
A Novel Algorithm for Optimizing Multiple Services
Resource Allocation

Amjad Gawanmeh
Department of Electrical and Computer Engineering, 

Khalifa University, UAE and
Department of Electrical and Computer Engineering, 

Concordia University, Montreal, Canada

Alain April
Department of Software Engineering, Universite´ du Qu

´ebec,´Ecole de Technologie Sup´erieure, Montreal, Canada

Abstract—Resource provisioning becomes more and more
challenging problem in cloud computing environment since cloud-
based services become more numerous and dynamic. The problem
of scheduling multiple tasks for multiple users on a given number
of resources is considered NP-Complete problem, and therefore,
several heuristic based research methods were proposed, yet,
there are still many improvements can be done, since the problem
has several optimization parameters. In addition, most proposed
solutions are built on top of several assumptions and simplifica-
tions by applying computational methods such as game theory,
fuzzy logic, or evolutionary computing. This paper presents an
algorithm to address the problem of resource allocation across
a cloud-based network, where several resources are available,
and the cost of computational service depends on the amount of
computation. The algorithm is applicable without restrictions on
cost vector or compaction time matrix as opposed to methods in
the literature. In addition, the execution of the algorithm shows
better utility compared to methods applied on similar problems.

Keywords—Cloud computing; Cloud Services; Scheduling; Par-
allel and Distributed systems

I. INTRODUCTION

Cloud computing [1] has emerged recently as a new
paradigm that moved enterprise computing from the classical
host-based architecture pattern into the elastic computing pat-
tern. This new service-oriented vision delivers resources and
applications on-demand based on the pay-per-use concept. The
cloud system should provide the application users with robust-
ness, fault tolerance, execution automation, and powerful com-
puting facilities. This implies various cloud service require-
ments and QoS to be maintained. Therefore, several challenges
arise throughout the design development and deployment of
these systems. In addition, unlike conventional software and
hardware systems, a wide range of different issues should
be considered in the design and operation of cloud based
systems. On the other hand, the size of data centers have been
continuously increased in order to accommodate the increasing
demand while at the same time reducing the management
costs. Finally, virtualization has been heavily used in order
to increase the utilization of server resources by consolidating
many virtual machines into a single physical server. Therefore,
as cloud-based services become more numerous and dynamic,
resource provisioning becomes more and more challenging.

While QoS problems in service and cloud based systems

have been addressed in the literature, the problem of con-
strained resource allocation problem attracts a lot of attention,
as it is considered difficult problem since it is affected by
several aspects, such as assumptions about the services, tasks,
subtasks, and communication between servers. The problem of
scheduling multiple tasks for multiple users on given number
of resources is considered difficult, and therefore, several
research methods were proposed, yet, there are still many
improvements can be done, since the problem has several opti-
mization parameters and in addition, most proposed solutions
are built on top of several assumptions and simplifications.

In this paper, we address the problem of resource allocation
in which service demanders intend to solve sophisticated par-
allel computing problem by requesting the usage of resources
across a cloud-based network, where several resources are
available, and the cost of computational service depends on
the amount of computation. The contributions in this paper
include providing a simple algorithm for resource allocation
for single user with multiple subtasks. Then, propose another
algorithm for the multiple users problem using a selection
function. The proposed algorithm is illustrated on example that
was proposed in the literature, and the proposed method in this
paper outperforms previous ones by two aspects: first, it can be
applied on the general case without any restriction on the type
of the computation time matrix for resource, nor on the cost
function, as opposed to previous work. Second, the algorithm
provides better schedule in terms of utility.

The rest of this paper is organized as follows: Section
II provides a brief review on the state of the art on the
subject. Section III describes the formalization of the single
and multiple users problem. Section IV presents the proposed
algorithm to solve the single user scheduling problem. Section
V presents a selection function based algorithm for scheduling
the multiple users problem. The proposed method is illustrated
on an example in Section VI. Finally Section VII concludes
the paper with future work hints.

II. RELATED WORK

In this section we present a brief state of the art review on
related work that addressed the problem of resource allocation
in cloud computing. In fact, more detailed reviews can be
found in several surveys, for instance, [2], [3], [4], [5], [6],
and [7].

