
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 5, 2016

NEB in Analysis of Natural Image 8× 8 and 9× 9
High-contrast Patches

Shengxiang Xia
School of Science,

Shandong Jianzhu University,
Jinan 250101 P.R.China.

Wen Wang
School of Science,

Shandong Jianzhu University,
Jinan 250101 P.R.China.

Abstract—In this paper we use the nudged elastic band tech-
nique from computational chemistry to investigate sampled high-
dimensional data from a natural image database. We randomly
sample 8×8 and 9×9 high-contrast patches of natural images and
create a density estimator believed as a Morse function. By the
Morse function we build one-dimensional cell complexes from the
sampled data. Using one-dimensional cell complexes, we identify
topological properties of 8 × 8 and 9 × 9 high-contrast natural
image patches, we show that there exist two kinds of subsets of
high-contrast 8 × 8 and 9 × 9 patches modeled as a circle, by
the new method we confirm some results obtained through the
method of computational topology.
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I. INTRODUCTION

Computational topology becomes a very important and
efficiently method to analyse high-dimensional dada in the
recent years [1], [2], [3], [4]. To analyse high-dimensional
dada, we usually construct a sequence of simplicial com-
plexes from the finite sampled data set to produce a simple
combinatorial presentations of the data, the most commonly
used complexes include C̆ech complexes, Rips complexes and
lazy witness complexes. As the dimensional problem, the con-
structed simplicial complexes usually compose of thousands
(even tens of thousands) of simplices , they are sometimes too
large to compute. Adams, Atanasov, and Carlsson [5] used
the nudged elastic band method to construct cell complexes
through density functions of sampling data, they built more
low-priced reasonable models for some nonlinear data sets
(such as, sets generated from social networks, from range
image analysis, and from microarray analysis) by a few of
cell complexes, and effectively detect the homology of the
nonlinear data sets, it initially shows that cell complex models
are efficient ways for analysing high-dimensional nonlinear
data. Adams etc [5] obtained a circle model and the three
circle model for the data set of 3 × 3 optical image patches
from [6]. In the paper [7], Xia shown that there exist some
core subsets of 8× 8 and 9× 9 natural image patches that are
topologically equivalent to a circle and the three circle model
respectively.

In this paper, we utilize the methods of the paper [5] to
identify topological features of spaces of 8 × 8 and 9 × 9
natural image patches, we discover a circle model for 8 × 8
and 9 × 9 patches. The data sets used here are drawn from
INRIA Holidays dataset [8], that are different from the data
set in the paper [5].

II. BASIC CONCEPTS

A. Nudged elastic band

The nudged elastic band (NEB) is an effective way for
finding a minimum energy path between two initial stable
states. The minimum energy path have the property of any
point on the path being at an energy minimum in all directions
perpendicular to the path [9].

An elastic band with N + 1 images can be defined by
[U0,U1, ...,UN ], U0 and UN are initial and final states.
The N − 1 middle images are modified by an optimization
algorithm [11].

The total force acting on each image is defined as follow-
ing:

Fi = FS
i |∥ −▽E(Ui)|⊥ = (||Ui+1 −Ui||

−||Ui −Ui−1||)τi − (▽E(Ui)−▽E(Ui) · τi),
(1)

the first part FS
i |∥ is called the spring force, the second part

▽E(Ui)|⊥ is true force, and τi =
(Ui+1−Ui−1)
||Ui+1−Ui−1|| local tangent

at image i. where E is the energy of the system.

The nudged elastic band method apply an optimization
algorithm to shift the images depending to the force in (1) for
finding the minimum energy path. For more details of NEB,
please refer to papers [8], [10], [11]

B. CW complexes

A k dimensional closed ball {x ∈ Rk| ||x|| ≤ 1} is called
a k-cell. A CW complex is a topological space X defined by
the follow inductive steps. The 0-skeleton X(0) of X is a set of
0-cells. The 1-skeleton X(1) is created by gluing the endpoints
of 1-cells to the 0-skeleton. Inductively, the k-skeleton X(k)

are built by gluing the boundaries of k-cells to the (k − 1)-
skeleton X(k−1).

