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Abstract—Graph similarity has studied in the fields of shape 

retrieval, object recognition, face recognition and many more 

areas. Sometimes it is important to compare two community 

graphs for similarity which makes easier for mining the reliable 

knowledge from a large community graph. Once the similarity is 

done then, the necessary mining of knowledge can be extracted 

from only one community graph rather than both which leads 

saving of time. This paper proposes an algorithm for similarity 

check of two community graphs using graph mining techniques. 

Since a large community graph is difficult to visualize, so 

compression is essential. This proposed method seems to be 

easier and faster while checking for similarity between two 

community graphs since the comparison is between the two 

compressed community graphs rather than the actual large 

community graphs. 
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I. INTRODUCTION 

A graph arises in many situations like web graph of 
documents, a social network graph of friends, a road-map 
graph of cities. Graph mining has grown rapidly for the last 
two decades due to the number, and the size of graphs has been 
growing exponentially (with billions of nodes and edges), and 
from it, the authors want to extract much more complicated 
information. Graph similarity has numerous applications in 
social networks, image processing, biological networks, 
chemical compounds, and computer vision, and therefore it has 
suggested many algorithms and similarity measures. Graph 
similarity is that "a node in one graph is similar to a node in 
another graph if their neighborhoods are similar" [1]. 

II. LITERATURE SURVEY 

Graphs are general object model; graph similarity has 
studied in many fields. Similarity measures for graphs have 
used in systems for shape retrieval [2], object recognition [3] or 
face recognition [4]. For all those measures, graph features 
specific to the graphs in the application, are exploited to define 
graph similarity. Examples of such features are given one to 
one mapping between the vertices of different graphs or the 
requirement that all graphs are of the same order. 

A very common similarity measure for graphs is the edit 
distance. It uses the same principle as the well-known edit 
distance for strings [5, 6]. The idea is to determine the minimal 
number of insertions and deletions of vertices and edges to 

make the compared graphs isomorphic. In [7], Sanfeliu and Fu 
extended this principle to attributed graphs, by introducing 
vertex relabeling as a third basic operation beside insertions 
and deletions. In [8], the measure is used for data mining in a 
graph. 

The main idea behind the feature extraction method is that 
similar graphs probably share certain properties, such as degree 
distribution, diameter, and Eigen values [9]. After extracting 
these features, a similarity measure [10] is applied to assess the 
similarity between the aggregated statistics and, equivalently, 
the similarity between the graphs. In the iterative method "two 
nodes are similar if their neighborhoods are also similar". 

In each iteration, the nodes exchange similarity scores, and 
this process ends when convergence has achieved. A successful 
algorithm belongs to this category is the similarity flooding 
algorithm by Melnik et al. [11] applies in database schema 
matching. It solves the "matching" problem, and attempts to 
find the correspondence between the nodes of two given 
graphs. Another successful algorithm is SimRank [12], which 
measures the self-similarity of a graph, i.e., it assesses the 
similarities between all pairs of nodes in one graph. 
Furthermore, another successful recursive method related to 
graph similarity and matching is the algorithm proposed by 
Zager and Verghese [13]. This method introduces the idea of 
coupling the similarity scores of nodes and edges to compute 
the similarity between two graphs. 

A new method to measure the similarity of attributed 
graphs proposed in [14]. This technique solves the problems 
mentioned in similarity measures for attributed graphs and is 
useful in the context of large databases of structured objects. 
First, BP-based algorithm implemented for graph similarity [1] 
uses the original BP algorithm as it is proposed by Yedidia 
[15]. This algorithm is naive and runs in O (n

2
) time. 

III. PROPOSED METHOD 

In the literature survey the authors have studied thoroughly 
the existing methods which checks for similarity of two graphs. 
In this paper, the authors have proposed graph mining 
techniques for checking of similarity between two community 
graphs. Further, the authors have proposed a community graph 
which is depicted in "Fig. 1". For similarity measure of two 
community graphs, the authors have first compressed both the 
community graphs. Then the compressed community graphs 
are used for comparison for similarity. The authors have 
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adopted the compression of large community graph to smaller 
one technique from [16]. 

The authors have proposed a village community graph 
having ten communities namely C1 to C10, and the total number 
of community members is 118. The black color edge represents 
the edge among the community members of similar 
communities. Whereas the blue color edge represents the edge 
among the community members of dissimilar communities. 

