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Abstract—This survey looked at the methods used to solve 

multi-autonomous vehicle path-planning for an application of 

heavy traffic control in cities. Formally, the problem consisted of 

a graph and a set of robots. Each robot has to reach its 

destination in the minimum time and number of movements, 

considering the obstacles and other robots’ paths, hence, the 

problem is NP-hard. The study found that decoupled centralised 

approaches are the most relevant approaches for an autonomous 

vehicle path-planning problem for three reasons: (1) a city is a 

large environment and coupled centralised approaches scale 

weakly, (2) the overhead of a coupled decentralised approach to 

achieve the global optimal will affect the time and memory of the 

other robots, which is not important in a city configuration and 

(3) the coupled approaches suppose that the number of robots is 

defined before they start to find the paths and resolve collisions, 

while in a city, any car can start at any time and hence, each car 

should work individually and resolve collisions as they arise. In 

addition, the study reviewed four decoupled centralised 

techniques to solve the problem: multi-robot path-planning 

rapidly exploring random tree (MRRRT), push and swap (PAS), 

push and rotate (PAR) and the Bibox algorithm. The 

experiments showed that MRRRT is the best for exploring any 

search space and optimizing the solution. On the other hand, 

PAS, PAR and Bibox are better in terms of providing a complete 

solution for the problem and resolving collisions in significantly 

much less time, the analysis, however, shows that a wider class of 

solvable instances are excluded from PAS and PAR domain. In 

addition, Bibox solves a smaller class than the class solved by 

PAS and PAR in less time, in the worst case, and with a shorter 

path than PAS and PAR. 
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I. INTRODUCTION 

As a city’s population grows, the number of vehicle 
accidents increases (Fig.1), which may be caused by the 
personality of the driver, ignoring a disliked traffic regime, 
traffic congestion or variations in the speed of the vehicle. 

Therefore, moving vehicle control to a unified controlling 
system that optimises all vehicle preferences with respect to the 
surrounding traffic rules is one way to address part of the 
problem defined. Multi-robot path planning (MPP) is an 
abstraction of the problem of finding the complete optimal path 
from the start point to the target point for each robot with the 
minimum time and path length while considering the robotic 
constraints (obstacle avoidance) and inter-robotic constraints 
(collision avoidance). This survey studies the use of path-
planning approaches for MPP for a heavy traffic control 
problem through a brief review of existing approaches. In 
addition, it explores four of the main decoupling path-planning 
approaches. The first is a well-known optimisation technique 
for single-robot path planning and three are exact methods 
proposed in the literature. Rapidly exploring random tree 
(RRT)[1] is an optimisation technique that uses an exploring 
tree to find the goal and enhance the path for a single robot. An 
extension to the technique has been implemented in this 
survey, to fit the MPP definition. Push and rotate (PAR)[2] is 
an extension of push and swap (PAS)[3]. Both are used to 
solve any problem with two unoccupied vertices. They are 
built on two primitives: (1) push on meeting a robot if it has 
lower priority and (2) swap with it if it has higher priority. 
Bibox[4] is used to solve any bi-connected graph with two 
unoccupied vertices. It decomposes the problem into two 
smaller handles and original cycle and solves them by 
iteratively moving and locking finished robots and shrinking 
the problem size. MPP is a relevant problem in a wide range of 
domains including; automatic packages inside a warehouse [5], 
automated guided vehicles [6], planetary exploration [7],  
robotics mining [8], and video games [9]. 

This paper is organized as follows; after this brief 
introduction, the multi robot path planning problem is defined 
from literature in section II. In Section III, the four selected 
methods is described briefly, followed by Section IV with a 
discussion of their theoretical analysis. In Section V, the 
experiments are introduced with a comparative analysis 
between the selected methods on different types of instances. 
Finally, conclusions and future work is presented in Section 
VI. 
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(a) Number of driver licenses. 