C. Morse theory

Suppose M be a compact manifold and a smooth Morse
function f : M −→ R has non-degenerate critical points
t1, ..., tk ∈ M such that

p0 < f(t1) < p1 < f(t2) < · · · < pk−1 < f(tk) < pk.

Suppose Mp = f−1((−∞, p]) is the sublevel set correspond-
ing to p ∈ R. It follows from Morse theory that Mpi

is
homotopy equivalent to a CW complex with a λi-cell for each
critical point ti.
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Fig.2. The three circle model.

D. The three circles model

The Klein bottle can be represented by pasting a square as
Fig.1. While pasting a square, three circles are created, one is
the main circle (Slin) informed by horizontal segments (black
lines), the other two circles (Sv and Sh) are informed from
the vertical segments (red line and blue line) respectively, that
is called the three circle model (Fig.2), represented by C3. In
the three circle space, the circles Sv and Sh intersect the main
circle Slin in exactly two points, but they themselves do not
intersect.

III. THE DATA SETS OF NATURAL IMAGE PATCHES

We select data sets of 8×8 and 9×9 high-contrast patches
from natural images of INRIA Holidays dataset [8]. Each data
set consists of 5.5 × 105 high-contrast log patches. INRI-
A Holidays dataset is available at http://lear.inrialpes.fr/ je-
gou/data.php. Fig.3 is a sample.

Our spaces X8 and X9 are sets of 8× 8 and 9× 9 patches
of high contrast created by the following steps.

Step 1. Select 550 images from INRIA Holidays dataset.

Step 2. Using MATLAB function rgb2gray to calculate the
intensity at each pixel for each image.

Fig.3. A Sample from INRIA Holidays dataset

Step 3. We randomly choose 5000 8× 8 and 9× 9 patches
from each image.

Step 4. We consider each patch as a n2-dimensional vector,
and take the logarithm of each coordinate.

Step 5. For any vector x=(x1, x2, ..., xn), we calculate
the D-norm: ∥ x ∥D. Two coordinates of x are neighbors,
expressed by i ∼ j, if the corresponding pixels in the n × n
patch are adjacent. The formula of D-norm is: ∥ x ∥D=√∑

i∼j(xi − xj)2.

Step 6. We pick the patches that have a D-norm in the top
t = 20% percent in each image.

Step 7. Subtract an average of all coordinates from each
coordinate.

Step 8. We map X8 ( X9) into the unit sphere S63 (S80)
by dividing each vector with its Euclidean norm.

Step 9. We randomly sample 50,000 points from X8 and
X9 for computational convenience, the subspaces of X8 and
X9 are represented by X̄8 and X̄9 respectively.

In this paper, we use set symbols similar as in the papers
[7], [12], X̄n(15000) is a random subset of Xn with size 15000
(n = 8, 9). We do not make the discrete cosine transform for
these sets.

IV. COMPUTING METHOD

we give main steps of calculating method used in this
section, for more details of the method, please refer to the
paper [5].

Given a data set X ⊂ Rn from unknown probability
density function f : Rn −→ [0,∞). We take superlevel sets

Xα = f−1([α,∞)) = {x ∈ Rn|f(x) ≥ α}

, the high dense regions of data set X may give important
topological information of X . We will construct CW complex
models Zα to approximate the superlevel sets Xα.

We construct only the one-dimensional skeleton of the
cell complex by following three steps. First step, we create a
differentiable density estimator to approximate the unknown
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probability density function. Second step, we acquire local
maxima of the density estimate to give 0-cells. Third step,
we randomly produce initial bands, then find the convergent
bands by NEB, thus we obtain 1-cells.

A. Density estimator

For a data set X ⊂ Rn, let Φx,σ : Rn −→ [0,∞) be
the probability density of a normal distribution centered at
x ∈ X , we apply a differentiable density estimator g(y) =
|X|−1

∑
x∈X Φx,σ(y) to approach the unknown density.

B. 0-cells

To find 0-cells, we randomly select an initial point y0 ∈
X , and iteratively define a sequence {y0, y1, ...} with yn+1 =
m(yn), where m(y) : Rn −→ Rn is the mean shift function
given by the formula

m(y) =

∑
x∈X Φx,σ(y)x∑
x∈X Φx,σ(y)

.

