
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

129 | P a g e

www.ijacsa.thesai.org

Detection of SQL Injection Using a Genetic Fuzzy

Classifier System

Christine Basta, Ahmed elfatatry, Saad Darwish

Information Technology department

Institute of Graduate Studies and Research

Alexandria, Egypt

Abstract—SQL Injection (SQLI) is one of the most popular

vulnerabilities of web applications. The consequences of SQL

injection attack include the possibility of stealing sensitive

information or bypassing authentication procedures. SQL

injection attacks have different forms and variations. One

difficulty in detecting malicious attacks is that such attacks do

not have a specific pattern. A new fuzzy rule-based classification

system (FBRCS) can tackle the requirements of the current stage

of security measures. This paper proposes a genetic fuzzy system

for detection of SQLI where not only the accuracy is a priority,

but also the learning and the flexibility of the obtained rules. To

create the rules having high generalization capabilities, our

algorithm builds on initial rules, data-dependent parameters, and

an enhancing function that modifies the rule evaluation

measures. The enhancing function helps to assess the candidate

rules more effectively based on decision subspace. The proposed

system has been evaluated using a number of well-known data

sets. Results show a significant enhancement in the detection

procedure.

Keywords—SQL injection; web security; genetic fuzzy system;

fuzzy rule learning

I. INTRODUCTION

Web applications are vulnerable to numerous attacks. SQL
injection is a widely common threat, which remains on top of
the list of web application attacks as ranked by OWASP (the
Open Web Application Security Project) [1]. Various
techniques of SQL injection are used by hackers to achieve
different purposes: bypassing a login system, modifying a table
in a database, shutting down SQL server, getting database
information from the returned error message, or executing
stored procedures [2].

SQL injection attacks are a type of vulnerability that is
ultimately caused by insufficient input validation. Such attacks
occur when data provided by the user is not properly validated
and included directly in an SQL query. By leveraging these
vulnerabilities, an attacker can submit SQL commands directly
to the database. Web applications are threatened by this kind of
vulnerability that uses user input to form SQL queries to access
an underlying database [3]. Generally, SQL injection attacks
are classified into seven types: tautologies, illegal/logically
incorrect queries, piggy-backed queries, stored queries,
inference and alternate encodings [2] [4] [5].

Attackers continuously develop new ways to bypass
controls added by developers. In the recent years, hackers
started to use different styles to perform SQLI. Hackers

developed techniques to bypass web application firewall (WAF
bypassing). The security agents started to use buffer overflow
methods and applied new bypassing methods like special
characters bypassing. The various types of injections at
different levels require a solution that can cope with such
changes.

A number of approaches address detection of SQLI attacks.
Such approaches include static analysis, dynamic analysis, and
combined approach. Researchers developed other approaches
like mutation based approach, query tokenization and applying
regular expressions. These approaches suffer from a number of
problems preventing them from being the optimal solutions [6].
Those techniques lack flexibility and scalability; they cannot
deal with unknown types or larger ranges of injections [7].
Lack of learning capabilities is a vital problem. Most solutions
parse user input and confirm match limited to fixed and very
small patterns, which are modeled by reference to existing
malicious web code. However, there are new malicious web
codes which can deliberately be developed to avoid being
matched with the registered patterns [8]. The available parsing
techniques can also cause high computational overhead
affecting real-time detection [9].

Recently, machine learning techniques are adapted to
overcome previously mentioned problems as they can give
leverage for the broader range of malicious web code and can
be adapted to variations and changes [8]. Machine learning
techniques explore the study and construction of
algorithms that can learn from and make predictions
on data. Such algorithms operate by building a model from
example inputs in order to make data-driven predictions or
decisions, rather than following strictly static program
instructions [10]. Some existing machine learning techniques
suffer from high computational overhead; the training of
classifiers in those techniques is time-consuming and causes
computational overhead. Furthermore, a number of existing
solutions lack adaptation capability to detect new attacks [9].

Uncertainty and fuzziness are popular phenomena in
applications of machine learning. Different types of uncertainty
can be observed: (i) Noise, outliers, and errors affect the input
data. A machine learning method has to deal with this type of
fuzzy information, showing robustness with respect to such
disturbances. (ii) Distribution and fuzziness influence
representation of information within a machine learning
system. According to these different locations and goals of
fuzzy information, a variety of different models exist which
allow machine learning to deal with uncertain information as

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Learning
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Mathematical_model

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

130 | P a g e

www.ijacsa.thesai.org

input, output, or internal representation [11]. Fuzzy rule-based
systems (FRBSs) are well-known methods within soft
computing, based on fuzzy concepts that address complex real-
world problems. They are powerful methods to address
uncertainty, imprecision, and non-linearity [12].

Fuzzy rule-based classification systems (FRBCSs) are
specialized in handling classification tasks. A main
characteristic of classification is that the outputs are categorical
data. Therefore, in this model type, we preserve the antecedent
part of linguistic variables and change the consequent part to be
a class Cj from a pre-specified class set C = {C1,.......,CM}.
FRBCS aim at representing the knowledge of human experts in
a set of fuzzy IF-THEN rules. Instead of using crisp sets as in
classical rules, fuzzy rules use fuzzy sets. Rules were initially
derived from human experts through knowledge engineering
processes. However, this approach may not be feasible when
facing complex tasks or when human experts are not available.
An effective alternative is to generate the FRBCS model
automatically from data by using learning methods. FRBCSs
have demonstrated their ability to handle control problems,
modeling, classification or data mining in a huge number of
applications [13].

