
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

179 | P a g e

www.ijacsa.thesai.org

Multi-Robot Path-Planning Problem for a Heavy

Traffic Control Application: A Survey

Ebtehal Turki Saho Alotaibi, Hisham Al-Rawi

Computer Science Department, Al Imam Muhammad Ibn Saud Islamic University

Riyadh, SA

Abstract—This survey looked at the methods used to solve

multi-autonomous vehicle path-planning for an application of

heavy traffic control in cities. Formally, the problem consisted of

a graph and a set of robots. Each robot has to reach its

destination in the minimum time and number of movements,

considering the obstacles and other robots’ paths, hence, the

problem is NP-hard. The study found that decoupled centralised

approaches are the most relevant approaches for an autonomous

vehicle path-planning problem for three reasons: (1) a city is a

large environment and coupled centralised approaches scale

weakly, (2) the overhead of a coupled decentralised approach to

achieve the global optimal will affect the time and memory of the

other robots, which is not important in a city configuration and

(3) the coupled approaches suppose that the number of robots is

defined before they start to find the paths and resolve collisions,

while in a city, any car can start at any time and hence, each car

should work individually and resolve collisions as they arise. In

addition, the study reviewed four decoupled centralised

techniques to solve the problem: multi-robot path-planning

rapidly exploring random tree (MRRRT), push and swap (PAS),

push and rotate (PAR) and the Bibox algorithm. The

experiments showed that MRRRT is the best for exploring any

search space and optimizing the solution. On the other hand,

PAS, PAR and Bibox are better in terms of providing a complete

solution for the problem and resolving collisions in significantly

much less time, the analysis, however, shows that a wider class of

solvable instances are excluded from PAS and PAR domain. In

addition, Bibox solves a smaller class than the class solved by

PAS and PAR in less time, in the worst case, and with a shorter

path than PAS and PAR.

Keywords—component; Heavy traffic control; Multi robots;

Coupled Path Planning; Decoupled Path Planning; Collision

Avoidance; Heuristics; RRT; Push and Swap; Push and Rotate;

Bibox

I. INTRODUCTION

As a city’s population grows, the number of vehicle
accidents increases (Fig.1), which may be caused by the
personality of the driver, ignoring a disliked traffic regime,
traffic congestion or variations in the speed of the vehicle.

Therefore, moving vehicle control to a unified controlling
system that optimises all vehicle preferences with respect to the
surrounding traffic rules is one way to address part of the
problem defined. Multi-robot path planning (MPP) is an
abstraction of the problem of finding the complete optimal path
from the start point to the target point for each robot with the
minimum time and path length while considering the robotic
constraints (obstacle avoidance) and inter-robotic constraints
(collision avoidance). This survey studies the use of path-
planning approaches for MPP for a heavy traffic control
problem through a brief review of existing approaches. In
addition, it explores four of the main decoupling path-planning
approaches. The first is a well-known optimisation technique
for single-robot path planning and three are exact methods
proposed in the literature. Rapidly exploring random tree
(RRT)[1] is an optimisation technique that uses an exploring
tree to find the goal and enhance the path for a single robot. An
extension to the technique has been implemented in this
survey, to fit the MPP definition. Push and rotate (PAR)[2] is
an extension of push and swap (PAS)[3]. Both are used to
solve any problem with two unoccupied vertices. They are
built on two primitives: (1) push on meeting a robot if it has
lower priority and (2) swap with it if it has higher priority.
Bibox[4] is used to solve any bi-connected graph with two
unoccupied vertices. It decomposes the problem into two
smaller handles and original cycle and solves them by
iteratively moving and locking finished robots and shrinking
the problem size. MPP is a relevant problem in a wide range of
domains including; automatic packages inside a warehouse [5],
automated guided vehicles [6], planetary exploration [7],
robotics mining [8], and video games [9].

This paper is organized as follows; after this brief
introduction, the multi robot path planning problem is defined
from literature in section II. In Section III, the four selected
methods is described briefly, followed by Section IV with a
discussion of their theoretical analysis. In Section V, the
experiments are introduced with a comparative analysis
between the selected methods on different types of instances.
Finally, conclusions and future work is presented in Section
VI.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

180 | P a g e

www.ijacsa.thesai.org

(a) Number of driver licenses.