The sequence {yn} converges to a local maxima of g [13].
In order to identify different 0-cells, we use single-linkage
clustering to cluster the convergent points, and choose the
densest member from each cluster as a 0-cell.

C. 1-cells

For two 0-cells, there is a 1-cell between them if we find
a convergent band between them by using NEB. For an initial
band [U0,U1, ...,UN ], where U0 and UN are 0-cells. Using
a similar formula as (1), the total force on each midterm node
Ui is computed by

Fi = (||Ui+1−Ui||−||Ui−Ui−1||)τi+c▽g(Ui)|⊥+Fsm.
(2)

Where c = (σ
√
2π)n

√
e is the gradient constant. Let hθ,ϕ(x) :

[0, π] −→ [0, 1] be a function defined by

hθ,ϕ(x) =


0, x ≤ θ

(1− cos( x−θ
x−ϕπ))/2, θ < x < ϕ

1, ϕ ≤ x

Let αi be the angle between (Ui+1−Ui) and (Ui−Ui−1),
the smoothing force Fsm is computed by hθ,ϕ(αi)(Ui+1 −
2Ui +Ui−1), here θ = π/6 and ϕ = π/2.

V. EXPERIMENTAL RESULTS

The author of the paper [7] used persistent homology to
detect the topological structure of spaces Xn of n×n natural
image patches (n = 8, 9), and shown that the topologies
of the core sets vary from a circle to a 3-circle model as
decreasing of density estimator. Especially, there are core
subsets X̄n(300, 20) in Xn (n = 8, 9) , whose homology is
that of a circle. X8 and X9 have core subsets X̄8(15, 20) and
X̄9(15, 20) respectively possessing the homology of the three
circle model C3. By using the method in [7], we can check
that the core subsets X̄8(20, 25) and X̄9(20, 20) of X8 and X9

have the homology of the three circle model C3 respectively.

Now we use NEB to analyse some subsets of X8 and X9,
here we utilize two types subsets of Xn: (1) random subsets
X̄n(15000) of Xn with size 15000; (2) core subsets X̄n(k, p).

TABLE I. DATA SET INFORMATION

X̄8(15000) X̄8(300, 20) X̄8(15, 20) X̄8(20, 25)

size of data set 15000 10000 10000 12500

dimension n 64 64 64 64

standard deviation σ 0.38 0.35 0.35 0.35

TABLE II. DATA SET INFORMATION

X̄9(15000) X̄9(300, 20) X̄9(15, 20) X̄9(20, 20)

size of data set 15000 10000 10000 10000

dimension n 81 81 81 81

standard deviation σ 0.30 0.38 0.35 0.38

A. 8× 8 patches

The data sets used for X8 are shown in Table 1. For the
set X̄8(15000), we let standard deviation σ = 0.38, we get
four 0-cells with densities 0.7664, 0.7826, 0.877, and 0.8818
respectively, and four 1-cells having densities 0.7597, 0.7664,
0.7672 , and 0.7772 respectively, these cells produce a loop.
Therefore for α = 0.7597, the Zα is a circle (Fig.4). When
we choose standard deviation σ = 0.30, we have four 0-cells
having densities in [1.02×106, 1.356×106] and four 1-cells
with densities in [8.001×105, 8.566×105], these cells also
produce a circle.

For X̄8(300, 20), we take the value of standard deviation
σ = 0.35, we get four 0-cells having densities of 277.2, 294.5,
396.5 and 401.7 and four 1-cells having densities of 216.1,
224.1, 227.5 and 228.9, all these cells compose a circle (Fig.5).

For X̄8(15, 20), let σ = 0.35, we find four 0-cells and
four 1-cells which compose a circle (Fig.6). The four 0-cells
have densities of 263.6, 279.4, 366, and 378.9, the four 1-cells
have densities of 207.1, 217.3, 218.7, and 218.9. When we take
σ=0.30, and 0.38, we obtain similar results as for σ = 0.35.
For example, for σ = 0.38, the four 0-cells have densities
in [1.649, 2.332] and the four 1-cells have densities in [1.42,
1.497].