The automatic definition of FRBCS rules can be seen as an
optimization problem. Genetic Algorithms (GAs) are global
search techniques with the ability to explore a large search
space for suitable solutions only requiring a performance
measure. In addition to their ability to find near optimal
solutions in complex search spaces, the generic code structure
and independent performance features of GAs qualifies them to
incorporate a priori knowledge. In the case of FRBCSs, this a
priori knowledge may be in the form of linguistic variables,
fuzzy membership function parameters, fuzzy rules, number of
rules (Genetic rule learning), etc. These capabilities extended
the use of GAs in the development of a wide range of
approaches for designing FRBSs over the last few years.
Therefore, GAs remain today as one of the fewest knowledge
schemes available to design and optimize FRBCSs with respect
to the design decisions. According to the performance
measures, decision makers decide which components are fixed
and which need to change [13].

In this work, we investigate the FRBCS technique for
detection of SQLI; we suggest a new technique to address the
uncertainty, fuzziness and adaptation problems associated with
existing machine learning techniques. The rule selection
mechanism in FRBCS induces competition among rules by
only considering the quality of matching performed by each
rule. To increase the generalization power of the classifier, we
have proposed a genetic fuzzy approach that creates more
cooperative rules in the final population. The proposed system
uses genetic algorithm (GA) for optimizing the FRBCS
technique to enhance its learning and adaptation capabilities.

The rest of the paper is organized as follows: Section 2
discusses related work reported in the literature. An overview
of the proposed fuzzy genetic system is explained in Section 3.
The experimental result and evaluation of the proposed system
are discussed in Section 4. Finally, in Section 5 the conclusion
and future research directions are presented.

II. LITERATURE REVIEW AND RELATED WORK

In general, SQL injection attacks can be divided into the
three main categories: in-band, out-of-band and inferential
[14]. In the in-band attacks, the information is extracted from
the same channel that is used for the attack. For example, the
list of users will appear in the current page. In out-of-band
attack, the extracted information is sent back to the attacker
using another channel such as email. For inferential, which is
also known as a blind injection, no data is sent back directly to
the attacker. However, the attacker can reconstruct the data by
trying the different attacks and observing the behavior of the
web application.

In the literature, SQLI detection techniques can be
classified into the dynamic analysis, static analysis, combined
approach, machine learning, and other approaches (e.g. Hash
technique, Black Box Testing) [3][15-19]. Static analysis
checks whether every flow from a source to a sink is subject to
an input validation and/or input sanitizing routine [20];
whereas dynamic analysis is based on dynamically mining the
programmer’s intended query structure on any input and
detects attacks by comparing it against the structure of the
actual query issued [21].

AMNESIA, as a combined approach, is a model-based
technique that combines the static and dynamic analysis for
detection and prevention of SQLI attacks [3]. In the static
phase, to build the models of the SQL queries that are
generated at points of access to the database, AMNESIA uses a
static analysis. In the dynamic phase, AMNESIA intercepts all
the SQL queries before they are sent to the database and checks
each query against the statically built models. Queries that
violate the model are identified as SQLI attacks. The accuracy
of AMNESIA depends on the static analysis stage.
Unfortunately, certain types of complicated codes and/or query
generation techniques make this step less precise and generate
both false positives and negatives [22].

As mentioned above, several approaches for detection of
SQL injection were developed. The literature survey
emphasizes on the machine learning techniques which are
relevant to our proposed system. Valeur et al. [23] proposed an
intrusion detection system capable of detecting a variety of
SQL injection attacks. Profiles of normal access to the database
are built using statistical methods. At runtime, queries that do
not match any built model are identified as a possible attack.
As with most learning-based anomaly detection techniques, the
system requires a training phase prior to detection. The main
problem of this technique besides the false positives and
negatives is its execution and storage overhead, due to
difficulty in training on all the possible normal benign queries
with normal behavior [24].

In [9], the authors proposed an SQLI detection technique
in adversarial environments by K-centers. They introduced a
new online learning technique in which samples are learned
one by one, and as a result, number and centers of the clusters
are adjusted accordingly. Therefore, the K-centred technique
can adapt to different kinds of attacks. The experimental results
show that their method has a satisfying result on the SQLI
attacks detection in the adversarial environment. The main

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

131 | P a g e

www.ijacsa.thesai.org

drawback of their method is that it must receive a true label of
each statement after classification [25]. The concept of pattern
classifiers to detect injection attacks and protect web
applications is introduced in [24]. HTTP requests are captured
and converted into numeric attributes. Numeric attributes
include the length and the number of keywords of parameters.
Using these attributes, the system classifies the parameters by
Bayesian classifier to judge whether the parameters are
injection patterns or not. The main drawback is that the system
depends on limited types of features.

The major contributions of the work in [26] are the
proposal of a novel method based on the genetic algorithm
applied to SQLI attack detection task and correlation of a
number of detection tools altogether with the novel method. In
this work, the authors prove that correlating several sources of
information and then performing reasoning on the correlated
information can improve the results of attacks detection. The
main disadvantage of this algorithm is the overhead in
performance and storage caused by the correlation approach.

