes
are similar". This is called edge similarity.

In Hans-Peter Kriegel et al. method [14], attributed graphs
are considered as a natural model for the structured data. The
authors proposed a new similarity measure between two
attributed graphs, called "matching distance". The matching
distance is calculated by sum of the cost for each edge
matching.

The proposed method in this paper is different from the
above existing methods. In the proposed method two
community graphs with possibly equal number of nodes
(communities) and different number of edges for similarity
check. Each node (community) is labeled with a unique
community number. Based on the community number of node,
the similarity measure takes place by considering the weight of
self-loop of community as well as the weight of edge between
the communities. After similarity between two community
graphs, it finally returns a similarity value i.e., a number from 0
to 3. Based on this number, the similarity of two community
graphs can be judged. The proposed algorithm has capable of
showing similarity and five different ways of dissimilarity. The
five different dissimilarities are "similar on dissimilar edges",
"similar on similar edges", "communities same but different
edges", "communities not same", and "number of communities
are different". Moreover, the proposed method is completely
based on labeled community graphs and simple graph-theoretic
model. So the authors conclude that the proposed community
graph similarity is simply different from the above existing
methods and fast since the time complexity is O(n

3
).

A. Comparison of CG1 and CG2

Fig. 6. (a) Community Graph CG1 (b) Community Graph CG2

In community graph CG1, the community codes (numbers)
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}.
The total number of edges belonging to same community codes
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly,
the total number of edges belonging to dissimilar community

codes member are C1-C2:8, C1-C4:9, C1-C5:3, C2-C3:9, C2-C5:5,
C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:7, C5-C9:3,
C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:5, C7-C8:4, C8-C10:5, and
C9-C10:3.

In community graph CG2, the community codes (numbers)
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}.
The total number of edges belonging to same community codes
member are {44, 46, 24, 32, 42, 42, 38, 28, 26, 46}. Similarly,
the total number of edges belonging to dissimilar community
codes member are C1-C2:8, C1-C4:9, C1-C5:3, C2-C3:9, C2-C5:5,
C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:7, C5-C9:3,
C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:5, C7-C8:4, C8-C10:5, and
C9-C10:3.

The comparison takes place on community graph CG1 and
CG2’s community codes and the number of edges belonging to
dissimilar community codes member since these two are same.
So finally the algorithm shows as "Both the Community
Graphs are Similar on Dissimilar Edges".

Fig. 7. Comparison result of CG1 and CG2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

472 | P a g e

www.ijacsa.thesai.org

B. Comparison of CG1 and CG3

Fig. 8. (a) Community Graph CG1 (b) Community Graph CG3

Fig. 9. Comparison result of CG1 and CG3

In community graph CG1, the community codes (numbers)
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}.
The total number of edges belonging to same community codes
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly,
the total number of edges belonging to dissimilar community
codes member are C1-C2:8, C1-C4:9, C1-C5:3, C2-C3:9, C2-C5:5,
C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:7, C5-C9:3,

C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:5, C7-C8:4, C8-C10:5, and
C9-C10:3.

In community graph CG3, the community codes (numbers)
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}.
The total number of edges belonging to same community codes
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly,
the total number of edges belonging to dissimilar community
codes member are C1-C2:7, C1-C4:7, C1-C5:3, C2-C3:10, C2-
C5:6, C2-C6:4, C3-C6:3, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:8, C5-
C9:3, C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:7, C7-C8:4, C8-C10:5,
and C9-C10:3.

The comparison takes place on community graph CG1 and
CG3’s community codes and the number of edges belonging to
similar community codes member since these two are same. So
finally the algorithm shows as "Both the Community Graphs
are Similar on Similar Edges".

C. Comparison of CG1 and CG4

Fig. 10. (a) Community Graph CG1 (b) Community Graph CG4

In community graph CG1, the community codes (numbers)
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}.
The total number of edges belonging to same community codes
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly,
the total number of edges belonging to dissimilar community
codes member are C1-C2:8, C1-C4:9, C1-C5:3, C2-C3:9, C2-C5:5,
C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:7, C5-C9:3,
C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:5, C7-C8:4, C8-C10:5, and
C9-C10:3.

In community graph CG4, the community codes (numbers)
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}.
The total number of edges belonging to same community codes
member are {44, 46, 24, 32, 42, 42, 38, 28, 26, 46}. Similarly,
the total number of edges belonging to dissimilar community
codes member are C1-C2:7, C1-C4:7, C1-C5:3, C2-C3:10, C2-
C5:6, C2-C6:4, C3-C6:3, C3-C7:7, C4-C5:6, C4-C9:5, C5-C6:8, C5-
C9:3, C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:7, C7-C8:4, C8-C10:5,
and C9-C10:3.