 
(b)Number of accidents 

Fig. 1. The latest statistics for Riyadh city between 1410 and 1419 A.H from 

https://www.moi.gov.sa/wps/portal/Home/sectors/publicsecurity/traffic/traffic
riyadh 

II. PROBLEM STATMENT 

Wilson [10] proposed an efficient decision procedure for 
the solvability of 15-puzzles, 14-pebble with one unoccupied 
vertex without considering the number of moves. Therefore his 
solution required exponentially many moves. Kornhauser et al. 
[11] generalized Wilson solution to solve Pebble Motion on 
Graph (PMG) problem with n-1 pebble in O(n

3
) for the number 

of moves. In that work, they defined PMG for number of 
pebble < vertices. Resultantly a move consists of transferring a 
pebble to an adjacent unoccupied vertex. In this scenario, the 
problem is to decide whether one arrangement of the pebbles is 
reachable within shortest sequence of moves from another or 
not. The problem defined by Kornhauser et al. can easily 
mapped to Multi-robot Path Planning (MPP) problem. Mächler 
[12] found out the differences between PMG and MPP 
showing PMG models usually assume a central planner aiming 
to minimize a sequential execution of moves on the graph, 
there are mainly two distinctions in MPP models; (1) whether 
the robots execute in parallel or sequential, (2) whether there is 
a centralized planner or the planning is distributed. Therefore it 
can be easily concluded that the basic MPP is PMG. Several 
techniques have emerged in literature to solve sequential MPP. 
MPP with parallel moves (MPPp) can be defined as a chain of 
robots that can be moved simultaneously as long as there is an 
unoccupied vertex at the head on the chain. This particular 
problem was studied by Ryan in [13] where he separated 
subgraphs on the base of MPPp. Yu and LaValle [14] added 
the simultaneous rotation in fully occupied cycle (MPPpr) as 
natural result for parallel movement. One variant of PMG 
defined by Yu and Rus [15] allowed simultaneous rotation for 
sequential problem. They defined a problem of finding a 
sequence of simple moves and rotations that take initial 
configuration to the goal configuration thereby transforming 
into Pebble Motion with Rotation (PMR). PMR model varies 
from MPPpr in term that the robots are able to move in parallel 
in case of rotation in fully occupied cycle. The only 
precondition being that robots can move in sequence. To 
illustrate the problem, visualize a roadmap G = (V,E), which is 
a connected graph. Some important variables to be used are; R 

a set of robots,  an initial assignment of robots to vertices : 

RV, and a target assignment of robots to vertices : RV. 

The functions  and  are total, injective, and non surjective. 

The path is therefore defined as a map pi: +V . A path pi is 
feasible for a robot ri ∈ R if it satisfies the following properties: 

(1) pi(0) = (ri), (2) for each i, there exists a smallest ki
min ∈ + 

such that for all k >= ki
min

, pi(k) = (ri), (3) and for any 0 ≤ k < 
ki

min
 , (pi (k), pi(k+1)) ∈ E or pi(k) = pi(k+1). If pi(k) = pi(k+1), 

then the robot ri stays at vertex pi(k) between the time steps k 
and k + 1. We say that two paths pi, pj are in collision if there 

exists k ∈+ such that pi(k)=pj(k) (collision on a vertex, or 
meet) or (pi(k), pi(k+1)) = (pj(k+1),pj(k)) (collision on an edge, 
or head-on). The problem is to find set of paths P = {p1, … , 
pn} such that pi’s are feasible paths for respective robots ri’s 
and no two paths pi, pj are in collision. 

The MPP literature uses centralised and decentralised 
approaches [16]. Each approach can consist of coupled or 
decoupled robots. Furthermore, due to the basic definition of 
the problem as NP-hard [17], solution approaches can be 
categorised based on their completeness for exact and 
optimisation methods. 

In the coupled centralised path-planning approaches, robots 
act as single robots with multi-bodies and apply a classical 
single-robot path-planning algorithm. By integrating with 
complete search methods, such as A*, a coupled algorithm 
achieves complete and optimal solutions theoretically and 
probabilistically. In practice, however, the computational time 
is exponential with the dimension of the configuration space, 
thus, they are applicable only to small problems. Sharon et al. 
[18] introduced a new MRPP computing technique by 
designing the increasing cost tree (ICT) and increasing cost 
tree search (ICTS). The key idea is to create a snapshot of all 
robot information (initially the start point of every robot and 
the cost), represented as states in the ICT attached to the total 
cost. The tree is spanned for every possible action of every 
robot. The results show better running time and success rate in 
large grids. 