The implementation of Artificial Neural Networks (ANN)
as a biologically inspired computing is investigated in [2] to
detect SQLI attacks. Multilayer Feed forward Networks
(MLN) was used in the implemented system. It has the ability
to learn and store the empirical knowledge, the nonlinearity
nature of the neural networks, the ability to generalize the
solutions and to adapt when the context changes, and suitable
computational performance. The limitations include depending
on the appearance of certain SQL keywords along with
suspicious characters without considering the relative order
between them. For this reason, despite the different order of the
keywords, if a normal signature contains many keywords and
suspicious characters that often appear together in an SQLI, it
is highly likely to be misclassified. Another work, related to
ANN-based SQLI detection, is introduced in [27, 28]. It
depends on limited SQL patterns for training so it is
susceptible to generate false positives.

TF-IDF has been used in [8] for weight calculation of
tokens to evaluate the performance of three machine learning
approaches: SVM, Naive-Bayes, and K-NN. This method has
low computation time complexity but susceptible to
generating false positives [9]. Furthermore, Gene Expression
Programming (GEP) for detection of SQLI is discussed in [29].
At the beginning, chromosomes are generated randomly. Then,
in each iteration of GEP, a linear chromosome is expressed in
the form of expression tree and executed. The fitness value is
calculated and termination condition is checked. The best
individual is preserved through the next iteration. Afterward,
the populations are subjected to genetic operators with defined
probability. New individuals in temporary population
constitute the current population. Classification accuracy
received from GEP depicts great efficiency for SQL queries
constituted from 10 to 15 tokens. For longer statements, the
averaged FP and FN is approximately 23%.

Among the approaches, genetic algorithm for detection of

SQLI is proposed in [30]. In this technique, levels of SQLI are
detected using template matching. The ultimate goal of the
genetic algorithm is to optimize the matching rules of SQLI
queue in the template library. These rules are in the form of IF
(condition) THEN (execution); where conditions refer to attack
sequence matches. However, the algorithm relies on template
sequence to define SQLIA. Therefore, the system fails to detect
the attacks of different sequences that are not included in the
template library.

The main objective of this paper is to propose a combined
approach where FRBS and the genetic algorithm can be used
together to improve the accuracy of the system for detection of
SQLI, consequently, new SQLI attacks can be processed and
detected. To the best of our knowledge, there is no previous
work that uses FRBS for detecting SQLI attacks. To enhance
the accuracy of learning capability, we extend FRBS with the
genetic algorithm to find the most suitable rules for FRBCS.

III. PROPOSED SQL INJECTION DETECTION SYSTEM USING

FUZZY GENETIC

This paper introduces a GA based method to generate a
fuzzy rule base for SQLI detection. With the specific structure
of the chromosome, the GA operations and the adequate fitness
function, the proposed method produces a fuzzy rule base
(FRB) with proper rules. Designers usually cannot guarantee
that the fuzzy control system designed with trial-and-error for
building fuzzy rules has a reliable performance. Fig. 1
illustrates the flow diagram of the proposed system.

In this work, the fuzzy rule base is tuned automatically by
GA, known as Genetic Fuzzy System (GFS). The fuzzy logic
produces controllers that are suitable for dealing with
uncertainty and imprecision. Second, fuzzy behaviors can be
conveniently synthesized by a set of IF-THEN rules using
easy-to-understand linguistic terms to encode expert
knowledge. Finally, the interpolative nature of fuzzy systems
helps express partial and simultaneous simulations of SQLI
features, and the smooth transitions between these features
[30].

GA starts with a population of randomly generated
chromosomes, and advance towards better chromosomes by
applying genetic operators inspired by the genetic process
occurring in nature. The population undergoes evolution in a
form of natural selection. During successive iterations, called
generation, chromosomes in the population are evaluated for
their adaptation as solutions, and on the basis of this
evaluation, a new population of chromosomes is formed using
a selection mechanism, crossover, and mutation operators. A
fitness function must be devised for each problem to be solved.
Each chromosome is evaluated using the fitness function,
returning a single numerical value. The probability of selection
of a certain chromosome is directly proportional to its fitness
function [31]. A GA-tuned fuzzy system with seven inputs and
one output will be illustrated to explain the SQLI detection
process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

132 | P a g e

www.ijacsa.thesai.org

Fig. 1. Proposed SQL Injection Detection System

A. Extracting SQLI features from dataset

The SQLI attack keywords are the popular keywords
in SQL language which are generally used in order to
perform operations on the tables inside a given SQL
database. This approach extracts tokens (keywords) which
consist of specific terms of malicious web code as features.
Tokenization is a process of breaking a sentence into a list of
words. In other words, a tokenizer parses a sentence into a list
of tokens. Based on these tokens, the system extract the
features, and represent each query as a sequence of numbers,
each number represents one of the features mentioned below
[2] [8] [9] [27] [26].

 1f : Frequency of special characters (dangerous

characters) like (--, #, /*, ', '', ||, \\, =, /**/,@@).

 2f : Frequency of special tokens (dangerous tokens)

like (rename, drop, delete, insert, create, exec, update,
union, set, Alter, database, and, or,

information_schema, load_file, select, shutdown,
cmdshell, hex, ascii).

 3f : Frequency of punctuations like (<, >, *, ; , _, -, (,

), =, {, }, @, ., , &, [,], +, -, ?, %, !, :, \, /).