 
Fig. 1. Community graph with communities {C1, C2, C3, C4, C5, C6, C7, 

C8, C9, C10} 

 

Fig. 2. Compressed community graph of Fig.1 

To compress the community graph to a smaller one 
depicted in "Fig. 1", the authors have adopted the logic from 
[16]. The compressed community graph is depicted in “Fig. 2". 
Then its corresponding adjacency matrix is represented in the 
memory and depicted in "Fig. 3". In this weighted adjacency 
matrix, the self-loop of the community has some weight and 
considered as a total number of edges among the community 
members of that particular community. Similarly, the edge 
between the pair of communities as the total number of edges 
between the community members of dissimilar communities. 
For this proposed approach, the authors have considered "Fig. 

1" community graph as the principle community graph for 
comparison with six more community graphs namely CG2 to 
CG7. Before comparison, these six community graphs, i.e., 
CG2 to CG7’s adjacency matrices are compressed and 
represented in the memory. Finally, the principle community 
graph CG1’s compressed adjacency matrix has compared with 
all the six community graphs, i.e., CG2 to CG7’s compressed 
adjacency matrices for similarity check. The details of all the 
seven community graphs, CG1 to CG7 has considered as 
datasets for the proposed algorithm is listed in "Table I". 

 

Fig. 3. Adjacency matrix of Fig.2 

IV. PROPOSED ALGORITHM 

The proposed algorithm has three phases. Phase-1 is to 
open for reading four dataset files. The dataset files 
commun1.txt and commun2.txt for reading number of 
communities, and community code and their total number of 
community members of two community graphs CG1 and CG2, 
and assign to the matrices NCM1[][] and NCM2[][] 
respectively. Similarly two more dataset files data1.txt and 
data2.txt for reading edge details of two community graphs 
CG1 and CG2, and assign to the matrices CMM1[][] and 
CMM2[][] respectively. So Phase-1 is about read data and 
creation of community member matrices, and creation of initial 
form of compressed community matrices. 

Pahse-2 for counting edges of community members of 
same communities by calling procedure SCED( ) and counting 
edges of community members of dissimilar communities by 
calling procedure DCED( ). Using procedures SCED( ) and 
DCED( ), the compressed community adjacency matrices 
CCM1[][] and CCM2[][] are assigned with the edge values and 
self loop values. 

Finally, Phase-3 for comparison of both the compressed 
community matrices by calling procedure CS( ). Further, it 
returns a numerical value i.e., from 0 to 3. So based on the 
numerical value, the similarities of both of community graphs 
are judged. The numerical value 1 for similarity; whereas 
values 0, 2, and 3 for no similarity between communities graph 
CG1 and CG2. 
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A. Algorithm for Community Graph Similarity 

Algorithm Community_Graph_Similarity ( ) 

Algorithm Convention [17] 

//CG1, CG2: Given two community graphs with 'n1' and 'n2' 
//number of community members. 

//tcm1, tcm2: To assign total community members of 
//community graphs CG1 and CG2. 

//NCM1[n1][2], NCM2[n2][2]: Matrices to hold community 
//member’s community number and number of community 
//members of CG1 and CG2. 

//CMM1[tcm1+1][tcm1+1], CMM2[tcm2+1][tcm2+1]: 
//Adjacency matrices of CG1 and CG2. 

//CCM1[n1][n1], CCM2[n2][n2]: Adjacency matrices of 
//compressed community graphs of  CG1 and CG2. 

//commun1.txt, commun2.txt: Text file contains number of 
//communities, and community code and their total number of 
//community members of CG1 and CG2. 

//data1.txt, data2.txt: Text file contains edge details of CG1 
//and CG2. 

//flag: To assign the similarity check value from 0 to 3. 