In the coupled decentralised path-planning approaches, 
robots apply a distributed MRPP algorithm, decomposing the 
problem into a set of single-robot problems, which greatly 
reduces the complexity of each problem and enables the use of 
single-robot path planners to solve these smaller problems. 
However, decomposing the problem in a decentralised fashion 
requires an information sharing and coordination mechanism. 
The deconfliction technique proposed by Scerri et al. [19] aims 
to resolve conflicts before they happen. Although this 
technique produces conflict-free paths, the required 
synchronisation between robots produces an additional delay. 
Trodden and Richards [20] propose an improvement in the 
updating method without synchronisation. In each iteration, 
one robot re-plans its path and sends it to others, which allows 
one robot to re-plan in each iteration in order, while all others 
continue executing their plans to reduce the waiting time. 
However, a robot with high priority for re-planning has to wait 
for its turn, which increases the waiting time, and thus, the time 
cost. 

In the decoupled centralised path-planning approaches, 
paths are planned in two steps: in the first step, each robot’s 
path is calculated individually, and in the second step, the 
space-time position is calculated to avoid collisions. The first 
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step can be fully distributed while in the second step, there 
should be communication between robots and priorities may 
apply in this step. Although these algorithms are distant-
optimal, they lose completeness since the paths are calculated 
completely in the first step, which may contain some conflicts. 
David [21] proposes a global centralised reservation table 
where the row for robot i is <location, time>, to avoid 
conflicts. The table should not contain duplicated values. 
Although this approach reduces the calculation time, it does 
not provide a completeness guarantee. A similar reservation 
table has been used by Stone [6] to solve the car junction 
problem. Khorshid et al. [22] devised the graph-to-tree 
decomposition algorithm (GTD). Based on a tree-like graph 
representation of the problem, they introduced swapping to 
solve a conflict whenever it occurs. 

In conclusion, decoupled approaches run relatively fast, 
scale well for larger problems but their optimality and even 
completeness are not always guaranteed [23]. In a coupled 
approach, the global optimal can be achieved with an overhead 
of time and computing. Hence, the most relevant problem 
structure for a heavy traffic control application is one that can 
be solved by decoupled centralised approaches for three 
reasons: 

 A city is a large environment and coupled centralised 
approaches scale weakly. 

 The overhead of a coupled decentralised approach to 
achieve the global optimum will affect the time and 
memory of other robot, which is not important in city 
configuration. 

 A coupled approach supposes that the number of robots 
is defined before it starts to find the paths and resolve 
the collisions. However, in a city, any car can start at 
any time and hence, the car should work individually 
and resolve collisions as they arise. 

III. METHODS 

When it comes to decoupled centralised approaches, the 
methods can be classified by their completeness. The exact 
methods can solve a subclass of MPP completely with a 
guarantee of the solution. However, despite all of this, their 
limitation is that they work on only one subclass of the 
problem. Optimisation methods work on a wider class of the 
problem than the exact methods and can yield advantage in 
several aspects such as the path length, execution time or any 
other metric. Admittedly, optimization methods are not 
guaranteed to find the solution if there is one. 

A. Rapidly-exploring Random Tree (RRT) 

A rapidly exploring random tree (RRT) algorithm 
is designed to efficiently search nonconvex, high-dimensional 
spaces by randomly building a space-filling tree. The tree is 
constructed incrementally from samples drawn randomly from 
the search space and is inherently biased to grow towards large 
unsearched areas of the problem. RRTs were developed by 
LaValle, et al [1]. They easily handle problems with obstacles 

and differential constraints (nonholonomic and kinodynamic). 
RRT iteratively expanded by randomly selecting a point qrand in 
the search space, finding the nearest vertex qnearest to that point 
implies to the tree, and adding new point qnew toward the 
random point with the edge length equals to    (Fig.2). 

1) iRRT for multi-robots 
iRRT is a simple Java program developed by Karaman and 

Frazzoli [24]. It is dedicated for a single-robot configuration, 
based on the functionality provided by the iRRT planners. The 
following extensions are implemented incrementally to fit 
multi-robot RRT (MRRRT) requirements. 