 4f : Frequency of SQL tokens like (where, table, like,

select, update, and, or, set, like, in, having, values, into,
alter, as, create, revoke, deny, convert, exec, concat,
char, tuncat, ASCII, any, asc, desc, check, group by,
order by, delete from, insert into, drop table, union,
join).

 5f : Length of SQL statement.

 6f : Frequency of spaces within the parameter of the

query, which leads to the possibility of attacks.

 7f : Existence of statements that always result in true

value, for example "1=1" or "@=@" or "124=124".

The appropriate selection of these features plays a crucial
role in several aspects of the design of robust and feasible
SQLI detection systems. The rationale for choosing these types
of features is its ability to identify most of SQIA types like
tautologies, union, piggybacked, illegal/logically incorrect,
alternate encodings and stored procedures which are treated the
same as SQL queries. Other features can be included to
increase the scalability of the system to detect new malicious
code. In addition, by reducing the number of features (by
eliminating redundant or irrelevant features), the performance
of rule induction system can be improved as well as the
classification performance of the rules produced.

B. K-means clustering

To transfer the extracted numerical features (all mentioned
above features except the 7

th
 feature into linguistic terms

low (L), medium (M) and high (H); the system utilizes K-
means clustering algorithm. k-means is one of the simplest
unsupervised learning algorithms that solve the well-known
clustering problem. The procedure follows a simple
and easy way to classify a given data set through a certain
number of clusters (assume k clusters) fixed Apriori. Let

},...,,{ 21 nxxxX  be the set of data points, that represents

the  61,...,ifi  values across the queries and

},...,,{ 21 nvvvV  be the set of initial centers. Algorithmic

steps [32, 33] for k-means clustering are:

1) Randomly select k cluster centers, k =3 in our case.

2) Calculate the distance between each data point and

cluster centers.

3) Assign the data point to the cluster center whose

distance from the cluster center is the minimum of all the

cluster centers.

4) Recalculate the new cluster center:

 









ic

j i

i

i x
c

v
1

1
 , where ci represents the number of data

points in cluster.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

133 | P a g e

www.ijacsa.thesai.org

5) Recalculate the distance between each data point and

the new obtained cluster centers. If no data point is reassigned

then stop, otherwise repeat from step 3. This algorithm aims at

minimizing an objective function, in this case, a squared error

function.

 





k

i

c

j ji

i

vxVJ
1

2

1
)()(, (1)

ci is the number of data points in ith cluster, and k is the
number of cluster centers.

C. Fuzzy Logic System

Owing to low computational requirement and capability of
modeling human perception, fuzzy Logic (FL) is an efficient
and flexible method for managing degrees of uncertainty in
attack detection. Problems can be described in natural
descriptions, linguistic terms, rather than the numerical values.
The FL system consists of (i) fuzzifier that takes input values
and determines the degree to which they belong to each of the
fuzzy sets via membership functions (MFs); (ii) fuzzy
inference system that defines a non-linear mapping of the input
data vector into a scalar output, using fuzzy rules and (3)
defuzzifier that maps output fuzzy sets into a crisp number
[34]. A fuzzy set [35] is defined as [2]:

        1,0,|,  xXxxxD DD  , (2)

where X represents the universal set, x is an element of X, D
is a fuzzy subset in X and μD(x) is the membership function of
fuzzy set D. A membership function is a curve that defines
how each point in the input space is mapped to a membership
value (or degree of membership) between 0 and 1 [35].

Next we will fuzzify the input (features of SQLI) and the
output (probability of injection), i.e. input and output are
mapped into a set of fuzzy partitions. Here, a seven-input
single-output fuzzy system is used, which is given by

nm RZRUf : , where
71 UUU  is the input

space and Z is the output space. Three fuzzy variables
including ‘low’, ‘medium’ and ‘high’ (L, M, H) are used to
describe the features. Their respective MFs (µA) [36] are
triangular function calculated as:

)0),,max(min(),;(

bc

xc

ab

ax
caxf










, (3)
where a, b and c are the outputs of the k-mean clustering

that represent lower, center and upper limits of a cluster
respectively. To achieve overlap between the membership
functions (overlapped fuzzy-sets) of each feature, the system
makes an intersection with 15% -20% between the consecutive
MFs.

Once the system acquires the fuzzy descriptions of the
features distance, the Mamdani rule base (fuzzy reasoning) can
be built to make an inference of detection of SQLI. Fuzzy
reasoning, which is formulated by the group of fuzzy IF–
THEN rules, presents a degree of presence or absence of
association or interaction between the elements of two or more
sets. In the proposed system, reasoning is carried out through
the following rules:

 If more than half input variables are ‘H’, the output
variable is set to ‘H’.

 If both 7f and
2f are ‘H’, the output variable is set to

‘H’.

 If both 7f and
1f are ‘H’, the output variable is set to

‘H’.

 If both
1f and

2f are ‘H’, the output variable is set to

‘H’.

 If 7f ,
2f and

1f are ‘H’, the output variable is set to

‘H’.

 If any of 7f ,
2f and

1f is ‘H’, the output variable is set

to ‘M’.

 If both
1f and

2f are ‘M’, the output variable is set to

‘M’.

Other rules are obtained using the Cartesian product
method of the seven features; which is to consider all the
combinations of antecedent linguistic values and generate a
fuzzy rule for each combination. The output variable of each
case depends on the nature of dataset. The rules altogether deal
with the weight assignments impliedly in the same way that
humans think. The fuzzy inference processes all of the cases in
a parallel manner, which makes the decision more reasonable.