(b)Number of accidents

Fig. 1. The latest statistics for Riyadh city between 1410 and 1419 A.H from

https://www.moi.gov.sa/wps/portal/Home/sectors/publicsecurity/traffic/traffic
riyadh

II. PROBLEM STATMENT

Wilson [10] proposed an efficient decision procedure for
the solvability of 15-puzzles, 14-pebble with one unoccupied
vertex without considering the number of moves. Therefore his
solution required exponentially many moves. Kornhauser et al.
[11] generalized Wilson solution to solve Pebble Motion on
Graph (PMG) problem with n-1 pebble in O(n

3
) for the number

of moves. In that work, they defined PMG for number of
pebble < vertices. Resultantly a move consists of transferring a
pebble to an adjacent unoccupied vertex. In this scenario, the
problem is to decide whether one arrangement of the pebbles is
reachable within shortest sequence of moves from another or
not. The problem defined by Kornhauser et al. can easily
mapped to Multi-robot Path Planning (MPP) problem. Mächler
[12] found out the differences between PMG and MPP
showing PMG models usually assume a central planner aiming
to minimize a sequential execution of moves on the graph,
there are mainly two distinctions in MPP models; (1) whether
the robots execute in parallel or sequential, (2) whether there is
a centralized planner or the planning is distributed. Therefore it
can be easily concluded that the basic MPP is PMG. Several
techniques have emerged in literature to solve sequential MPP.
MPP with parallel moves (MPPp) can be defined as a chain of
robots that can be moved simultaneously as long as there is an
unoccupied vertex at the head on the chain. This particular
problem was studied by Ryan in [13] where he separated
subgraphs on the base of MPPp. Yu and LaValle [14] added
the simultaneous rotation in fully occupied cycle (MPPpr) as
natural result for parallel movement. One variant of PMG
defined by Yu and Rus [15] allowed simultaneous rotation for
sequential problem. They defined a problem of finding a
sequence of simple moves and rotations that take initial
configuration to the goal configuration thereby transforming
into Pebble Motion with Rotation (PMR). PMR model varies
from MPPpr in term that the robots are able to move in parallel
in case of rotation in fully occupied cycle. The only
precondition being that robots can move in sequence. To
illustrate the problem, visualize a roadmap G = (V,E), which is
a connected graph. Some important variables to be used are; R

a set of robots, an initial assignment of robots to vertices :

RV, and a target assignment of robots to vertices : RV.

The functions and are total, injective, and non surjective.

The path is therefore defined as a map pi: +V . A path pi is
feasible for a robot ri ∈ R if it satisfies the following properties:

(1) pi(0) = (ri), (2) for each i, there exists a smallest ki
min ∈ +

such that for all k >= ki
min

, pi(k) = (ri), (3) and for any 0 ≤ k <
ki

min
 , (pi (k), pi(k+1)) ∈ E or pi(k) = pi(k+1). If pi(k) = pi(k+1),

then the robot ri stays at vertex pi(k) between the time steps k
and k + 1. We say that two paths pi, pj are in collision if there

exists k ∈+ such that pi(k)=pj(k) (collision on a vertex, or
meet) or (pi(k), pi(k+1)) = (pj(k+1),pj(k)) (collision on an edge,
or head-on). The problem is to find set of paths P = {p1, … ,
pn} such that pi’s are feasible paths for respective robots ri’s
and no two paths pi, pj are in collision.

The MPP literature uses centralised and decentralised
approaches [16]. Each approach can consist of coupled or
decoupled robots. Furthermore, due to the basic definition of
the problem as NP-hard [17], solution approaches can be
categorised based on their completeness for exact and
optimisation methods.

In the coupled centralised path-planning approaches, robots
act as single robots with multi-bodies and apply a classical
single-robot path-planning algorithm. By integrating with
complete search methods, such as A*, a coupled algorithm
achieves complete and optimal solutions theoretically and
probabilistically. In practice, however, the computational time
is exponential with the dimension of the configuration space,
thus, they are applicable only to small problems. Sharon et al.
[18] introduced a new MRPP computing technique by
designing the increasing cost tree (ICT) and increasing cost
tree search (ICTS). The key idea is to create a snapshot of all
robot information (initially the start point of every robot and
the cost), represented as states in the ICT attached to the total
cost. The tree is spanned for every possible action of every
robot. The results show better running time and success rate in
large grids.

In the coupled decentralised path-planning approaches,
robots apply a distributed MRPP algorithm, decomposing the
problem into a set of single-robot problems, which greatly
reduces the complexity of each problem and enables the use of
single-robot path planners to solve these smaller problems.
However, decomposing the problem in a decentralised fashion
requires an information sharing and coordination mechanism.
The deconfliction technique proposed by Scerri et al. [19] aims
to resolve conflicts before they happen. Although this
technique produces conflict-free paths, the required
synchronisation between robots produces an additional delay.
Trodden and Richards [20] propose an improvement in the
updating method without synchronisation. In each iteration,
one robot re-plans its path and sends it to others, which allows
one robot to re-plan in each iteration in order, while all others
continue executing their plans to reduce the waiting time.
However, a robot with high priority for re-planning has to wait
for its turn, which increases the waiting time, and thus, the time
cost.