Threads are used to simulate the robots in iRRT to extend 
the iRRT path planner to support a multi-robot configuration. 
In addition, robots search based on the A* heuristic where f(n) 
= min (d + h), such that d is the distance from the start point to 
n and h is the estimated distance from n to the goal point. A 
collision is detected by evaluating the slope of a selected 
random point qrand. The technique used in MRRRT with 
collision avoidance is asynchronous communication between 
robots through accessing a synchronized shared data centre 
(server). Each robot maintains the paths of the other robots – 
they are uploaded onto the server – while planning. Every 
robot migrates its final path in the server at the end; hence, 
there is no waiting and no master robot is required. On this 
basis, collisions can be avoided by checking iteratively all pairs 
of vertices in every uploaded path. If the randomly selected 
point qrand is in the x-axis range and y-axis range between two 
vertices, then all vertices with the same slope as the edge 
linking those two vertices with qrand are invalid (Fig. 3). In the 
experiments, both MRRRT – without heuristics – and 
MARRT* have been evaluated. Fig. 4 shows part of the results. 

B. Kornhauser’s work 

Kornhauser, et al. [11] in their work have provided 
complete centralized planned procedure to solve all 
biconnected pebble motion problems with at least one 
unoccupied vertex. The solutions he has created with upper and 
lower bounds of O(n

3
) moves required on graphs with n 

vertices and O(n
3
) time. However, there is no a single 

algorithmic description of Kornhauser procedure in the 
literature. Instead, some works are focused on implementing 
and improving Kornhauser idea. Moreover, Kornhauser proves 
a feasibility test of the problem instance in the form of a tree of 
biconnected (non-separable) components that are linked by 
chains of vertices with degree two (called isthmuses) as; “It is 
impossible for robots to swap if they are separated by an 
isthmus longer than the number of unoccupied vertices minus 
two”. 

 

Fig. 2. RRT expansion method 
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Fig. 3. Validate RRT expansion to avoid collision, if (yi-y1/xi-x1)= (yi-y2/xi-

x2) AND xi ∈ {x1,x2} AND xi ∈ {y1,y2} then invalid expansion 

 

 

 

 
Fig. 4. MARRT paths (left) versus MARRT* paths (right) 

To clarify Kornhauser result, consider sequential moves 
only, Fig.5 shows an instance containing both solvable and 
unsolvable instances based on Kornhauser condition. Note that 
it is possible for any of the robots in A1 = {a1…,a6} to swap 
their positions. The same goes true for the robots in A2 = 
{a7,a8} as they can exchange their positions too. For example, 
robot 5 and robot 6 can swap their positions while robot 7 and 

robot 8 can swap their position. The condition to be met is that 
no robot from A1 can exchange position with any robot in A2. 
To understand this, again referring to Fig. 5, if robot 7 wants to 
swap its position with robot 6, it can be possible only if they  
move to either the component at the left side of the vertex 
occupied by robot 6 or to the component at the right side in 
order to execute swap operation. This swapping would 
invariably fail due to the reason that during the swapping 
robots passing the bridge to the left component would stack all 
robots on it. Hence essentially after this, there will be no 
possibility to swap unless there are at least enough free vertices 
to fit all opponent robots on the bridge as well as the two 
swapping robots. The same thing would happen if the 
swapping robots pass the bridge to the right component. 

C. Push and Swap 

Push And Swap (PAS) algorithm provides complete MPP 
algorithm for problem instances with at least two unoccupied 
vertices. However, it considers the priority between robots 
which can cause a limitation and has been solved later in 
another publication [25]. For each robot a, the PAS algorithm 
finds the shortest path p* linking the start location of a to its 
goal location, advances the robot through p* by push and swap 
algorithms. PAS creates the solution of the problem of n 
vertices and k robots in O(n

4
) time. 

1) Push 
While the next vertex in the shortest path p* of robot a is 

unoccupied, push algorithm will advance robot a, when 
another robot b is detected on vertex v in a’s path, the robot a 
has the ability to push it away if it has a lower priority (Fig. 6). 
If it has a higher priority, the push operator fails, hence, PAS 
will switch to the swap operator. 