The output of the fuzzy system is the probability of SQLI
(PSQLI) and it is also described by three fuzzy variables,
including ‘high’, ‘medium’ and ‘low’ with triangular MFs. The
outputs of fuzzy values are then defuzzified to generate a crisp
value for the variable. The most popular defuzzification
method is the centroid, which calculates and returns the center
of gravity of the aggregated fuzzy set [36] and is given by














s

r

)r(

s

r

)r()r(

1

1 , (4)

where
)(r is the center of the suggested output at rule r, n

is the number of rules and
)(r is the MF at rule r. The

obtained crisp value is then mapped to its range (low, medium,
high) to indicate the potential of SQLI attack.

D. Rule Induction using Genetic Algorithm

In general, a rule base can be constructed by human experts
or by machine learning techniques from datasets. The machine
learning approach is useful where it is desired to extract rules
from the analysis that can be related to conceivable human
behavior. The essential feature of a GA is that a population of
proposed solutions (coded using a “chromosome”) is modified
using biologically inspired operators (especially crossover and
mutation), and incorporating a random component, to explore a
solution space [37]. Formally, let P(g) and S(g) be parents and
offspring in generation g; the GA is working as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

134 | P a g e

www.ijacsa.thesai.org

TABLE I. GENETIC PARAMETERS

Procedure (GA)
BEGIN
 g ←0

Initialize P(g)
Evaluate P(g)
While (not matching the ending conditions)
Recombine P(g) to yield S(g)
Evaluate S(g)
Select P(g+1) from P(g) and S(g)

 g ← g +1
END
In general, the methods that combine the genetic and fuzzy

approaches for generation of knowledge bases (KBs) can be
divided into two main groups: genetic tuning and genetic
learning [13]. If there exists a KB, we apply a genetic tuning
process for improving the FRBS performance while preserving
the existing RB. That is, to adjust FRBS parameters for
improving its performance, maintaining the same RB. The
second possibility is to learn KB components (an adaptive
inference engine can be included). That is, to involve the
learning of KB components among other FRBS components.
Our system employs the genetic learning to learn the flexible
inference engine.

The first step in applying GAs to the problem of rule
learning is to map the initial rules (initial RB) into a suitable
representation for genetic operations. The system that has been
used is Michigan GA [13]. In Michigan GA, the population
consists of multiple individuals, each individual codifies
single rule, and the whole rule set is provided by combining
several individuals in a population. For this problem, the
variables (genes) are the linguistic values of each feature (low,
medium, high). Many trials of different values of GA
parameters were performed. Finally, the best-evaluated values
of parameters were chosen as mentioned in Table I. The
codification scheme and the fitness calculation are described
below.

1) Chromosome Codification
The pre-selection of candidate rules (initial RB) used here

allows each rule to be uniquely identified. The identification
induces a simple binary codification of each rule in each
chromosome and, consequently, the use of simple processes to
create and handle the chromosomes. Fig. 2 illustrates a
chromosome with 15 bits, represented in binary system, where
each consecutive two bits from the position 1 to position 12

indicate a feature if (i=1 to 6) with "00" for low, "01" for

medium and "11" for high linguistic term; whereas the bit at

position 13 identifies a feature 7f with values "0" to non-

existing and "1" for existing and finally the last two bits
represents PSQLI with "00" for low, "01" for medium and "11"
for high linguistic term.

f 1 f 2 f 3 f 4 f 5 f 6 f 7 PSQLI

11 00 10 11 01 01 1 11

Fig. 2. Example of codification of rules

2) Fitness Function
In order to use genetic algorithms as the search procedure,

it is necessary to define a fitness function which properly
assesses the rules. The fitness function must be able to
discriminate between the legal and illegal classification of
queries. Finding an appropriate function is not a trivial task,
due to the variations associated with the SQLI types. In
general, the quality of rules in an FRBS is one of the
parameters that favor accuracy, while the number of rules is the
parameter that favors transparency, an FRBS with a small
number of rules can make the model easily understood by the
user. Several approaches in the field of FRBS reduce the FRB
size at the expense of accuracy [38]. In this work, the primary
objective is to enhance the accuracy; therefore, the numbers of
rules are left as they are.

In this work, the method suggested by the authors in [39] is
refined to improve the evaluation step performed by the GA in
order to optimize the rules in the final FRB during the search
process. The fitness value is calculated using the Correct
Classification Rate (CCR) represented by each chromosome.

 Fitness = CCR =
BA


 , (5)

where A is the total number of attack records, B is the total
number of normal records,  is a total number of attack

records correctly identified as attack and is the total number

of normal records incorrectly classified as attack (False
positive).