In the decoupled centralised path-planning approaches,
paths are planned in two steps: in the first step, each robot’s
path is calculated individually, and in the second step, the
space-time position is calculated to avoid collisions. The first

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

181 | P a g e

www.ijacsa.thesai.org

step can be fully distributed while in the second step, there
should be communication between robots and priorities may
apply in this step. Although these algorithms are distant-
optimal, they lose completeness since the paths are calculated
completely in the first step, which may contain some conflicts.
David [21] proposes a global centralised reservation table
where the row for robot i is <location, time>, to avoid
conflicts. The table should not contain duplicated values.
Although this approach reduces the calculation time, it does
not provide a completeness guarantee. A similar reservation
table has been used by Stone [6] to solve the car junction
problem. Khorshid et al. [22] devised the graph-to-tree
decomposition algorithm (GTD). Based on a tree-like graph
representation of the problem, they introduced swapping to
solve a conflict whenever it occurs.

In conclusion, decoupled approaches run relatively fast,
scale well for larger problems but their optimality and even
completeness are not always guaranteed [23]. In a coupled
approach, the global optimal can be achieved with an overhead
of time and computing. Hence, the most relevant problem
structure for a heavy traffic control application is one that can
be solved by decoupled centralised approaches for three
reasons:

 A city is a large environment and coupled centralised
approaches scale weakly.

 The overhead of a coupled decentralised approach to
achieve the global optimum will affect the time and
memory of other robot, which is not important in city
configuration.

 A coupled approach supposes that the number of robots
is defined before it starts to find the paths and resolve
the collisions. However, in a city, any car can start at
any time and hence, the car should work individually
and resolve collisions as they arise.

III. METHODS

When it comes to decoupled centralised approaches, the
methods can be classified by their completeness. The exact
methods can solve a subclass of MPP completely with a
guarantee of the solution. However, despite all of this, their
limitation is that they work on only one subclass of the
problem. Optimisation methods work on a wider class of the
problem than the exact methods and can yield advantage in
several aspects such as the path length, execution time or any
other metric. Admittedly, optimization methods are not
guaranteed to find the solution if there is one.

A. Rapidly-exploring Random Tree (RRT)

A rapidly exploring random tree (RRT) algorithm
is designed to efficiently search nonconvex, high-dimensional
spaces by randomly building a space-filling tree. The tree is
constructed incrementally from samples drawn randomly from
the search space and is inherently biased to grow towards large
unsearched areas of the problem. RRTs were developed by
LaValle, et al [1]. They easily handle problems with obstacles

and differential constraints (nonholonomic and kinodynamic).
RRT iteratively expanded by randomly selecting a point qrand in
the search space, finding the nearest vertex qnearest to that point
implies to the tree, and adding new point qnew toward the
random point with the edge length equals to (Fig.2).

1) iRRT for multi-robots
iRRT is a simple Java program developed by Karaman and

Frazzoli [24]. It is dedicated for a single-robot configuration,
based on the functionality provided by the iRRT planners. The
following extensions are implemented incrementally to fit
multi-robot RRT (MRRRT) requirements.

Threads are used to simulate the robots in iRRT to extend
the iRRT path planner to support a multi-robot configuration.
In addition, robots search based on the A* heuristic where f(n)
= min (d + h), such that d is the distance from the start point to
n and h is the estimated distance from n to the goal point. A
collision is detected by evaluating the slope of a selected
random point qrand. The technique used in MRRRT with
collision avoidance is asynchronous communication between
robots through accessing a synchronized shared data centre
(server). Each robot maintains the paths of the other robots –
they are uploaded onto the server – while planning. Every
robot migrates its final path in the server at the end; hence,
there is no waiting and no master robot is required. On this
basis, collisions can be avoided by checking iteratively all pairs
of vertices in every uploaded path. If the randomly selected
point qrand is in the x-axis range and y-axis range between two
vertices, then all vertices with the same slope as the edge
linking those two vertices with qrand are invalid (Fig. 3). In the
experiments, both MRRRT – without heuristics – and
MARRT* have been evaluated. Fig. 4 shows part of the results.

B. Kornhauser’s work

Kornhauser, et al. [11] in their work have provided
complete centralized planned procedure to solve all
biconnected pebble motion problems with at least one
unoccupied vertex. The solutions he has created with upper and
lower bounds of O(n

3
) moves required on graphs with n

vertices and O(n
3
) time. However, there is no a single

algorithmic description of Kornhauser procedure in the
literature. Instead, some works are focused on implementing
and improving Kornhauser idea. Moreover, Kornhauser proves
a feasibility test of the problem instance in the form of a tree of
biconnected (non-separable) components that are linked by
chains of vertices with degree two (called isthmuses) as; “It is
impossible for robots to swap if they are separated by an
isthmus longer than the number of unoccupied vertices minus
two”.