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 6, 2016 

428 | P a g e
www.ijacsa.thesai.org 



Walker et al. [8] presented a model in which the resultant
profit is calculated by obtaining the storage space from cloud.
Buyya et al. [9] have proposed an infrastructure for resource
allocation in multiple clouds based on commodity pricing
method. The work in [10] used virtualization in order to
allocate data center resources dynamically based on application
demands and support. The authors used skewness to measure
the unevenness in the multidimensional resource utilization of
a server and combined different types of workloads hoping to
improve the overall utilization of server resources by reducing
skewness. The work in [11] proposed a resource allocation
technique by ranking the tasks of users based on error criteria
to maintain the consistency in the priorities of the tasks.
The authors in [12] presented a web semantic based resource
allocation method using multi-agent technologies to model
interoperability between the users and different resource.

Ergu et al. [13] proposed a model for task-oriented re-
source allocation in a cloud computing environment based on
available resources and user preferences. The method considers
response time as the measure in their allocation procedure.
Genetic algorithms based tasks scheduling in cloud systems
were addressed in [14], [15], and [16]. The work in [17]
addressed distributed convergence to fair allocations of CPU
resources for time-sensitive applications for applications with
service-level adaptation, that are executed by each application
independently. The work in [18] addressed resource allocation
in computational mobile grid.

Karthik et al. [19] suggested to allocate the resources
based on the speed and cost of different VMs in IaaS. It
differs from other related works, by allowing the user to
select VMs and reduces cost for the user. Zhen Kong et al.
[20] proposed a mechanism to allocate virtualized resources
among selfish VMs in a non-cooperative cloud environment.
Hence, VMs care essentially about their own benefits without
any consideration for others. Paul et al. [21] allocated cloud
resources by obtaining resources from remote nodes when
there is a change in user demand¿ In this method over-
provisioning and under-provisioning of resources can cause
several issues. The work in [22] dynamically allocated CPU
resources to meet QoS objectives by first allocating requests to
high priority applications. This method depends on prioritizing
tasks which has several limitations in cloud environment. The
work in [23] proposed to use live migration as a resource
provisioning mechanism but all of them use policy based
heuristic algorithm to live migrate VM which is difficult in
the presence of conflicting goals.

Several other computing techniques were adopted for re-
source allocation in cloud computing. For instance, game the-
ory has also been used in several locations for resource alloca-
tion in cloud computing, for instance in [24], and [25]. Several
other methods used fuzzy pattern recognition to propose dy-
namic resource-allocation algorithms for multiple cloud nodes
such as [26], [27], and [28]. On the other hand, cloud resource
allocation using auction mechanism is addressed in [29], [30],
[31], [32], and, [33]. These mechanisms does not ensure profit
maximization due to its truth telling property under constraints.

Despite the large amount of work on the subject, there is
still lack of practicable solution for cloud computing systems
because most cloud-based computational services are multiple
QoS-constrained, in order to improve the utility of scheduling

algorithms [25]. The problem addressed in this paper considers
multi-users with dependent tasks, each is composed of several
subtasks to be scheduled on multiple resources. This paper
presents a generic solution that can be applied the problem
without the constrains on the execution time and cost imposed
in previous work. The proposed mechanism is based on utility
function trying to find a local optimum solution for the NP-
hard problem.

III. PROBLEM DESCRIPTION AND FORMALIZATION

We first present problem description for resource allocation
for a single user, then we describe the general case, for
multiple users as presented in previous work. A user u has
a service S that is composed of k sub tasks that are parallel
and dependent subtasks with equal amount of computation.
In fact, this assumption is practical, since in case of unequal
amounts of computing, the cost values of resources can be
adjusted to normalize the amount of commutations for tasks.
There are m computational resources that are available to
the user, {R1, R2, ..., Rm}. Each resource, Rj , has a fixed
price pj according to its capacity forming the price vector
p = {p1, p2, ..., pm}. In addition, each resource Ri require
specific time, ti, to execute any subtask forming the execution
time vector t = {t1, t2, ..., tm}. The objective is to assign
subtasks for each user to a number of resources such that the
the total cost is minimized, where cost represents the expense
and execution time for completing tasks for all users. The
scheduling problem solution is a non-negative vector v of m
elements, each represent the number of subtasks assigned for
each resource. The entry vi is the number of subtasks of the
task S allocated to resource Ri. The allocation vector v must
satisfy

m∑
i=1

vi = k.