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed system, a
desktop application that integrates Java and MATLAB has

Description Value Parameter

Input data type to the fitness function Bit string Population type
Cartesian product of all features Randomly The initial population

Number of chromosomes in each generation 200 -1458 Population size

The highest ranking solution's fitness is reaching Satisfying criteria Number of generation

Length of unsigned bit string for each variable
2 bits for all features

+ 1 bit for feature7 + 2 bits for the output
Gene length

(2×6)+1+2 15 bits Chromosome length

Default, combine two parents to form children in the next generation 0.5 Probability of cross-over

Default, apply random changes to individual parents to form children 0.015 Probability of mutation
A number Tour of individuals is chosen randomly from the population and the best

individual from this group is selected as parent.
Tournament Selection function

The objective is to maximize detection ratio between parents and children. Maximize attack detection Fitness function

Rule antecedent part Consequent part

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

135 | P a g e

www.ijacsa.thesai.org

been implemented. The dataset is downloaded from testbed
[40] which is used to evaluate Amnesia approach in [3]. The
test bed has two sets of inputs: "legit" set, which consists of
legitimate inputs for the application, and "attack" set, which
consists of attempted SQLIAs. All types of attacks were
represented in this set except for multi-phase attacks. The
multi-phase attacks include inference attacks and
illegal/logically incorrect queries, such attacks require human
intervention and interpretation. The testbed includes seven
folders, three of them are used for training and the rest for
testing. The result is analyzed using: (1) True negative (TN),
which means the label of the SQL statement is normal and
the classifier has classified it as normal. (2) True positive
(TP) means that the classified label is the same as the true
label which is abnormal. (3) False negative (FN) means that
the classifier has made a classification mistake concerning the
abnormal SQL statements. (4) False positive (FP), which
means that a normal statement is misclassified to be an
abnormal statement [9]. The tests are conducted according to
Table I, and the fuzzy parameters are set as membership
function type is triangular with 20% overlap.

The first experiment was conducted on the three different
training sets to investigate the performance of the proposed
system under both original Cartesian rules and enhanced
version. The original Cartesian rules were the initial rules of
the GA formed by all combinations of the seven features that
have been previously mentioned in Section 3. Whereas the
enhanced version contains the Cartesian version plus seven
rules that contain only three features (f1, f2, and f7), which have
the higher impact on SQLI detection. Each other individual
rule in the original Cartesian set contains all the seven features
together.

TABLE II. RESULTS OF SQLI DETECTION OF TRAINING SET

Training

Folder's

subject

No. of

attacks

URLS

No. of

legit

URLS

Original

Cartesian

Rules

(1458 rules)

Enhanced

Cartesian rules

(1465 rules)

TP% FP% TP% FP%

Bookstore 3033 608 76.5 0 95.8 0.5

Checkers 3442 1359 67.3 0 96.8 1.2

Classifieds 3346 576 69.8 0 95.0 0

TABLE III. RESULTS OF SQLI DETECTION OF TESTING SET

Testing

Folder's

subject

No. of

attacks

URLS

No. of

legit

URLS

Original

Cartesian

Rules

(1458 rules)

Enhanced

Cartesian rules

(1465 rules)

TP% FP% TP% FP%

Events 3002 900 89.7 0 100 1.5

Employee 3497 660 89.9 0 100 0.6

Office Talk 3612 424 72.6 0 94.2 1.1

Portal 2968 1080 90.8 0 100 2.6

TABLE IV. RESULTS OF SQLI DETECTION OF TESTING SET (TOTAL OF

13079 ATTACKS, 3016 LEGIT URLS OF THE FOUR TESTING FOLDERS)

Type of population
Population

size

Membership

function of

20%

intersection

Membership

function of

15%

intersection

TP% FP% TP% FP%
Random 200 79.7 0 76.5 0

Random 600 81.8 0 77.6 0

Random 1000 82.6 0 80.3 0

Original Cartesian 1458 84.5 0 82.8 0

Enhanced Cartesian 1465 98.38 1.6 98 1.7

Table II indicates that the system can achieve high accuracy
using the enhanced Cartesian rule with 96.8% TP for the attack
set and 1.2% FP for the legit set of the Checkers dataset. The
enhanced Cartesian rules improve the detection accuracy of
attacks with a slightly increased false positive rate for the legit
set. One reason for this increase is the fact that using the
enhanced version activates some rules concerned with f1 which
exists with high frequency in normal URLs. For example, the
frequency of a character like ‘=’ can be high in normal URLs.

When compared to the results in Table III, the enhanced
Cartesian rules achieve higher accuracy in detection of SQLI in
the three folders of the testing set with average increase of 3%
TP and average decrease of 1% TN. One explanation of such
result is that there are some attack URLs like
“Password='&ret_page='''''&querystring='” resulted after
preprocessing stage in the training set. Such URLs do not
consider most of SQLI features; thus they are not matched with
any rule resulting in false negative (wrong classification).
Regarding the Office Talk testing set, it has been noticed that
the obtained results have the same range as the results of the
training set due to the similarity of the URLs structure.

From the obtained results in table IV, it is confirmed that
the proposed system provides good accuracy on the subject of
increasing population size (number of initial rules). In general,
increasing the population size leads to increasing the diversity
of chromosomes. This diversity results in new offspring's in
each generation that gives rise to increasing accuracy.
However, increasing the number of rules increases the
overhead. Furthermore, the experiments reveal that the
system’s accuracy can be improved as the level of fuzzification
increases inside the membership function (intersection area). In
the case of increasing the intersection by 5%, the accuracy
changed by 2-4%. One explanation for this result is that the
system’s ability to deal with uncertainty is directly proportional
with increasing the fuzzification level. Increasing the
intersection level between membership functions for each
feature will increase the ability of the fuzzy logic system to
infer the result from the activated rules through fuzzy logic
operation (min, and max).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