2) Swap 
When another robot b is detected on vertex v in a’s path 

and b has higher priority than a. Both robots will advance to 
the nearest vertex u such that the degree of u is more than or 
equal to 3. If the vertex u has less than two unoccupied 
neighbor vertices, then, two occupied vertices should be 
cleared regardless of the occupying robots’ priority (Fig.7). 
Considering robots a and b as obstacles, then, robot a will 
swap with robot b (Fig. 8). Finally, each robot is affected by 
the clear operation, which will be resolved by moving it back 
to its previous location. 

D. Push and Rotate 

Push and Rotate (PAR) algorithm[2] is a complete version 
of the PAS algorithm. It creates the solution of the problem of 
n vertices and k robots with O(k.n

3
) moves and in O(k.n

5
) time. 

It solves any solvable instance recognized by Kornahuser. 

 

Fig. 5. Graph with solvable and unsolvable instance based on Kornhauser 

result 
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Fig. 6. Push operator: Robot a faces b through its p* , and b has lower 

priority than a, robot a pushes b away from its p* 

 

Fig. 7. Robots a and b are advanced to vertex u to achieve swap operation, 

vertex u contains only one unoccupied neighbor, therefore, it should clear the 

other neighbor. To do it, it should not move a, b or the unoccupied neighbor, 
hence, all those vertices will be considered as obstacles for the cleared robots 

 
Fig. 8. Swap operator: Robot a faces b through its SP  and b has higher 

priority than a, robot a and b are moved to vertex u with degree more than two 
and swap 

result as the instances with number of unoccupied vertices 
more than to the bridge length minus two. PAR reported four 
issues contradicting PAS claims. These contradictions will be 
described in this section exactly as it was presented in [2]. 

1) Push and rotate proved that multi robot path planning 

problem can be solvable when Swap fails. The Polygon graph 

with two unoccupied vertices is a graph conform to Push and 

Swap requirements. However, MPP problem is solvable in 

polygon even though Swap fails due to the absence of vertex 

with degree more than two (Fig.9). 

Another example to prove that the problem can be solved 
when Swap fails is the isthmus graph. When the graph satisfies 
Push and Swap requirements, under some configuration of 
robot ordering, the isthmus contains vertex with degree more 
than or equal three and it is solvable but Swap fails (Fig.10). 

2) Push and rotate proved that Clear operation doesn’t 

consider some possibilities when evacuating two vertices in 

neighborhood of a vertex v. 

3) Resolve algorithm in PAS executes recursively to 

return each robot effected by Swap operator back to its 

previous location which may lead to swap with other robot. In 

this case, Resolve algorithm will turn to the swapped robot to 

resolve it, This will also change the last robots locations, 

resulting in moving  the robots two steps away from  their 

location. This is a possibility which is not considered by 

Resolve algorithm. 

4) Push and Rotate proved that there are new redundant 

moves resulting after executing Smooth operator in PAS, 

which may be required to execute Smooth again. 
In addition, PAR introduces the rotate operator to resolve 

cascade moves.  The rotate operator is called to move robots 
forward in a cycle. To do so, one vertex should be cleared by 
swapping it with a neighboring vertex. Then, all the robots are 
rotated in the clockwise direction so that any robot affected by 
the clear operator will be resolved. Fig. 11 describes rotation 
procedure. 

E. Bibox 

The Bibox algorithm [4] solves biconnected graphs 
completely. Initially Bibox decomposes the problem to many 
handles and one original cycle (Fig. 12). Then, robots with goal 
locations at the outer handles are solved earlier, and they will 
be locked and excluded from the search space. This results in a 
smaller problem, and the original cycle will be solved in 
different ways. Bibox creates the solution of the problem of n 
vertices in O(n

3
) time and O(n

3
) moves. However, Bibox 

always solves the graph considering the worst scenario. If there 
are more than two free vertices, it fills those vertices with 
dummy robots, solves them, and removes their solutions from 
the final solution. This permits the algorithm of utilise 
additional free vertices, hence, permits any improvement. 