{ 

  n1:=RCD (NCM1, "commun1.txt");  // CG1 details 

  n2:=RCD (NCM2, "commun2.txt");  // CG2 details 

  tcm1:=ACMC (NCM1, n1, CMM1, CCM1); 

  tcm2:=ACMC (NCM2, n2, CMM2, CCM2); 

  CMMatrix (CMM1, tcm1, "data1.txt"); 

  CMMatrix (CMM2, tcm2, "data2.txt"); 

  SCED (NCM1, n1, CMM1, CCM1); 

  SCED (NCM2, n2, CMM2, CCM2); 

  DCED (NCM1, n1, CMM1, tcm1, CCM1); 

  DCED (NCM2, n2, CMM2, tcm2, CCM2); 

  flag:=CS (CCM1, n1, CCM2, n2); 

if(flag=0) then write("Both the Community Graphs are not 

Similar"); 

if(flag=1) then write("Both the Community Graphs are 

Similar"); 

if(flag=2) then write("Both the Community Graphs are Similar 

on Similar Edges"); 

if(flag=3) then write("Both the Community Graphs are Similar 

on Dissimilar Edges"); 

} 

B. Procedure for Community Data Read 

Procedure RCD (NCM, FileName) 

// n: To assign number of communities. 

// cc: To assign community code. 

// tcm: To assign total community members  

{ 

     open(FileName); 

     read(n); 

     for i:=2 to (n+1) do 

     {    

        read(cc, tcm);   

        NCM[i-1][1]:=cc;    

        NCM[i-1][2]:=tcm;  

      } 

      close(FileName); 

      return(n); 

} 

C. Procedure for Assignment of Community Member Codes 

Procedure ACMC (NCM, n, CMM, CCM) 

// k: index variable, tcm: to count total community members 

{ 

   k:=2;     

   tcm:=0; 

 for i:=1 to n do 

 { 

     tcm:=tcm+NCM[i][2]; 

   for j:=1 to NCM[i][2] do // assignment of community codes     

                                            // in community member matrix 

   {  

       CMM[1][k]:=CMM[k][1]:=j;     

       k:=k+1;   

    } 

 } 

//assignment of community codes in compressed community 

//matrix CCM[][] 

   for i:=2 to (n+1) do 

   {   

      CCM[i][1]:= CCM[1][i]:= NCM[i-1][1];   

    } 

    return(tcm); 

} 

D. Procedure for Community Member Matrix Creation 

Procedure CMMatrix (CMM, tcm, FileName) 

{ 

   open(FileName); 

   i:=2;    

   j:=2; 

   while (i ≠ (tcm+1)) do 

   { 

      read(data); 

      if (j=(tcm+1)) then { i:=i+1;   j:=2; } 

      CMM[i][j]:=data;    

      j:=j+1; 

     } 

      close(FileName); 

} 

E. Procedure for Same Community Edge Detection 

Procedure SCED (NCM, n, CMM, CCM) 

{ 

   d:=1;   

   s:=0; 

  for i:=1 to n do 

  {   

      s:= s + NCM[i][2]; 

        for j:=d to s do 

          for k:=d to s do  
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      if (CMM[j+1][k+1]=1) then  

         CCM[i+1][i+1]:=CCM[i+1][i+1]+1;  //check for edge   

                                                                  // at CMM[j+1][k+1] 

      d:=s; 

   } 

} 

F. Procedure for Counting Dissimilar Edges 

Procedure DCED (NCM, n, CMM, tcm, CCM) 

{ 

   a:=1;   

   b:=NCM[1][2];   

   c:=b;   

   d:=b; 

   for i:=2 to (n+1) do  

  {    

      d:= d + NCM[i][2]; 

      // to count dissimilar communities edges       

      Count_Edge (i-1, a, b, c, d, NCM, CMM, tcm, CCM);  

      a:=b;   

      b:=b + NCM[i][2];     

      c:=d; 

    } 

} 

G. Procedure to Count Dissimilar Communities Edges 

Procedure Count_Edge (p, a, b, c, d, NCM, CMM, tcm, CCM) 

// a, b: Initial and final index of row. 

// c, d: Initial and final index of column. 

// p: Initial index of CCM[][]. 