We derive two vectors from vectors v, t, and p as follows:
the first is the completion time vector, t̂ and the second is
the expense vector ê. The entry t̂i of t̂ is the turnaround
time it takes for resource Ri to complete vj subtasks of the
task S. The entry êi of vector ê is the expense S pays for
resource Rj to complete vj subtasks. These two vectors are
defined as follows: t̂ = v · t, ê = v · t · p. Based on these
we calculate two values for schedule v, the total execution
time tmax, and the total expense ev . The execution time for
task S is the maximum execution time of tasks assigned to
resources, tmax = max{t̂i|t̂i ∈ t̂}, where t̂i denotes the ith
element of the vector t̂. The total expense ev is the summation

of all expenses paid to all resources, ev =
m∑
i=1

ei. We assign

weights for schedule costs as follows, wt for execution time
weight, and we for expense weight. Then we can define a
merit value of the expense using the following utility function:
u(v) = 1

wt×tv+we×ev = 1

wt×max{t̂i|t̂i∈t̂}+we×
m∑
i=1

ei

The objec-

tive is to find v that maximizes u. while we will present our
proposed methodology for a generalizers case, as opposed to
the presented solution in there. Next we give an example to il-
lustrate the problem described above. Given five computational
resources (R1 − R5), m = 5, and given the price vector p =
(1, 1.2, 1.5, 1.8, 2), there is a task (S), that has three subtasks,
k = 3. The execution time vector for each subtask using above
resources is given as t = (5, 4.2, 3.6, 3, 2.8). Assume that a

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 6, 2016 

429 | P a g e
www.ijacsa.thesai.org 



schedule v = (1, 1, 1, 0, 0) is used, then we can calculate t̂ and
ê as follows: t̂ = (5, 4.2, 3.6, 0, 0) and ê = (5, 5.04, 5.4, 0, 0),
then we can calculate, tv = 5 and ev = 15.44. Assuming
we = wt = 1, then u = 1

tv+ev
= 0.0489. On the other hand,

the schedule v = (0, 0, 1, 1, 1) will yield to u = 0.05.

Next, we present the model for the problem with multiple
users sharing the same number of resources as described
above. Given n users {u1, u2, ..., un}, who are interested in
executing n services, {S1, S2, ..., Sn}, where every Si is one
single task that is composed of ki subtasks, that are parallel
and dependent subtasks with equal amount of computation.
k = {k1, k2, ..., kn} represents the number of subtasks for all
users. There are m computational resources that are shared by
all users, {R1, R2, ..., Rm} with price vector p. All users who
allocate their services to resource Rj proportionally share the
capacity and expense of resource Rj . In addition, each resource
Ri require specific time, tij , to execute subtask τ for user uj
using resource Ri, forming the execution time vector Ti for
every resource. The collection of all vectors T1, T2, . . . , Tm
forms the execution time matrix T . Since all subtasks of Si
are parallel and dependent, the completion time of task Si is
defined similar to above as max{Tij |Tij ∈ Ti}, where Tij
denotes the element of matrix T in row i and column j.

The objective is to assign subtasks for each user to a
number of resources such that the the total cost is minimized,
where cost represents the expense and execution time for
completing tasks for all users. The scheduling problem solution
is a non-negative matrix A of m rows and n columns, each
element represents the number of subtasks assigned for each
resource. The entry Aij is the number of subtasks of the
task Si allocated to resource Rj . The allocation matrix A

must satisfy the following constraint
n∑
j=1

Aij = kj , where

j = {1, 2, . . . ,m}.

We derive two matrices from matrix T , schedule A, and
vector p as follows: the first, is the completion time matrix,
T̂ and the second is the expense matrix Ê. The entry T̂ij of
T̂ is the turnaround time it takes for resource Rj to complete
Aij subtasks of the task Si. The entry Êij of matrix Ê is the
expense user Si pays for resource Rj to complete Aij subtasks.
These two matrices are defined as follows:

T̂ij =
n∑
l=1

Alj · Tlj ,

Êij =
T̂ij ·pj
n∑
l=1

Alj

.