Fig. 2. RRT expansion method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

182 | P a g e

www.ijacsa.thesai.org

Fig. 3. Validate RRT expansion to avoid collision, if (yi-y1/xi-x1)= (yi-y2/xi-

x2) AND xi ∈ {x1,x2} AND xi ∈ {y1,y2} then invalid expansion

Fig. 4. MARRT paths (left) versus MARRT* paths (right)

To clarify Kornhauser result, consider sequential moves
only, Fig.5 shows an instance containing both solvable and
unsolvable instances based on Kornhauser condition. Note that
it is possible for any of the robots in A1 = {a1…,a6} to swap
their positions. The same goes true for the robots in A2 =
{a7,a8} as they can exchange their positions too. For example,
robot 5 and robot 6 can swap their positions while robot 7 and

robot 8 can swap their position. The condition to be met is that
no robot from A1 can exchange position with any robot in A2.
To understand this, again referring to Fig. 5, if robot 7 wants to
swap its position with robot 6, it can be possible only if they
move to either the component at the left side of the vertex
occupied by robot 6 or to the component at the right side in
order to execute swap operation. This swapping would
invariably fail due to the reason that during the swapping
robots passing the bridge to the left component would stack all
robots on it. Hence essentially after this, there will be no
possibility to swap unless there are at least enough free vertices
to fit all opponent robots on the bridge as well as the two
swapping robots. The same thing would happen if the
swapping robots pass the bridge to the right component.

C. Push and Swap

Push And Swap (PAS) algorithm provides complete MPP
algorithm for problem instances with at least two unoccupied
vertices. However, it considers the priority between robots
which can cause a limitation and has been solved later in
another publication [25]. For each robot a, the PAS algorithm
finds the shortest path p* linking the start location of a to its
goal location, advances the robot through p* by push and swap
algorithms. PAS creates the solution of the problem of n
vertices and k robots in O(n

4
) time.

1) Push
While the next vertex in the shortest path p* of robot a is

unoccupied, push algorithm will advance robot a, when
another robot b is detected on vertex v in a’s path, the robot a
has the ability to push it away if it has a lower priority (Fig. 6).
If it has a higher priority, the push operator fails, hence, PAS
will switch to the swap operator.

2) Swap
When another robot b is detected on vertex v in a’s path

and b has higher priority than a. Both robots will advance to
the nearest vertex u such that the degree of u is more than or
equal to 3. If the vertex u has less than two unoccupied
neighbor vertices, then, two occupied vertices should be
cleared regardless of the occupying robots’ priority (Fig.7).
Considering robots a and b as obstacles, then, robot a will
swap with robot b (Fig. 8). Finally, each robot is affected by
the clear operation, which will be resolved by moving it back
to its previous location.

D. Push and Rotate

Push and Rotate (PAR) algorithm[2] is a complete version
of the PAS algorithm. It creates the solution of the problem of
n vertices and k robots with O(k.n

3
) moves and in O(k.n

5
) time.

It solves any solvable instance recognized by Kornahuser.

Fig. 5. Graph with solvable and unsolvable instance based on Kornhauser

result

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

183 | P a g e

www.ijacsa.thesai.org

Fig. 6. Push operator: Robot a faces b through its p* , and b has lower

priority than a, robot a pushes b away from its p*

Fig. 7. Robots a and b are advanced to vertex u to achieve swap operation,

vertex u contains only one unoccupied neighbor, therefore, it should clear the

other neighbor. To do it, it should not move a, b or the unoccupied neighbor,
hence, all those vertices will be considered as obstacles for the cleared robots

Fig. 8. Swap operator: Robot a faces b through its SP and b has higher

priority than a, robot a and b are moved to vertex u with degree more than two
and swap

result as the instances with number of unoccupied vertices
more than to the bridge length minus two. PAR reported four
issues contradicting PAS claims. These contradictions will be
described in this section exactly as it was presented in [2].

1) Push and rotate proved that multi robot path planning

problem can be solvable when Swap fails. The Polygon graph

with two unoccupied vertices is a graph conform to Push and

Swap requirements. However, MPP problem is solvable in

polygon even though Swap fails due to the absence of vertex

with degree more than two (Fig.9).

Another example to prove that the problem can be solved
when Swap fails is the isthmus graph. When the graph satisfies
Push and Swap requirements, under some configuration of
robot ordering, the isthmus contains vertex with degree more
than or equal three and it is solvable but Swap fails (Fig.10).

2) Push and rotate proved that Clear operation doesn’t

consider some possibilities when evacuating two vertices in

neighborhood of a vertex v.