{ 

   x:= c;   

   y:=d;   

   k:=p+1;  

   for i:=a to b do        

   {   

       k:=p+1; 

   Bapu: 

      for j:=c to d do 

  if(CMM[i+1][j+1]=1) then 

 { 

CCM[p+1][k+1]:=CCM[p+1][k+1]+1;    // row-side dissimilar  

                                                      // community edges counting 

CCM[k+1][p+1]:=CCM[k+1][p+1]+1;               // column-side  

                                     // dissimilar community edges counting 

 } 

      k:=k+1; 

      if(d<tcm) then  

     {  

         c:=d;   

         d:=d+NCM[k][2];   

         goto Bapu;   

      } 

      c:=x;    

      d:=y; 

   } 

} 

H. Procedure for Similarity Check Between Community 

Matrices 

Procedure CS (CCM1, n1, CCM2, n2) 

{ 

    flag:=flag1:=flag2:=count:=0; 

    if(n1 ≠ n2) then return(0); // both the community graphs are  

                                               // dissimilar 

    else 

    {    

       // arrange both matrices in ascending order 

       Arrange(CCM1, n1);     

       Arrange(CCM2, n2); 

   

       // check for dissimilar communities  

      for i:=2 to (n1+1) do  

        for j:=2 to (n2+1) do 

            if(CCM1[1][i]=CCM2[1][j]) then count:=count+1; 

          

       if(count=n1) then flag:=1; else flag:=0; 

       // check for same communities  

       if(flag=1) then 

       {  

          // check for same number of edges of each communities 

          for i:=2 to (n1+1) or (n2+1) do 

               if(CCM1[i][i] ≠ CCM2[i][i]) then  

              {  

                  flag1:=1;   

                  break;  

               } 

      // check for different number of edges among communities 

          for i:=2 to (n1+1) do  

             for j:=2 to (n2+1) do  

                 if(j>i) then  

                     if(CCM1[i][j] ≠ CCM2[i][j])  then 

                     {   

                        flag2:=1;   

                        break;   

                      } 

    if(flag1=1 and flag2=1) then return(0);     // same number  

               // communities but different number of similar and  

               // dissimilar edges 

    else if(flag1=0 and flag2=1) then return(2);   // similarity on  

                                                                            // similar edges 

    else if(flag1=1 and flag2=0) then return(3);   // similarity on  

                                                                       // dissimilar edges 

    else return(1);         // same number of similar and dissimilar  

                                                                                        // edges 

    } 

    else 

          return(0);       // number of communities same but not its  

                                                   // community codes (numbers) 

   } 

} 

I. Procedure for Sorting of Compressed Community Matrix 

Procedure Arrange (mat, n) 

// t[]: temporary array for swap. 
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{ 

   // row-side community code arrangement 

    for i:=2 to n do  

     for j:=i+1 to (n+1) do 

       if(mat[i][1]>mat[j][1]) then 

          for k:=1 to (n+1) do  

          {  

            t[k]:=mat[i][k];   

            mat[i][k]:=mat[j][k];    

            mat[j][k]:=t[k];   

           } 

   // column-side community code arrangement 

     for i:=2 to n do 

      for j:=i+1 to (n+1) do  

        if(mat[1][i]>mat[1][j]) then 

           for k:=1 to (n+1) do  

           {  

             t[k]:=mat[k][i];   

             mat[k][i]:=mat[k][j];   

             mat[k][j]:=t[k];   

            } 

} 

V. EVALUATION OF ALGORITHM AND RESULTS 

To evaluate the performance of the proposed algorithm, the 
authors have considered seven community graphs namely CG1 
to CG7, where 1

st 
community graph CG1 is considered as 

principle community graph for comparison with the remaining 
six community graphs for finding similarities. 

For the seven examples of community graphs, two sets of 
dataset files were created for each example of community 
graphs. The 1

st
 dataset file contains community graph details 

such as number of communities, community number, and 
number of community members. So for the seven community 
graphs, these dataset files were from datacom1.txt to 
datacom7.txt. Similarly the 2

nd
 dataset file contains community 

graphs edge details i.e., edge between community members 
which only consist of 1s and 0s. So for the seven community 
graphs, these dataset files were from dataedg1.txt to 
dataedg7.txt. These fourteen dataset file details are depicted in 
"Table I". 

The algorithm was written in C++ and compiled with 
TurboC++ and run on Intel Core I5-3230M CPU +2.60 GHz 
Laptop with 4GB memory running MS-Windows 7. The 
comparison results of CG1 with CG2 to CG7 are depicted from 
"Fig. 6" to "Fig. 17". 

The datasets for community graphs CG1 to CG7 are in text 
files from datacom1.txt to datacom7.txt and for datacom1.txt is 
depicted in "Fig. 4", which contains the total number of 
communities, community numbers, and a total number of 
community members. Similarly, the datasets for community 
graphs CG1 to CG7 are in text files from dataedg1.txt to 
dataedg7.txt and for dataedg1.txt is depicted in "Fig. 5", which 
contains the edge details, i.e., 0s (no edge) and 1s (edge) 
between the community members of similar communities as 
well as dissimilar communities of the community graphs. 