The comparison takes place on community graph CG1 and
CG4’s number of edges belonging to similar community codes
member and the number of edges belonging to dissimilar
community codes member since these two are not same. So
finally the algorithm shows as "Both the Community Graphs
are not Similar".

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

473 | P a g e

www.ijacsa.thesai.org

Fig. 11. Comparison result of CG1 and CG4

D. Comparison of CG1 and CG5

Fig. 12. (a) Community Graph CG1 (b) Community Graph CG5

In community graph CG1, the community codes (numbers)
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}.
The total number of edges belonging to same community codes
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly,
the total number of edges belonging to dissimilar community
codes member are C1-C2:8, C1-C4:9, C1-C5:3, C2-C3:9, C2-C5:5,
C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:7, C5-C9:3,
C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:5, C7-C8:4, C8-C10:5, and
C9-C10:3.

In community graph CG5, the community codes (numbers)
are {C3, C5, C10, C4, C6, C8, C11, C7, C12, C13} with total
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}.
The total number of edges belonging to same community codes
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly,
the total number of edges belonging to dissimilar community
codes member are C3-C5:8, C3-C4:8, C3-C6:3, C5-C10:9, C5-
C6:5, C5-C8:4, C10-C8:2, C10-C11:2, C4-C6:6, C4-C12:4, C6-C8:7,
C4-C12:3, C6-C13:3, C8-C11:9, C8-C7:3, C8-C13:5, C11-C7:4, C7-
C13:5, and C12-C13:3.

The comparison takes place on community graph CG1 and
CG5’s community codes. Since the community codes of
community graphs CG1 and CG5 are not same. So the
algorithm shows as "Both the Community Graphs are not
Similar".

Fig. 13. Comparison result of CG1 and CG5

E. Comparison of CG1 and CG6

In community graph CG1, the community codes (numbers)
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}.
The total number of edges belonging to same community codes
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

474 | P a g e

www.ijacsa.thesai.org

the total number of edges belonging to dissimilar community
codes member are C1-C2:8, C1-C4:9, C1-C5:3, C2-C3:9, C2-C5:5,
C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:7, C5-C9:3,
C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:5, C7-C8:4, C8-C10:5, and
C9-C10:3.

Fig. 14. (a) Community Graph CG1 (b) Community Graph CG6

Fig. 15. Comparison result of CG1 and CG6

In community graph CG6, the community codes (numbers)
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12} with total
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11,
9, 11}. The total number of edges belonging to same
community codes member are {44, 50, 26, 28, 36, 36, 34, 24,
20, 38, 26, 38}. Similarly, the total number of edges belonging

to dissimilar community codes member are C1-C2:8, C1-C4:8,
C1-C5:3, C2-C3:9, C2-C5:5, C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6,
C4-C9:4, C5-C6:7, C5-C9:3, C5-C10:3, C6-C7:9, C6-C8:3, C6-
C10:5, C7-C8:4, C8-C10:5, C8-C12:2, C9-C10:3, C9-C11:2, C10-
C11:4, C10-C12:4, and C11-C12:5.

The comparison takes place on community graph CG1 and
CG6’s community codes. Since the number of community
codes of community graphs CG1 and CG6 are not same. So the
algorithm shows as "Both the Community Graphs are not
Similar".

F. Comparison of CG1 and CG7

Fig. 16. (a) Community Graph CG1 (b) Community Graph CG7

Fig. 17. Comparison result of CG1 and CG7

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

475 | P a g e

www.ijacsa.thesai.org

In community graph CG1, the community codes (numbers)
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}.
The total number of edges belonging to same community codes
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly,
the total number of edges belonging to dissimilar community
codes member are C1-C2:8, C1-C4:9, C1-C5:3, C2-C3:9, C2-C5:5,
C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:7, C5-C9:3,
C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:5, C7-C8:4, C8-C10:5, and
C9-C10:3.

In community graph CG7, the community codes (numbers)
are {C3, C2, C1, C7, C6, C5, C4, C8, C10, C9} with total
community members are {11, 16, 15, 12, 12, 14, 10, 10, 11, 7}.
The total number of edges belonging to same community codes
member are {26, 50, 44, 34, 36, 36, 28, 24, 38, 20}. Similarly,
the total number of edges belonging to dissimilar community
codes member are C3-C2:9, C3-C7:7, C3-C6:2, C2-C1:8, C2-C6:4,
C2-C5:5, C1-C5:3, C1-C4:9, C7-C6:9, C7-C8:4, C6-C5:7, C6-C8:3,
C6-C10:5, C5-C4:6, C5-C10:3, C5-C9:3, C4-C9:4, C8-C10:5, and
C10-C9:3.