3) Resolve algorithm in PAS executes recursively to

return each robot effected by Swap operator back to its

previous location which may lead to swap with other robot. In

this case, Resolve algorithm will turn to the swapped robot to

resolve it, This will also change the last robots locations,

resulting in moving the robots two steps away from their

location. This is a possibility which is not considered by

Resolve algorithm.

4) Push and Rotate proved that there are new redundant

moves resulting after executing Smooth operator in PAS,

which may be required to execute Smooth again.
In addition, PAR introduces the rotate operator to resolve

cascade moves. The rotate operator is called to move robots
forward in a cycle. To do so, one vertex should be cleared by
swapping it with a neighboring vertex. Then, all the robots are
rotated in the clockwise direction so that any robot affected by
the clear operator will be resolved. Fig. 11 describes rotation
procedure.

E. Bibox

The Bibox algorithm [4] solves biconnected graphs
completely. Initially Bibox decomposes the problem to many
handles and one original cycle (Fig. 12). Then, robots with goal
locations at the outer handles are solved earlier, and they will
be locked and excluded from the search space. This results in a
smaller problem, and the original cycle will be solved in
different ways. Bibox creates the solution of the problem of n
vertices in O(n

3
) time and O(n

3
) moves. However, Bibox

always solves the graph considering the worst scenario. If there
are more than two free vertices, it fills those vertices with
dummy robots, solves them, and removes their solutions from
the final solution. This permits the algorithm of utilise
additional free vertices, hence, permits any improvement.

1) Solve handle
Solving a handle means bringing the robots whose goal

vertex is the handle, starting from the vertex at the beginning of
the handle one by one until all vertices in the handle are
finished. If a robot is located outside the handle, bring it to the

Fig. 9. Polygon graph satisfies Push and Swap requirements (two

unoccupied vertices), robot s pushes robot r to reach its goal position through
its p*,then, s is finished robot, r tries to push s to reach its goal through its p*

and it fails, swap operator will fail also since there is no vertex with degree

more than two in Polygon (right), hence, this graph will be unsolvable in Push

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

184 | P a g e

www.ijacsa.thesai.org

and Swap context while it is solvable if there is an alternative path for the
robot to follow it (left)

Fig. 10. Graph with isthmus is solvable in Push and Swap context if robot s

has lower priority among others only

(a) (b) (c)

(d) (e) (f)

Fig. 11. Rotate operator execution, in the worst case, all vertices in the cycle

are occupied

Fig. 12. Decomposing biconnected graph to i handles (Hi) and original cycle

(C0)

entering vertex, u, lock the handle to protect the finished
vertices from any arbitrary moves, move it to its goal with the
rotate operator, and unlock the handle. The idea is that the
handle keeps the finished vertices at the beginning, which
means they will be rotated and reverse rotated to ensure their
robots are back in their locations (Fig. 13). If a robot is located
in the handle, rotate the completed vertices until the robot
reaches the entering vertex. Advance the robot to any free outer
vertex, rotate in the reverse direction by the same path
traversed before to protect finished vertices, and continue
considering the robot as in the outer robot case (Fig. 14).

2) Solve original cycle
The original cycle will be solved at the end, when the

problem consists of a cycle with two unoccupied entering
vertices, and all robots in it have their goal inside it also. For
each two robots that want to swap, rotate them to the entering
vertex, exchange their locations, and reverse rotate to restore
the previous locations (Fig. 15).

IV. ANALYSIS

Even though Kornhauser procedure provides complete
solution for wide class of problems, it unrecognized wide set of
solvable instances by simultaneous rotation. This is because it
considers sequential moves only. We can see it vividly, when
the instance containing number of unoccupied vertices equal to

the maximum bridge length and the problem is defined as
MPPp, MPPpr or PMR. In that case the instance is solvable.
However, while the bridge length increases, the number of
unrecognized solvable instances increases. For instance, the
instance described in Fig.16. is a solvable instance in MPPp,
MPPpr, PMR boundaries even though the number of
unoccupied vertices equal the maximum bridge.