1) Solve handle 
Solving a handle means bringing the robots whose goal 

vertex is the handle, starting from the vertex at the beginning of 
the handle one by one until all vertices in the handle are 
finished. If a robot is located outside the handle, bring it to the 

 
Fig. 9. Polygon graph satisfies Push and Swap requirements (two 

unoccupied vertices), robot s pushes robot r to reach its goal position through 
its p*,then, s is finished robot, r tries to push s to reach its goal through its p* 

and it fails, swap operator will fail also since there is no vertex with degree 

more than two in Polygon (right), hence, this graph will be unsolvable in Push 
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and Swap context while it is solvable if there is an alternative path for the 
robot to follow it (left) 

 
Fig. 10. Graph with isthmus is solvable in Push and Swap context if robot s 

has lower priority among others only 

   
(a)    (b)   (c) 

 
(d)   (e)    (f) 

Fig. 11. Rotate operator execution, in the worst case, all vertices in the cycle 

are occupied 

 

Fig. 12. Decomposing biconnected graph to i handles (Hi) and original cycle 

(C0) 

entering vertex, u, lock the handle to protect the finished 
vertices from any arbitrary moves, move it to its goal with the 
rotate operator, and unlock the handle. The idea is that the 
handle keeps the finished vertices at the beginning, which 
means they will be rotated and reverse rotated to ensure their 
robots are back in their locations (Fig. 13). If a robot is located 
in the handle, rotate the completed vertices until the robot 
reaches the entering vertex. Advance the robot to any free outer 
vertex, rotate in the reverse direction by the same path 
traversed before to protect finished vertices, and continue 
considering the robot as in the outer robot case (Fig. 14). 

2) Solve original cycle 
The original cycle will be solved at the end, when the 

problem consists of a cycle with two unoccupied entering 
vertices, and all robots in it have their goal inside it also. For 
each two robots that want to swap, rotate them to the entering 
vertex, exchange their locations, and reverse rotate to restore 
the previous locations (Fig. 15). 

IV. ANALYSIS 

Even though Kornhauser procedure provides complete 
solution for wide class of problems, it unrecognized wide set of 
solvable instances by simultaneous rotation. This is because it 
considers sequential moves only. We can see it vividly, when 
the instance containing number of unoccupied vertices equal to 

the maximum bridge length and the problem is defined as 
MPPp, MPPpr or PMR. In that case the instance is solvable. 
However, while the bridge length increases, the number of 
unrecognized solvable instances increases. For instance, the 
instance described in Fig.16. is a solvable instance in MPPp, 
MPPpr, PMR boundaries even though the number of 
unoccupied vertices equal the maximum bridge. 

To prove the solvability of such instances, there are two 
main cases for robot r current position and goal position with 
all other situations being the subcases of these two. The cases 
are: (1) Current position of robot r and its goal position are at a 
cycle. According to its definition, simultaneous rotation would 
always be able to pass a robot occupying a vertex in the cycle 
to its goal on the same cycle even if the cycle is fully occupied, 
(2) Current position of robot r is at a cycle and its goal position 
is at other cycle. Let G be an instance containing two cycles C1 
and C2, a bridge with length bl, and unoccupied vertices m 
equal bl. In the worst case, the bridge is fully occupied, the 
robot r at the entrance vertex of C2 and its goal position inside 
C1. Consider two main configuration in this case; (i) All 
unoccupied vertices are inside C2 while C1 is fully occupied 
(Fig.16). In this configuration, robot r would be occupying 
vertex v, which is the entrance to C2. However, the feasibility 
would still be guaranteed by moving robot r away one step to -
v, followed by shifting all robots in the bridge to C2, and 
passing robot r toward C1 through unoccupied bridge. Once r 
reaches the head of the bridge, which is the entrance to C1, the 
robot will be treated as Case.1. (ii) The unoccupied vertices are 
divided between C1 and C2. In this configuration, robot r would 
be occupying vertex v, which is the entrance to C2. However, 
the feasibility of the problem would still be guaranteed by 
moving robot r away one step to –v followed by shifting half of 
robots in the bridge to C2. Once this achieved, robot r would be 
passed towards C1 through half unoccupied bridge and shifting 
all opponent robots in the second half toward C1. Once r 
reaches the head of the bridge, which is the entrance to C1, the 
robot will be treated as Case.1. This results can be generalized 
to grid and bi-connected graphs, when they are contain set of 
cycles connected by bridge of length one (an edge). Hence, one 
unoccupied vertex is enough to make the graph solvable. 