The comparison takes place on community graph CG1 and
CG7’s community codes. Since the community codes of
community graphs CG1 and CG7 are same. Then the
comparison takes place on a number of edges belonging to
similar community codes member and number of edges
belonging to dissimilar community codes member. So finally
the algorithm shows as "Both the Community Graphs are
Similar".

VI. CONCLUSIONS

Graph similarity technique is helpful in the fields of shape
retrieval, object recognition, face recognition and many more
areas. This paper starts with literature survey related to various
techniques implemented for graph similarity. So it is important
to compare two community graphs for similarity check to
extract the reliable knowledge from a large community graph.
This paper proposes an algorithm for similarity check of two
community graphs using graph mining techniques. The authors
have implemented the proposed algorithm using C++
programming language and obtained satisfactory results.

REFERENCES

[1] Danai Koutra, Ankur Parikh, Aditya Ramdas, and Jing Xiang,
"Algorithms for Graph Similarity and Subgraph Matching," Dec 4,
2011. https://www.cs.cmu.edu/~jingx/docs/DBreport.pdf

[2] B. Huet, A. Cross, and E. Hancock, "Shape retrieval by inexact graph
matching." in Proc. IEEE Int. Conf. on Multimedia Computing Systems.
Volume 2., IEEE Computer Society Press, 1999, pages 40–44.

[3] E. Kubicka, G. Kubicki, and I.Vakalis, "Using graph distance in object
recognition." in Proc. ACM Computer Science Conference, 1990, pages
43–48.

[4] L. Wiskott, J. M. Fellous, N. Kr¨uger, and C. Von Der Malsburg, "Face
recognition by elastic bunch graph matching." in IEEE PAMI 19, 1997,
pages 775–779.

[5] V. Levenshtein. "Binary codes capable of correcting deletions, insertions
and reversals," in Soviet Physics Doklady (10), 1966, 707–710.

[6] R. A. Wagner and M. J. Fisher, "The string-to-string correction
problem," in Journal of the ACM (21), 1974, 168–173.

[7] A. Sanfeliu and K. S. Fu, "A distance measure between attributed
relational graphs for pattern recognition," in IEEE Transactions on
Systems, Man and Cybernetics (13), 1983, 353–362.

[8] D. J. Cook and L. B. Holder, "Graph-based data mining," in IEEE
Intelligent Systems (15), 2000, 32–41.

[9] Duncan J. Watts, "Small worlds: the dynamics of networks between order
and randomness", Princeton University Press, 1999.

[10] Sung-Hyuk Cha, "Comprehensive survey on distance/similarity
measures between probability density functions," in International
Journal of Mathematical Models and Methods in Applied Sciences, 1(4),
2007, 300–307.

[11] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm, "Similarity
flooding: A versatile graph matching algorithm and its application to
schema matching," in 18th International Conference on Data
Engineering (ICDE 2002), 2002.

[12] Glen Jeh and Jennifer Widom, "SimRank: A measure of structural-
context similarity," in Proceedings of the eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’02, New York, USA, 2002, pages 538–543.

[13] L. Zager and G. Verghese, "Graph similarity scoring and matching," in
Applied Mathematics Letters, 21(1), 2008, 86–94.

[14] Hans-Peter Kriegel and Stefan Schonauer, "Similarity Search in
Structured Data," in Proceedings 5th International Conference on Data
Warehousing and Knowledge Discovery (DaWaK’ 03), Prague, Czech
Republic, 2003, pages 224-233.

[15] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss,
"Understanding belief propagation and its generalizations," in Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2003, pages 239–
269.

[16] Bapuji Rao, Anirban Mitra and D. P. Acharjya, "A New Approach of
Compression of Large Community Graph Using Graph Mining
Techniques," in Proceedings of 3rd ERCICA 2015, Volume 1, Springer
Verlag, NMIT, Bangalore, India, Pp. 127 – 136, July 31–Aug 1, 2015.
DOI: 10.1007/978-81-322-2550-8_13

[17] Horowitz, Sahani, and Rajasekaran, "Fundamentals of Computer
Algorithms", Galgotia Publications Pvt. Ltd., 5, Ansari Road, Darya
Ganj, New Delhi-110 002  1998 by W. H. Freeman and Company.