Based on these two matrices, we calculate two vectors
for schedule A, the first vector, Tmax, is composed of m
elements, each element Tmaxi represents the execution time
for task Si using schedule A, and is defined as the maximum
execution time of tasks assigned by user i to all resources,
Tmaxi = max{T̂ij |j = {1, 2, ..., n}}. The second vector,
Esum, is composed of m elements, each element, Esumi ,
represents the total expense for user Si, and is defined as
the summation of all expenses paid to all resources by user

i, EAi =
m∑
j=1

Êij . We assign weights for schedule costs as

follows, wt for execution time weight, and we for expense

weight. Then we can use definition for a merit value of
the expense use the utility function defined above: uAi =

1
wt×TAi +we×EAi

= 1

wt×max{T̂ij |j={1,2,...,n}}+we×
m∑
j=1

Êij

. Then

the utility of schedule A can be defined as the summation of

utilities of all users: uA =
n∑
i=1

uAi .

Next we give an example to illustrate the problem described
above for multiple users. We will use a similar problem to the
one described in [25], however, problem description in [25] is
based on the following two assumptions: (1) the price vector of
all resources p = (p1, p2, .., pm) satisfies p1 < p2 < · · · < pm,
and (2) the corresponding execution time of any subtask of an
arbitrary task Si satisfies Ti1 > Ti2 > · · · > Tim. We believe
that the above assumption is valid for only limited applications,
and the method used based on game theory can have a Nash
equilibrium only under the given assumption. The algorithm
proposed in this paper can be applied on any price vector, p,
and execution time matrix, T , regardless of the order. We will
explain the problem statement using the same example, since
it is going to be used as illustrative example on the proposed
algorithm later. Given the price vector p described above, k =
{2, 3, 4}, the execution time matrix T and schedule A given
as below, then we calculate the two matrices T̂ , Ê and two
vectors Tmax and Esum as follows:

T =

(
6 5 4 3.5 3
5 4.2 3.6 3 2.8
4 3.5 3.2 2.8 2.4

)
, A =(

0 0 0 1 1
0 1 1 1 0
1 1 1 0 1

)

T̂ =

(
0 0 0 7 6
0 8.4 7.2 6 0
4 7 6.4 0 4.8

)
, Ê =(

0 0 0 6.3 6
0 5.04 5.4 5.4 0
4 4.2 4.8 0 4.8

)

TA = (7, 8.4, 7), EA = (12.3, 15.84, 17.8)

uAi =

 1
7+12.3 = 0.0518135

1
8.4+15.84 = 0.0412541

1
7+17.8 = 0.0403226

, and finally

uA =
n∑
i=1

uAi = 0.13339.

This example shows the optimization needed in order to
enhance utility of the scheduling problem, while there is
tradeoff between the execution time and the price for every
assignment. First, a proposed solution for the single user
case is provided, where the optimum solution can be obtain.
In fact, while similar problems have been addressed in the
literature, we believe that the solution we provide is the
most efficient one. The algorithm for the multiuser problem,
which is considered NP compete problem, will be based on a
selection function that is designed using the solution for the
single user problem. We define a function that calculates the
effect of scheduling tasks into resources, and use it for the
choice of proper allocation of every service.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 6, 2016 

430 | P a g e
www.ijacsa.thesai.org 



Algorithm 1 Singel User Resource Allocation
1: procedure SINGLE USER ALLOCATION
2: Input: k, m, t, p, n.
3: Output: v.
4: Initialize:
5: • Initialize vectors and variables
6: v = 0 , t̂max = 0, j = 0; initialize all elements to 0
7:
8: • Initialize the allocation function vector δ
9: REPEAT

10: δj = pj × tj + tj
11: j = j + 1
12: UNTIL j = k ; simulation time ends
13: • Process all elements elements using allocation function
14: j = 0; Reset counter
15: REPEAT
16: find l such that
17: (1) 1 ≤ l ≤ n,
18: (2) ∀i · 1 ≤ i ≤ n⇒ δl ≤ δi,
19: vl = vl + 1, allocate current task to Rl

20: if vl × tl > tmax then
21: tmax = vl × tl
22: endif
23: δl = max(tmax, tl × (1 + vl)) + pl × tl × (1 + vl),
24: j = j + 1
25: UNTIL j = k ; all tasks are allocated
26: END
27: end procedure

IV. OPTIMIZING SINGLE USER SCHEDULING

In this section we present the solution for the single user
optimization problem based on the description in the previous
section. The objective is to find the allocation vector v the
maximizes the utility u(v). For k subtasks and m resources,
it is obvious that the search space for the problem is non-
polynomial, hence exploring all possible scenarios is nonlinear.