136 | P a g e

www.ijacsa.thesai.org

TABLE V. COMPARATIVE STUDY

Methods Correct Responses

The proposed system 98.4%

Neural Network system [28] 96.8%

In the last experiment, the accuracy (correct responses) of
the proposed system that employs genetic fuzzy algorithm to
detect SQLI and the comparative algorithm suggested by
N. Sheykhkanloo [28] is given in Table V. The comparative
system utilizes an effective pattern recognition Neural Network
(NN) model for detection and classification of the SQLI
attacks. From the illustrated results, our system outperforms the
other one by 1.5%. In general, the correct responses of the
neural network system depend mainly on the number of hidden
layers that is commonly determined by the user. On contrast,
the accuracy of our system depends on the number of utilized
features and consequently the constructed rules, which
characterize the flexibility factor for our system. Furthermore,
the initialization parameters of GA can affect the performance
of our system. These parameters are configured in the learning
phase (offline processing), which consumes more time. In the
testing phase (online processing), the computation time for
detection is reasonable and acceptable. The duration is about
217 sec for 13079 attacks, i.e. 16.6 ms for one attack.

V. CONCLUSION

In this article, we proposed a genetic- fuzzy rule-based
classification system for the SQLI attack detection. In the
proposed system, the SQL statement is treated as a feature
vector that characterizes the SQLI attack keywords. The
genetic algorithm is adapted for FRBCS to improve the quality
of matching implemented by each rule by means of adjusting
FRBS parameters to increase the generalization power of the
classifier. The quality of the proposed system depends mainly
on the selection of the attributes used to build the feature
vector. It has the potential to give a higher accuracy when
comparing to other solutions that use SQL keywords separately
for the problem of SQL injection. For new patterns that the
proposed system cannot recognize, the system can be retrained
so that it can detect the new patterns without a significant
increase in processing time. The solution can be used in
combination with positive logic based filtering as in the
prototype implementation. We have presented the evaluation
methodology and reported the results that prove that: (i) The
proposed method outperforms other state-of-the art NN
method. (ii) Enhanced Cartesian of GA population type
improves detection results. Future work includes investigating
more features to enhance the performance of the detection, and
the ability to automatically reduce the number of rules in the
rule base to improve the detection.

REFERENCES

[1] OWASP. (1 November, 2015). O.W.A.S.P. Top 10 Vulnerabilities.
Available: https://www.owasp.org/index.php/Top_10_2013-Top_10.

[2] A. Moosa, "Artificial neural network based web application firewall for
SQL injection," World Academy of Science, Engineering & Technology,
vol. 64, no. 4, pp. 12-21, April 2010.

[3] W. G. Halfond and A. Orso, "AMNESIA: analysis and monitoring for
neutralizing SQL-injection attacks, " Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, pp. 174-
183, 2005.

[4] W. Y. Win and H. H. Htun, "Detection of SQL Injection Attacks by
Combining Static Analysis and Runtime Validation," International
Conference on Advances in Engineering and Technology, pp. 95-99,
Singapore, March 2014.

[5] V. Nithya, R. Regan, and J. Vijayaraghavan, "A survey on SQL injection
attacks, their detection and prevention techniques," International Journal
of Engineering and Computer Science, vol. 2, issue 4, pp. 886-905, 2013.

[6] A. Tajpour, S. Ibrahim, and M. Masrom, "SQL injection detection and
prevention techniques," International Journal of Advancements in
Computing Technology, vol. 3, no. 7, pp. 82-91, 2011.

[7] S. Rohilla and P. K. Mittal, "Database security by preventing SQL
injection attacks in stored procedures," International Journal of Advanced
Research in Computer Science and Software Engineering, vol. 3, no. 11,
pp. 915-919, 2013.

[8] R. Komiya, I. Paik, and M. Hisada, "Classification of malicious web code
by machine learning," 3rd International Conference on Awareness
Science and Technology, pp. 406-411, China, Sept. 2011.

[9] X.-R. Wu and P. P. Chan, "SQL injection attacks detection in adversarial
environments by K-centers," International Conference on Machine
Learning and Cybernetics, pp. 406-410, China, 2012.

[10] J. G. Carbonell, R. S. Michalski, and T. M. Mitchell, "An overview of
machine learning," in Machine learning, ed: Springer, pp. 3-23, 1983

[11] B. Hammer and T. Villmann, "How to process uncertainty in machine
learning?," European Symposium on Artificial Neural Networks, pp. 79-
90, Belgium, 2007.

[12] L. S. Riza, C. Bergmeir, F. Herrera and J. M. Benítez, "Frbs: fuzzy rule-
based systems for classification and regression in R," Journal of
Statistical Software, vol. 65, no. 1, pp. 1-30, 2015.

[13] F. Herrera, "Genetic fuzzy systems: taxonomy, current research trends
and prospects," Evolutionary Intelligence, vol. 1, no. 1, pp. 27-46, 2008.

[14] A. Sadeghian, M. Zamani and S. Ibrahim, "SQL injection is still alive: a
study on SQL injection signature evasion techniques," International
Conference on Informatics and Creative Multimedia, pp. 265-268,
Malaysia, 2013.

[15] G. Wassermann and Z. Su, "An analysis framework for security in Web
applications," Proceedings of the FSE Workshop on Specification and
Verification of component-Based Systems, pp. 70-78, 2004

[16] G. Buehrer, B. W. Weide and P. A. Sivilotti, "Using parse tree validation
to prevent SQL injection attacks," ACM Proceedings of the 5th
International Workshop on Software Engineering and Middleware, pp.
106-113, 2005.