TABLE I.  DATASET TABLE 

 

 

Fig. 4. Dataset file of CG1 

 

Fig. 5. Dataset of CG1 contains edge details of community members C1 to 

C10 

The authors have studied the existing techniques of Danai 
Koutra et al.  method [1], Sergey Melnik et al. method [2], 
Glen Jeh et al. method [12], L Zager et al. method [13], and 
Hans-Peter Kriegel et al. method [14] for graph similarity. 

In Danai Koutra et al.  method [1], two graphs G1(N1, E1) 
and G2(N2, E2), with possibly different number of nodes and 
edges for similarity check, then adopting belief propagation 
(BP) into the proposed method for finding similarity between 
two graphs which finally returns a similarity value i.e., a real 
number between 0 and 1. 

In Sergey Melnik et al. method [2], the matching of two 
graphs based on a fixed point computation. It takes two graphs 
as input, which is preferably a schema or catalog or other data 
structures for similarity check. Finally, it produces the result as 
mapping between the corresponding nodes of the graphs. 
Depending on the matching goal, a sub-set of the mapping is 
chosen using some filtering methods. Moreover, it allows the 
user to adjust the results if it is necessary. 
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In Glen Jeh et al. method [12], to find similarity between 
two objects based on their relationships. Two objects are said 
to be similar, if they are related to similar objects. This 
similarity measure is called SimRank. This method is based on 
the simple graph-theoretic model. 

In L Zager et al. method [13], it is a node-edge coupling, 
i.e., two graph elements is similar if their neighborhoods are 
similar. So edge score is constructed "when an edge in G1 is 
like an edge in G2 if their respective source and terminal nodes 
are similar". This is called edge similarity. 

In Hans-Peter Kriegel et al. method [14], attributed graphs 
are considered as a natural model for the structured data. The 
authors proposed a new similarity measure between two 
attributed graphs, called "matching distance". The matching 
distance is calculated by sum of the cost for each edge 
matching. 

The proposed method in this paper is different from the 
above existing methods. In the proposed method two 
community graphs with possibly equal number of nodes 
(communities) and different number of edges for similarity 
check. Each node (community) is labeled with a unique 
community number. Based on the community number of node, 
the similarity measure takes place by considering the weight of 
self-loop of community as well as the weight of edge between 
the communities. After similarity between two community 
graphs, it finally returns a similarity value i.e., a number from 0 
to 3. Based on this number, the similarity of two community 
graphs can be judged. The proposed algorithm has capable of 
showing similarity and five different ways of dissimilarity. The 
five different dissimilarities are "similar on dissimilar edges", 
"similar on similar edges", "communities same but different 
edges", "communities not same", and "number of communities 
are different". Moreover, the proposed method is completely 
based on labeled community graphs and simple graph-theoretic 
model. So the authors conclude that the proposed community 
graph similarity is simply different from the above existing 
methods and fast since the time complexity is O(n

3
). 

A. Comparison of CG1 and CG2 

 

Fig. 6. (a) Community Graph CG1 (b) Community Graph CG2 

In community graph CG1, the community codes (numbers) 
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total 
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}. 
The total number of edges belonging to same community codes 
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly, 
the total number of edges belonging to dissimilar community 

codes member are C1-C2:8, C1-C4:9, C1-C5:3, C2-C3:9, C2-C5:5, 
C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:7, C5-C9:3, 
C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:5, C7-C8:4, C8-C10:5, and 
C9-C10:3. 

In community graph CG2, the community codes (numbers) 
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total 
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}. 
The total number of edges belonging to same community codes 
member are {44, 46, 24, 32, 42, 42, 38, 28, 26, 46}. Similarly, 
the total number of edges belonging to dissimilar community 
codes member are C1-C2:8, C1-C4:9, C1-C5:3, C2-C3:9, C2-C5:5, 
C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:7, C5-C9:3, 
C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:5, C7-C8:4, C8-C10:5, and 
C9-C10:3. 