To prove the solvability of such instances, there are two
main cases for robot r current position and goal position with
all other situations being the subcases of these two. The cases
are: (1) Current position of robot r and its goal position are at a
cycle. According to its definition, simultaneous rotation would
always be able to pass a robot occupying a vertex in the cycle
to its goal on the same cycle even if the cycle is fully occupied,
(2) Current position of robot r is at a cycle and its goal position
is at other cycle. Let G be an instance containing two cycles C1
and C2, a bridge with length bl, and unoccupied vertices m
equal bl. In the worst case, the bridge is fully occupied, the
robot r at the entrance vertex of C2 and its goal position inside
C1. Consider two main configuration in this case; (i) All
unoccupied vertices are inside C2 while C1 is fully occupied
(Fig.16). In this configuration, robot r would be occupying
vertex v, which is the entrance to C2. However, the feasibility
would still be guaranteed by moving robot r away one step to -
v, followed by shifting all robots in the bridge to C2, and
passing robot r toward C1 through unoccupied bridge. Once r
reaches the head of the bridge, which is the entrance to C1, the
robot will be treated as Case.1. (ii) The unoccupied vertices are
divided between C1 and C2. In this configuration, robot r would
be occupying vertex v, which is the entrance to C2. However,
the feasibility of the problem would still be guaranteed by
moving robot r away one step to –v followed by shifting half of
robots in the bridge to C2. Once this achieved, robot r would be
passed towards C1 through half unoccupied bridge and shifting
all opponent robots in the second half toward C1. Once r
reaches the head of the bridge, which is the entrance to C1, the
robot will be treated as Case.1. This results can be generalized
to grid and bi-connected graphs, when they are contain set of
cycles connected by bridge of length one (an edge). Hence, one
unoccupied vertex is enough to make the graph solvable.

The MRRRT algorithm appear as favorable optimization
algorithms due to the reason that they don’t impose any
restriction on the roadmap. In addition, the PAS and PAR
algorithms appear as preferable algorithms due to its
completeness guarantee. Furthermore, the technique of Bibox
algorithm is also suited since it is powerful for smaller class of
instances, with higher performance. Despite the fact that these
algorithm seem most appropriate among the decoupled
centralised approaches, these have their own certain theoretical
issues;

Fig. 13. SolveHandle Case.1, if the robot outside the handle

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

185 | P a g e

www.ijacsa.thesai.org

Fig. 14. SolveHandle Case.2, if the robot inside the handle

Fig. 15. Solve original cycle

Fig. 16. Solvable instance unrecognized by Kornhauser

1) Kornhauser procedure unrecognized wide set of

solvable instances by simultaneous rotation.

2) Since PAR is limited to the solvable instances

recognized by Kornhauser procedure, it failed to solve a

solvable instance with number of unoccupied vertices equal to

the bridge length.

3) Bibox is limited in application since it provides

complete solution for only bi-connected graph with two

unoccupied vertices.

4) Bibox always solves the graph considering the worst

scenario. If there are more than two unoccupied vertices, it

fills those vertices with dummy robots, solves them, and

removes their solutions from the final solution. This permits

the algorithm to utilize additional unoccupied vertices, hence,

permits any optimization.

5) There are wider class of solvable instances with only

one unoccupied vertices, which is excluded from PAS, PAR

and Bibox assumption.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The end objective was to answer the question: what is the

benefit of these algorithms? To answer this question, three
main factors of the problem are evaluated; (1) the algorithms’
execution time to find the whole path, (2) the rate of success
results in a fixed time period, (3) and the total path length
calculated mathematically as the sum the number of vertices
composing the path. All experiments are employed in Ubuntu
Dell M5110 laptop, Intel(R) Core(TM) i7 CPU@ 2.20GHz. A
series of experiments were conducted to compare between
MRRRT, MRRRT*, PAS, PAR and Bibox algorithms. The
factors are examined ten times on biconnected graph, tree-
with-cycle-leaves (TWCL) and six benchmark problems
proposed in [3] that describe different scenarios of intersecting
paths (Fig.17).

(a) Tree (b) String (c) Tunnel

(d) Corners (e) loop-chain

(f) Bi-connected (g) Connector

(h) Tree with Cycle leaves (TWCL)

Fig. 17. Benchmark problems

mailto:CPU@2.20GHz

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

186 | P a g e

www.ijacsa.thesai.org

Fig. 18. Path length defined by number of moves

Fig. 19. Completion rate defined as the ratio of reached robots to all robots

Fig. 20. CPU time for all algorithms

Fig. 21. CPU time for all algorithms except MRRRT and MRRRT*

algorithms (To see the differences between others)

The results in Figs. 18–21 show that, for all problems,
MRRRT* outperforms MRRRT in finding shorter paths for the
robots since it uses the A* heuristic. However, MRRRT*
consumes more computation time than MRRRT mainly for tree
and biconnected problems, since it explores all valid paths then
selects the shortest one. On the other hand, all PAS and PAR
versions outperform MRRRT versions in minimising the path
length due to the basic difference between the planners, which
is that MRRRT works in an unknown environment while PAS
works in a fully known environment, which reduces the
overhead of path exploration. For the same reason, the
execution time for PAR is much less than for MRRRT.
Furthermore, all PAS and PAR versions outperform MRRRT
versions in the total number of achieved goals due to the
completeness guarantee provided by PAS and PAR and since
MRRRT reserves the full path of a robot, which reduces the
space for other robots. However, the higher-priority robots may
permit a lower-priority robot to achieve the shortest path. In
addition, Bibox has better calculated path lengths than other
algorithms in the class it solves. Finally, PAS and PAR fail to
solve the TWCL class, which is a subclass of the solvable
problems since it contains bridge length equals to the number
of unoccupied vertices minus one while MRRRT and
MRRRT* algorithms solve that instances since they don’t
impose any restriction on the graph topology.