The MRRRT algorithm appear as favorable optimization 
algorithms due to the reason that they don’t impose any 
restriction on the roadmap. In addition, the PAS and PAR 
algorithms appear as preferable algorithms due to its 
completeness guarantee. Furthermore, the technique of Bibox 
algorithm  is also suited since it is powerful for smaller class of 
instances, with higher performance. Despite the fact that these 
algorithm seem most appropriate among the decoupled 
centralised approaches, these have their own certain theoretical 
issues; 

 
Fig. 13. SolveHandle Case.1, if the robot outside the handle 
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Fig. 14. SolveHandle Case.2, if the robot inside the handle 

  

  

Fig. 15. Solve original cycle 

 
Fig. 16. Solvable instance unrecognized by Kornhauser 

1) Kornhauser procedure unrecognized wide set of 

solvable instances by simultaneous rotation. 

2) Since PAR is limited to the solvable instances 

recognized by Kornhauser procedure, it failed to solve a 

solvable instance with number of unoccupied vertices equal to 

the bridge length. 

3) Bibox is limited in application since it provides 

complete solution for only bi-connected graph with two 

unoccupied vertices. 

4) Bibox always solves the graph considering the worst 

scenario. If there are more than two unoccupied vertices, it 

fills those vertices with dummy robots, solves them, and 

removes their solutions from the final solution. This permits 

the algorithm to utilize additional unoccupied vertices, hence, 

permits any optimization. 

5) There are wider class of solvable instances with only 

one unoccupied vertices, which is excluded from PAS, PAR 

and Bibox assumption. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The end objective was to answer the question: what is the 

benefit of these algorithms? To answer this question, three 
main factors of the problem are evaluated; (1) the algorithms’ 
execution time to find the whole path, (2) the rate of success 
results in a fixed time period, (3) and the total path length 
calculated mathematically as the sum the number of vertices 
composing the path. All experiments are employed in Ubuntu 
Dell M5110 laptop, Intel(R) Core(TM) i7  CPU@ 2.20GHz.  A 
series of experiments were conducted to compare between 
MRRRT, MRRRT*, PAS, PAR and Bibox algorithms. The 
factors are examined ten times on biconnected graph, tree-
with-cycle-leaves (TWCL) and six benchmark problems 
proposed in [3] that describe different scenarios of intersecting 
paths (Fig.17). 

   
(a) Tree   (b) String  (c) Tunnel 

 
(d) Corners  (e) loop-chain 

 
(f) Bi-connected  (g) Connector 

 
(h) Tree with Cycle leaves (TWCL) 

Fig. 17. Benchmark problems 

mailto:CPU@2.20GHz
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Fig. 18. Path length defined by number of moves 

 

Fig. 19. Completion rate defined as the ratio of reached robots to all robots 

 

Fig. 20. CPU time for all algorithms 

 

Fig. 21. CPU time for all algorithms except MRRRT and MRRRT* 

algorithms (To see the differences between others) 

The results in Figs. 18–21 show that, for all problems, 
MRRRT* outperforms MRRRT in finding shorter paths for the 
robots since it uses the A* heuristic. However, MRRRT* 
consumes more computation time than MRRRT mainly for tree 
and biconnected problems, since it explores all valid paths then 
selects the shortest one. On the other hand, all PAS and PAR 
versions outperform MRRRT versions in minimising the path 
length due to the basic difference between the planners, which 
is that MRRRT works in an unknown environment while PAS 
works in a fully known environment, which reduces the 
overhead of path exploration. For the same reason, the 
execution time for PAR is much less than for MRRRT. 
Furthermore, all PAS and PAR versions outperform MRRRT 
versions in the total number of achieved goals due to the 
completeness guarantee provided by PAS and PAR and since 
MRRRT reserves the full path of a robot, which reduces the 
space for other robots. However, the higher-priority robots may 
permit a lower-priority robot to achieve the shortest path. In 
addition, Bibox has better calculated path lengths than other 
algorithms in the class it solves. Finally, PAS and PAR fail to 
solve the TWCL class, which is a subclass of the solvable 
problems since it contains bridge length equals to the number 
of unoccupied vertices minus one while MRRRT and 
MRRRT* algorithms solve that instances since they don’t 
impose any restriction on the graph topology. 