The comparison takes place on community graph CG1 and 
CG2’s community codes and the number of edges belonging to 
dissimilar community codes member since these two are same. 
So finally the algorithm shows as "Both the Community 
Graphs are Similar on Dissimilar Edges". 

 

Fig. 7. Comparison result of CG1 and CG2 
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B. Comparison of CG1 and CG3 

 

Fig. 8. (a) Community Graph CG1 (b) Community Graph CG3 

 

Fig. 9. Comparison result of CG1 and CG3 

In community graph CG1, the community codes (numbers) 
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total 
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}. 
The total number of edges belonging to same community codes 
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly, 
the total number of edges belonging to dissimilar community 
codes member are C1-C2:8, C1-C4:9, C1-C5:3, C2-C3:9, C2-C5:5, 
C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:7, C5-C9:3, 

C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:5, C7-C8:4, C8-C10:5, and 
C9-C10:3. 

In community graph CG3, the community codes (numbers) 
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total 
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}. 
The total number of edges belonging to same community codes 
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly, 
the total number of edges belonging to dissimilar community 
codes member are C1-C2:7, C1-C4:7, C1-C5:3, C2-C3:10, C2-
C5:6, C2-C6:4, C3-C6:3, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:8, C5-
C9:3, C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:7, C7-C8:4, C8-C10:5, 
and C9-C10:3. 

The comparison takes place on community graph CG1 and 
CG3’s community codes and the number of edges belonging to 
similar community codes member since these two are same. So 
finally the algorithm shows as "Both the Community Graphs 
are Similar on Similar Edges". 

C. Comparison of CG1 and CG4 

 

Fig. 10. (a) Community Graph CG1 (b) Community Graph CG4 

In community graph CG1, the community codes (numbers) 
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total 
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}. 
The total number of edges belonging to same community codes 
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly, 
the total number of edges belonging to dissimilar community 
codes member are C1-C2:8, C1-C4:9, C1-C5:3, C2-C3:9, C2-C5:5, 
C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:7, C5-C9:3, 
C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:5, C7-C8:4, C8-C10:5, and 
C9-C10:3. 

In community graph CG4, the community codes (numbers) 
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total 
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}. 
The total number of edges belonging to same community codes 
member are {44, 46, 24, 32, 42, 42, 38, 28, 26, 46}. Similarly, 
the total number of edges belonging to dissimilar community 
codes member are C1-C2:7, C1-C4:7, C1-C5:3, C2-C3:10, C2-
C5:6, C2-C6:4, C3-C6:3, C3-C7:7, C4-C5:6, C4-C9:5, C5-C6:8, C5-
C9:3, C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:7, C7-C8:4, C8-C10:5, 
and C9-C10:3. 

The comparison takes place on community graph CG1 and 
CG4’s number of edges belonging to similar community codes 
member and the number of edges belonging to dissimilar 
community codes member since these two are not same. So 
finally the algorithm shows as "Both the Community Graphs 
are not Similar". 
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Fig. 11. Comparison result of CG1 and CG4 

D. Comparison of CG1 and CG5 

 

Fig. 12. (a) Community Graph CG1 (b) Community Graph CG5 

In community graph CG1, the community codes (numbers) 
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total 
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}. 
The total number of edges belonging to same community codes 
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly, 
the total number of edges belonging to dissimilar community 
codes member are C1-C2:8, C1-C4:9, C1-C5:3, C2-C3:9, C2-C5:5, 
C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:7, C5-C9:3, 
C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:5, C7-C8:4, C8-C10:5, and 
C9-C10:3. 

In community graph CG5, the community codes (numbers) 
are {C3, C5, C10, C4, C6, C8, C11, C7, C12, C13} with total 
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}. 
The total number of edges belonging to same community codes 
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly, 
the total number of edges belonging to dissimilar community 
codes member are C3-C5:8, C3-C4:8, C3-C6:3, C5-C10:9, C5-
C6:5, C5-C8:4, C10-C8:2, C10-C11:2, C4-C6:6, C4-C12:4, C6-C8:7, 
C4-C12:3, C6-C13:3, C8-C11:9, C8-C7:3, C8-C13:5, C11-C7:4, C7-
C13:5, and C12-C13:3. 

The comparison takes place on community graph CG1 and 
CG5’s community codes. Since the community codes of 
community graphs CG1 and CG5 are not same. So the 
algorithm shows as "Both the Community Graphs are not 
Similar". 