VI. CONCLUSION

In this survey, the MPP literature for heavy traffic control
was briefly reviewed. The closely related structure was
discussed and a practical comparison was done between an

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

nu
m

be
r o

f m
ov

rs

Instances

MARRT

MARRT*

PAS (unsmooth)

PAS (smooth)

PAR (unsmooth)

PAR (smooth)

Bibox

0%

20%

40%

60%

80%

100%

120%

C
o

m
p

le
ti

o
n

 R
at

e
 (

%
)

Insances

MARRT

MARRT*

PAS (unsmooth)

PAS (smooth)

PAR (unsmooth)

PAR (smooth)

Bibox

0

1000

2000

3000

4000

5000

6000

C
P

U
 T

im
e

 (
se

co
n

d
s)

Instances

MARRT

MARRT*

PAS (unsmooth)

PAS (smooth)

PAR (unsmooth)

PAR (smooth)

Bibox

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
P

U
 T

im
e

 (
se

co
n

d
s)

Instances

PAS (unsmooth)

PAS (smooth)

PAR (unsmooth)

PAR (smooth)

Bibox

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

187 | P a g e

www.ijacsa.thesai.org

optimisation technique, RRT, and three of the exact techniques,
PAS, PAR and Bibox. Their specifications, strengths and
weaknesses were compared, as summarised in Table 1. The
experiments showed that MRRRT is the best for exploring any
search space and optimizing the solution. On the other hand,
PAS, PAR and Bibox are better in terms of providing a
complete solution for the problem and resolving collisions in
significantly much less time, the analysis, however, shows that
a wider class of solvable instances are excluded from PAS and
PAR domain. In addition, Bibox solves a smaller class than the
class solved by PAS and PAR in less time, in the worst case,
and with a shorter path than PAS and PAR. Based on the
results, future work may look at these weaknesses in Table.1 as
holes for contributions.

TABLE I. SUMMARY

Method

Criterion
MRRRT* [1] PAS [3] PAR [2] Bibox [4]

Environment

information

Unknown/

dynamic

Unknown/

dynamic

Known/

dynamic
Known/static

Assumption
Any problem

instance

Graph with at

least two

unoccupied

vertices.

Graph with at

least two

unoccupied

vertices.

Biconnected

graph with two

unoccupied

vertices.

Completeness Incomplete

Complete

(except the

instances

reported in

[2]).

Complete Complete

Path

Complexity
- - O(n3 . k)[2]

O(n3)

Time

Complexity

Since it

works in

unknown

environments

and selects

the shortest

path among

different

paths, the

time is the

longest

among other

planners

- O(n5 . k)[2]
O(n3)

Strengthens

- Capability

to explore

unknown

environment.

- The use of

online path

planner (CL-

RRT) makes

the proposed

planner

applicable to

the dynamic

environment.

- Finds the

shortest path

among

different

paths by A*

heuristic.

- Simple.

- The

experiments

show high

efficient

results in term

of the

computation

time, solution

length and the

success rate

with high

scalability on

most of the

cases.

- Merges the

advantages of

decoupling

approaches in

terms of fast

calculations,

and the

advantages of

coupling

approaches in

term of local

robots

negotiation

- Simple

-The

experiments

show high

efficient

results in

term of The

computation

time, solution

length and

the success

rate with high

scalability in

all cases.

-Merges the

advantages of

decoupling

approaches in

terms of fast

calculations,

and the

advantages of

coupling

approaches in

term of local

robots

negotiation

- Achieves the

least time and

path length

proved by

Kornhauser.

Weaknesses

- The priority

of the higher

robots may

- The priority

of the higher

robots may

- The priority

of the higher

robots may

Solves the

instance in its

worst case,

permit a

lower robot

to finds its

paths

 -

Cooperation

process may

add

additional

computing

overhead.

-Optimizing

the path may

add

additional

computing

overhead

permit a lower

robot to

achieve

shortest paths.

-There are

wider class of

solvable

instances

which is

excluded from

PAS

assumption.

permit a

lower robot

to achieve

shortest

paths.

-There are

wider class of

solvable

instances

which is

excluded

from PAR

assumption.

which permit

any

improvement.