[17] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. Venkatakrishnan,
"CANDID: preventing sql injection attacks using dynamic candidate
evaluations," Proceedings of the 14th ACM Conference on Computer
and Communications Security, pp. 12-24, 2007.

[18] S. Ali, A. Rauf, and H. Javed, "Sqlipa: An authentication mechanism
against sql injection," European Journal of Scientific Research, vol. 38,
no. 4, pp. 604-611, 2009.

[19] Y. Huang, S. Huang, T. Lin, and C. Tsai, "Web application security
assessment by fault injection and behavior monitoring," Proceedings of
the 12th international conference on World Wide Web, pp. 148-159,
Hungary, 2003.

[20] L. K. Shar and H. B. K. Tan, "Defeating SQL injection", Computer,
vol. 46, no. 3, pp. 69-77, March 2013.

[21] A. Tajpour and M. JorJor Zade Shooshtari, "Evaluation of SQL injection
detection and prevention techniques," Second IEEE International
Conference on Computational Intelligence, Communication Systems and
Networks, pp. 216-221, UK, 2010.

[22] R. Dharam and S. G. Shiva, "Runtime monitors to detect and prevent
union query based SQL injection attacks," Tenth International
Conference on Information Technology: New Generations, pp. 357-362,
USA, 2013.

[23] F. Valeur, D. Mutz and G. Vigna, "A learning-based approach to the
detection of SQL attacks," Proceedings of the Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pp. 123-140,
Austria, 2005.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

137 | P a g e

www.ijacsa.thesai.org

[24] E. H. Cheon, Z. Huang, and Y. S. Lee, "Preventing SQL injection attack
based on machine learning," International Journal of Advancements in
Computing Technology, vol. 5, issue 9, pp. 967-974, 2013.

[25] M. Kaushik and G. Ojha, "SQL injection attack detection and prevention
methods: a critical review," International Journal of Innovative Research
in Science, Engineering and Technology, vol. 3, issue 4, pp. 11370-
11377, April 2014.

[26] M. Choraś, R. Kozik, D. Puchalski, and W. Hołubowicz, "Correlation
approach for sql injection attacks detection," Advances in Intelligent
Systems and Computing, Springer, vol. 189, pp. 177-185, 2013.

[27] N. M. Sheykhkanloo, "Employing neural networks for the detection of sql
injection attack," Proceedings of the 7th International Conference on
Security of Information and Networks, pp. 318-323, UK, 2014.

[28] N. M. Sheykhkanloo, "SQL-IDS: evaluation of SQLi attack detection and
classification based on machine learning techniques," Proceedings of the
8th International Conference on Security of Information and Networks,
pp. 258-266, USA, 2015.

[29] J. Skaruz, J. P. Nowacki, A. Drabik, F. Seredynski and P. Bouvry, "Soft
computing techniques for intrusion detection of SQL-based attacks,"
Lecture Notes in Computer Science,Springer, Vol. 5990, pp. 33-42,
2010.

[30] J. Chen, L. Yang, H. Zhang, and Y. Liu, "A GA-based approach for SQL-
injection detection", Future Information Engineering, vol. 49, p.
291, 2014.

[31] A. Adriansyah and S. H. M. Amin, "Knowledge base tuning using genetic
algorithm for fuzzy behavior-based autonomous mobile robot,"
Proceeding of 9th International Conference on Mechatronics Technology,
pp. 120-125, Malaysia, 2005.

[32] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, "An efficient k-means clustering algorithm: analysis and
implementation," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 7, pp. 881-892, 2002.

[33] E. Forgey, "Cluster analysis of multivariate data: Efficiency vs.
interpretability of classification", Biometrics, vol. 21, no. 3, pp. 768-769,
1965.

[34] S. M. Saad, "Application of fuzzy logic and genetic algorithm in
biometric text-independent writer identification", IET Information
Security, vol. 5, no.1, pp. 1-9, 2011.

[35] I. Elamvazuthi, P. Vasant, and J. F. Webb, "The application of mamdani
fuzzy model for auto zoom function of a digital camera", arXiv preprint
arXiv:1001.2279, 2010.

[36] M. Abdulghafour, "Image segmentation using fuzzy logic and genetic
algorithms," Journal of WSCG, vol. 11,no. 1, pp.1-8, 2003.

[37] J. Ricketts, "Tuning a modified Mamdani fuzzy rulebase system with a
genetic algorithm for travel decisions," 18th World IMACS / MODSIM
Congress, Australia, pp. 768-774, 2009.

[38] M. E. Cintra and H. D. A. Camargo, "Fuzzy rules generation using
genetic algorithms with self-adaptive selection," IEEE International
Conference on Information Reuse and Integration, pp. 261-266, USA,
2007.

[39] R. B. Jadhav and M. B. B. Gite, "Real time intrusion detection with
fuzzy, genetic and apriori algorithm," International Journal of Advance
Foundation and Research in Computer (IJAFRC), Vol. 1, Issue 11, pp.
34-40, 2014

[40] Willian Halfond, 'Testbed', [Online]. Available: http://www-
bcf.usc.edu/~halfond/testbed.html. [Accessed: 16- JUNE- 2016]