In order to show how the proposed algorithm finds the
optimum solution, we first create a variable tmax and initiate
it to 0. Then, we define a selection function, δ, as a vector of
m elements, δ = (δ1, δ2, . . . , δm), which is defined initially as
follows:

δi = max(tmax, ti × (1 + vi)) + pi × ti × (1 + vi).

Then, we start the allocation of k subtasks by following
an iterative process, where in every iteration, we assign one
subtask into one resource. We choose l, such that satisfies the
following conditions: (1) 1 ≤ l ≤ n, and (1) ∀i · 1 ≤ i ≤ n⇒
δl ≤ δi. This means that δl is minimum in δ. Then, we assign
the current subtask into resource Rm. After the assignment,
we modify the schedule v by incrementing vl, calculate the
new t̂l, δl, and t̂max. Then we repeat the process again, until
all items are processed.

This algorithm has a complexity of worst case O(nm),
i.e. it should perform in linear time vs n ×m. Applying the
above algorithm on the single user example explained above
will result in v = (0, 0, 1, 1, 1), with utility u = 0.05. In
addition considering the scheduling problem for multiusers
presented in the previous section, if the problem is solved
individually, i.e. every user schedule his subtasks using
the algorithm 1 above, then, the resulting schedule will be
v1 = (0, 0, 0, 1, 1), v2 = (0, 0, 1, 1, 1), v3 = (1, 1, 1, 0, 1),
all combined together will give schedule A provided below.
Hence, under this assumption, the schedule for multiuser

will have the utility of uA = 0.1273. Obviously, this is not
the optimum solution for the multiuser case. For instance,
the schedule given in the example in the previous section
yields better utility. Therefore, in the next section, we parent
a selection function based algorithm for utility optimization
for the multiuser scheduling problem described above.

A =

(
0 0 0 1 1
0 0 1 1 1
1 1 1 0 1

)

V. OPTIMIZING MULTI-USER SCHEDULING

The algorithm is developed based on the fact that the single
user algorithm alone does not lead into the optimum solution
when generalized into the multiple users case. Obviously the
reason, is that any subtask scheduled at a given resource,
affects the execution time of that resource for other users.
Therefore, we will develop the scheduling algorithm based on
two issues: scheduling subtasks as pairs, and using a selection
function that takes into account the current optimum choice for
the single users scheduling problem and combine it with other
facts, such as the number of unscheduled subtasks. In fact,
The objective is to find the allocation matrix A the maximizes
the utility uA form a given execution time matrix T and price
vector p. The problem is described in the literature as NP-
Complete, and hence heuristic based solutions can be used
to provide the best possible solution. For n users, each has
ki subtasks, where 1 ≤ i ≤ n, and m resources, we first
create two empty matrices T̂ and Ê, each of n×m elements
and initialize them to zeros. We also create the two vectors
Tmax, and Esum, each of n elements, and a variable TE ,
all initialized to zeros as well. Let ∆ be a matrix of n ×m
elements, initialized as follows: ∆ij = pj × Tij + Tij .

Next, we define a vectors, TA of m elements initialized
to zero, represents the total number of subtasks assigned to
every resource. At any time during the scheduling process,

TAj =
m∑
i=1

Aij and, TE =
m∑
j=1

Esumj . Finally, we define the

selection function, Θi = 0.01×ki+ 1
∆il

, that takes into account
the number of unscheduled subtasks, where ∆il is minimum
in row i in the matrix ∆.