REFERENCES

[1] S. M. LaValle, "Rapidly-Exploring Random Trees A New Tool for Path
Planning," 1998.

[2] B. d. Wilde, A. W. ter Mors, and C. Witteveen, "Push and Rotate: a
Complete Multi-agent Pathfinding Algorithm," Journal of Artificial
Intelligence Research, pp. 443-492, 2014.

[3] R. Luna and K. E. Bekris, "Push and swap: Fast cooperative path-
finding with completeness guarantees," in IJCAI, 2011, pp. 294-300.

[4] P. Surynek, "A novel approach to path planning for multiple robots in
bi-connected graphs," in Robotics and Automation, 2009. ICRA'09.
IEEE International Conference on, 2009, pp. 3613-3619.

[5] E. Guizzo, "Three Engineers, Hundreds of Robots, One Warehouse,"
IEEE Spectr., vol. 45, pp. 26-34, 2008.

[6] K. Dresner and P. Stone, "A multiagent approach to autonomous
intersection management," Journal of Artificial Intelligence Research,
pp. 591-656, 2008.

[7] J. Leitner, "Multi-robot cooperation in space: A survey," in Advanced
Technologies for Enhanced Quality of Life, 2009. AT-EQUAL'09.,
2009, pp. 144-151.

[8] J. M. Roberts, E. S. Duff, and P. I. Corke, "Reactive navigation and
opportunistic localization for autonomous underground mining
vehicles," Information Sciences, vol. 145, pp. 127-146, 2002.

[9] D. Nieuwenhuisen, A. Kamphuis, and M. H. Overmars, "High quality
navigation in computer games," Science of Computer Programming, vol.
67, pp. 91-104, 2007.

[10] R. M. Wilson, "Graph puzzles, homotopy, and the alternating group,"
Journal of Combinatorial Theory, Series B, vol. 16, pp. 86-96, 1974.

[11] D. Kornhauser, G. Miller, and P. Spirakis, Coordinating pebble motion
on graphs, the diameter of permutation groups, and applications: IEEE,
1984.

[12] P. Mächler, "Pebbles in Motion Polynomial Algorithms for Multi-Agent
Path Planning Problems," Master of Science in Computer Science,
Department of Mathematics and Computer Science, University of Basel,
Basel, 2012.

[13] M. R. K. Ryan, "Exploiting subgraph structure in multi-robot path
planning," Journal of Artificial Intelligence Research, pp. 497-542,
2008.

[14] J. Yu and S. M. LaValle, "Multi-agent path planning and network flow,"
in Algorithmic Foundations of Robotics X, ed: Springer, 2013, pp. 157-
173.

[15] J. Yu and D. Rus, "Pebble motion on graphs with rotations: efficient
feasibility tests and planning algorithms," in Algorithmic Foundations of
Robotics XI, ed: Springer, 2015, pp. 729-746.

[16] J.-C. Latombe, "Robot Motion Planning, Chapter," 1996 1991.
[17] C. H. Papadimitriou, P. Raghavan, M. Sudan, and H. Tamaki, "Motion

planning on a graph," in Foundations of Computer Science, 1994
Proceedings., 35th Annual Symposium on, 1994, pp. 511-520.

[18] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, "The increasing cost
tree search for optimal multi-agent pathfinding," Artificial Intelligence,
vol. 195, pp. 470-495, 2013.

[19] P. Scerri, S. Owens, B. Yu, and K. Sycara, "A decentralized approach to
space deconfliction," in Information Fusion, 2007 10th International
Conference on, 2007, pp. 1-8.

[20] P. Trodden and A. Richards, "Robust distributed model predictive
control using tubes," in American Control Conference, 2006, 2006, p. 6
pp.

[21] D. Silver, "Cooperative Pathfinding," in AIIDE, 2005, pp. 117-122.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

188 | P a g e

www.ijacsa.thesai.org

[22] M. M. Khorshid, R. C. Holte, and N. R. Sturtevant, "A polynomial-time
algorithm for non-optimal multi-agent pathfinding," in Fourth Annual
Symposium on Combinatorial Search, 2011.

[23] Q. Zhu, J. Hu, W. Cai, and L. Henschen, "A new robot navigation
algorithm for dynamic unknown environments based on dynamic path
re-computation and an improved scout ant algorithm," Applied Soft

Computing, vol. 11, pp. 4667-4676, 2011.
[24] S. Karaman and E. Frazzoli, "Sampling-based algorithms for optimal

motion planning," The International Journal of Robotics Research, vol.
30, pp. 846-894, 2011.

[25] Q. Sajid, R. Luna, and K. E. Bekris, "Multi-Agent Pathfinding with
Simultaneous Execution of Single-Agent Primitives," in SOCS, 2012.