For X̄8(20, 25), we have the similar result as X̄8(15, 20).
Taking σ = 0.25, 0.30, 0.35 and 0.38, we get four 0-cells and
four 1-cells for each case which form a circle. For example,
when σ = 0.35, the four 0-cells have densities 240.7, 253.2,
330.1, 335.8 and the four 1-cells have densities 198.4, 205.5,
205.7, 206.1 respectively, these cells form a circle (Fig.7).

As shown in [7], the subspace X̄8(15, 20) (X̄8(20, 25)) of
X8 has same homology as the three circle model C3, but we
can not detect that X̄8(15, 20) (X̄8(20, 25)) has the topology
of C3 by using the current method.

B. 9× 9 patches

In this section we utilize the computing method for two
kind of data sets in Table 2. We consider the set X̄9(15000)
for standard deviation σ = 0.30, we find four 0-cells, whose
densities are 1.138×108, 1.15×108, 1.587×108, 1.627×108

respectively, and four 1-cells with densities of 9.364×107,
9.405×107, 9.408×107, 9.884×107, all these cells form a
circle. Thus α = 9.364 × 107, the Zα is a circle (Fig.8).
If we take σ = 0.35, we get four 0-cells with densities in
[864, 1091], and four 1-cells having densities in [822.7, 850.3],
which also compose a circle.

550 | P a g e
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 5, 2016

Fig.4. X̄8(15000) and the circle Z0.7597, projected to a
plane.

Fig.5. X̄8(300, 20) and the circle Z216.1, projected to a plane.

Fig.6. X̄8(15, 20) and the circle Z207.1, projected to a plane.

Fig.7. X̄8(20, 25) and the circle Z198.4, projected to a plane.

For X̄9(300, 20), when we take σ = 0.35, we have four 0-
cells with densities in [23800, 35840] and four 1-cells having
densities in [1910, 2031], all these cells form a circle (Fig.9).
If we let σ=0.25, 0.30, and 0.38, we get similar results as for
σ = 0.35. However the densities of cells decrease as increasing
of standard deviation, for example, when σ = 0.38, we get four
0-cells having densities in [3.704, 5.504] and four 1-cells with
densities in [3.263, 3.436].

We take standard deviation σ=0.20, 0.25, 0.30, 0.35, and
0.38 for X̄9(15, 20), for each case we obtain four 0-cells and
four 1-cells, these cells compose a circle. For example, if
σ = 0.35, four 0-cells have densities 2254, 2308, 3240, and
3333, four 1-cells have densities 1817, 1863, 1908, and 1935
respectively, these cells form a circle (Fig.10).

For X̄9(20, 20), we get the similar result as X̄9(15, 20). For
example, when σ = 0.38, we find four 0-cells with densities in
[3.548, 5.138] and four 1-cells with densities in [3.143, 3.292],
these cells form a circle (Fig.11).

We take various values of standard deviation σ and do
experiments for them, but we can not find that X̄9(15, 20)
(X̄9(20, 20)) has the homology of C3 by the current method.

VI. CONCLUSIONS

In this paper we utilize the nudged elastic band technique to
analyse spaces of 8×8 and 9×9 natural image patches, and we
get some similar results as the papers [2], [7], which show that
the results got in this paper and [2], [7] are native properties
of natural image patches, they do not rest on the methods and
databases. We experimentally show that the spaces of high-
contrast 8×8 and 9×9 patches have different subsets modeled
as a circle. By matching the results (method) of this paper with
the results (method) of the papers [2], [7], we discover that the
most advantage of the method is its simplicity. For example, to
model X̄8(300, 20) as a circle using cell complexes, we only
use four 1-cells, if we model X̄8(300, 20) as a circle using
witness complexes, we may need several tens of thousands
witness complexes. The disadvantages of the method are that
to create higher dimensional cells is more difficult [5] and it
may only detect coarse topology of a data-set.
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Fig.8. X̄9(15000) and the circle Z9.364×107 , projected to a
plane.

Fig.9. X̄9(300, 20) and the circle Z1910, projected to a plane.

Fig.10. X̄9(15, 20) and the circle Z1817, projected to a plane.

Fig.11. X̄9(20, 20) and the circle Z3.143, projected to a plane.
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