VI. CONCLUSION 

In this survey, the MPP literature for heavy traffic control 
was briefly reviewed. The closely related structure was 
discussed and a practical comparison was done between an 
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optimisation technique, RRT, and three of the exact techniques, 
PAS, PAR and Bibox. Their specifications, strengths and 
weaknesses were compared, as summarised in Table 1. The 
experiments showed that MRRRT is the best for exploring any 
search space and optimizing the solution. On the other hand, 
PAS, PAR and Bibox are better in terms of providing a 
complete solution for the problem and resolving collisions in 
significantly much less time, the analysis, however, shows that 
a wider class of solvable instances are excluded from PAS and 
PAR domain. In addition, Bibox solves a smaller class than the 
class solved by PAS and PAR in less time, in the worst case, 
and with a shorter path than PAS and PAR. Based on the 
results, future work may look at these weaknesses in Table.1 as 
holes for contributions. 

TABLE I.  SUMMARY 

Method 

Criterion 
MRRRT* [1] PAS [3] PAR [2] Bibox [4] 

Environment 

information 

Unknown/ 

dynamic  

Unknown/ 

dynamic  

Known/ 

dynamic  
Known/static  

Assumption 
Any problem 

instance  

Graph with at 

least two 

unoccupied 

vertices. 

Graph with at 

least two 

unoccupied 

vertices. 

Biconnected 

graph with two 

unoccupied 

vertices. 

Completeness Incomplete 

Complete 

(except the 

instances 

reported in 

[2]).  

Complete   Complete  

Path  

Complexity 
- - O(n3 . k)[2] 

O(n3) 

 

Time 

Complexity 

Since it 

works in 

unknown 

environments 

and selects 

the shortest 

path among 

different 

paths, the 

time is the 

longest 

among other 

planners 

- O(n5 . k)[2] 
O(n3) 

 

Strengthens 

- Capability 

to explore 

unknown 

environment. 

- The use of 

online path 

planner (CL-

RRT) makes 

the proposed 

planner 

applicable to 

the dynamic 

environment. 

- Finds the 

shortest path 

among 

different 

paths by A* 

heuristic. 

- Simple. 

- The 

experiments 

show high 

efficient 

results in term 

of the 

computation 

time, solution 

length and the 

success rate 

with high 

scalability on 

most of the 

cases. 

- Merges the 

advantages of 

decoupling 

approaches in 

terms of fast 

calculations, 

and the 

advantages of 

coupling 

approaches in 

term of local 

robots 

negotiation 

- Simple 

-The 

experiments 

show high 

efficient 

results in 

term of The 

computation 

time, solution 

length and 

the success 

rate with high 

scalability in 

all cases. 

-Merges the 

advantages of 

decoupling 

approaches in 

terms of fast 

calculations, 

and the 

advantages of 

coupling 

approaches in 

term of local 

robots 

negotiation 

- Achieves the 

least time and 

path length 

proved by 

Kornhauser. 

Weaknesses 

- The priority 

of the higher 

robots may 

- The priority 

of the higher 

robots may 

- The priority 

of the higher 

robots may 

Solves the 

instance in its 

worst case, 

permit a 

lower robot 

to finds its 

paths 

 - 

Cooperation 

process may 

add 

additional 

computing 

overhead. 

-Optimizing 

the path may 

add 

additional 

computing 

overhead  

permit a lower 

robot to 

achieve 

shortest paths. 

-There are 

wider class of 

solvable 

instances 

which is 

excluded from 

PAS 

assumption.   

permit a 

lower robot 

to achieve 

shortest 

paths. 

-There are 

wider class of 

solvable 

instances 

which is 

excluded 

from PAR 

assumption.   

which permit 

any 

improvement.  
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