 

Fig. 13. Comparison result of CG1 and CG5 

E. Comparison of CG1 and CG6 

In community graph CG1, the community codes (numbers) 
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total 
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}. 
The total number of edges belonging to same community codes 
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly, 
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the total number of edges belonging to dissimilar community 
codes member are C1-C2:8, C1-C4:9, C1-C5:3, C2-C3:9, C2-C5:5, 
C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:7, C5-C9:3, 
C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:5, C7-C8:4, C8-C10:5, and 
C9-C10:3. 

 

Fig. 14. (a) Community Graph CG1 (b) Community Graph CG6 

 

Fig. 15. Comparison result of CG1 and CG6 

In community graph CG6, the community codes (numbers) 
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12} with total 
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11, 
9, 11}. The total number of edges belonging to same 
community codes member are {44, 50, 26, 28, 36, 36, 34, 24, 
20, 38, 26, 38}. Similarly, the total number of edges belonging 

to dissimilar community codes member are C1-C2:8, C1-C4:8, 
C1-C5:3, C2-C3:9, C2-C5:5, C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6, 
C4-C9:4, C5-C6:7, C5-C9:3, C5-C10:3, C6-C7:9, C6-C8:3, C6-
C10:5, C7-C8:4, C8-C10:5, C8-C12:2, C9-C10:3, C9-C11:2, C10-
C11:4, C10-C12:4, and C11-C12:5. 

The comparison takes place on community graph CG1 and 
CG6’s community codes. Since the number of community 
codes of community graphs CG1 and CG6 are not same. So the 
algorithm shows as "Both the Community Graphs are not 
Similar". 

F. Comparison of CG1 and CG7 

 

Fig. 16. (a) Community Graph CG1 (b) Community Graph CG7 

 

Fig. 17. Comparison result of CG1 and CG7 
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In community graph CG1, the community codes (numbers) 
are {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} with total 
community members are {15, 16, 11, 10, 14, 12, 12, 10, 7, 11}. 
The total number of edges belonging to same community codes 
member are {44, 50, 26, 28, 36, 36, 34, 24, 20, 38}. Similarly, 
the total number of edges belonging to dissimilar community 
codes member are C1-C2:8, C1-C4:9, C1-C5:3, C2-C3:9, C2-C5:5, 
C2-C6:4, C3-C6:2, C3-C7:7, C4-C5:6, C4-C9:4, C5-C6:7, C5-C9:3, 
C5-C10:3, C6-C7:9, C6-C8:3, C6-C10:5, C7-C8:4, C8-C10:5, and 
C9-C10:3. 

In community graph CG7, the community codes (numbers) 
are {C3, C2, C1, C7, C6, C5, C4, C8, C10, C9} with total 
community members are {11, 16, 15, 12, 12, 14, 10, 10, 11, 7}. 
The total number of edges belonging to same community codes 
member are {26, 50, 44, 34, 36, 36, 28, 24, 38, 20}. Similarly, 
the total number of edges belonging to dissimilar community 
codes member are C3-C2:9, C3-C7:7, C3-C6:2, C2-C1:8, C2-C6:4, 
C2-C5:5, C1-C5:3, C1-C4:9, C7-C6:9, C7-C8:4, C6-C5:7, C6-C8:3, 
C6-C10:5, C5-C4:6, C5-C10:3, C5-C9:3, C4-C9:4, C8-C10:5, and 
C10-C9:3. 

The comparison takes place on community graph CG1 and 
CG7’s community codes. Since the community codes of 
community graphs CG1 and CG7 are same. Then the 
comparison takes place on a number of edges belonging to 
similar community codes member and number of edges 
belonging to dissimilar community codes member. So finally 
the algorithm shows as "Both the Community Graphs are 
Similar". 

VI. CONCLUSIONS 

Graph similarity technique is helpful in the fields of shape 
retrieval, object recognition, face recognition and many more 
areas. This paper starts with literature survey related to various 
techniques implemented for graph similarity. So it is important 
to compare two community graphs for similarity check to 
extract the reliable knowledge from a large community graph. 
This paper proposes an algorithm for similarity check of two 
community graphs using graph mining techniques. The authors 
have implemented the proposed algorithm using C++ 
programming language and obtained satisfactory results. 
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