Subtasks are then allocated for users using the selection
function, Θ, to choose two users, α and β, such that 1 ≤
α, β ≤ n, and the following two conditions are satisfied, (1)
∀i · i > 0, i ≤ n ⇒ Θα ≥ Θi, and (2) ∀i · i > 0, i ≤ n, i 6=
α,⇒ Θβ ≥ Θi. Then, for each user, α and β , we choose the
entry that leads to best single user utility using the single user
optimization algorithm, γα for task α, and γβ for task β, such
that 1 ≤ γα ≤ kα , and 1 ≤ γβ ≤ kβ , and the following two
conditions are satisfied: (1) ∀j · j > 0, j ≤ m⇒ ∆αγα ≤ ∆αj

and (2) ∀j ·m > 0, j ≤ n, j 6= γα ⇒ ∆βγβ ≤ ∆βj . Hence,
two subtasks with minimum values in ∆ are to be scheduled
for two user .

In fact, the assignment of the two subtasks are chosen
simultaneously for a valid reason, when a single subtask is
assigned the allocation matrix will be modified, and hence
the local utility matrix ∆ will be modified. After several
considerations, it was found that sleeting a single subtask
and assigning it to the best available entry ∆ij leads to bad

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 6, 2016 

431 | P a g e
www.ijacsa.thesai.org 



Algorithm 2 Multiple User Resource Allocation Algorithm
1: procedure ALLOCATION
2: Input: k, n, m, T , p.
3: Output: A.
4: Initialize:
5: • Initialize vectors and variables
6: A = {0} , Tmax = {0} Esum = {0}, TE = 0, T̂ = {0} ; initialize

all elements to 0
7:
8: • Initialize the allocation function vector ∆
9: i = 0

10: REPEAT
11: j = 0, i = i+ 1
12: REPEAT
13: ∆ij = pj × Tij + Tij
14: j = j + 1
15: UNTIL j = m ;
16: UNTIL i = n ;
17: • choose two elements using selection function
18: REPEAT
19: • choose α and β using selection function Θ.
20: • choose γα such that ∆αγα is minimum
21: • choose γβ such that ∆βγβ

is minimum and γβ 6= γα
22: • Schedule subtask for user α at Resource Rγα
23: • Schedule subtask for user β at Resource Rγβ
24: • updates all variables for by assigning subtask for user α assigned to service

γα
25: Aαγα+ = 1, TAγα+ = 1 ,
26: T̂αj = T̂αj + pi × Tij ,
27: Tmaxα = max(Tmaxα , T̂αj)
28: Esumα = Esumα + pα × Tαj
29: TE = TE + pα × Tαj

30: ∆ij = pi × Tij +
n∑
l=1

max((TAl + 1)× Til), Tmaxl ) + TE .

31: kα = kα − 1.
32: • updates all variables for by assigning subtask for user β to resource γ
33: • Repeat above steps using β and γβ instead of α and γα, respectively.
34: UNTIL at most one task has unscheduled subtasks
35: • choose α such that kα > 0
36: REPEAT
37: • choose γα such that ∆αγ is minimum.
38: • updates all variables for α and γ
39: kα = kα − 1.
40: UNTIL kα = 0
41: END
42: end procedure

schedule, due to the effect of every single subtask scheduled
on the final commutation time (maximum time) for every user.
We then update the list of parameters in two steps, each for
one assignment. All variables T̂ , ∆, Tmax , Esum,TA, and TE
are updated as follows for each task assignment of subtask for
user α by scheduling at at service γα as follows:

Aαγα+ = 1, TAγα+ = 1 , T̂αγα = T̂αγα + pγα × Tαγα ,

Tmaxα = max(Tmaxα , T̂αγα),

Esumα = Esumα + pα × Tαγα ,

TE = TE + pα × Tαγα ,

∆ij = pi × Tij +
n∑
l=1

max((TAl + 1)× Til), Tmaxl) + TE .

Values in the matrix ∆ are updated based on the best utility
for the single user case described in the previous section. In the
next step of the same iteration, the same process is repeated
for the assignment of the subtask of user β for service γβ . In
the next iteration, the function Θ is used to select two tasks,
and the function ∆ is used to select two schedules for each
tasks, and then, the best combination is selected. The process
is repeated until all tasks are scheduled. In case, there is only
one task left with one or more subtasks, then direct assignment

using the function ∆ is conducted until all subtasks are
processed. The outcome depends on the selection function, i.e.,
the order on which the users are selected for scheduling and
the resource their subtasks are allocated to. Hence, we intend
to test the algorithm for more than one selection function.
Algorithm 2 shows the step by step description of the process
and is illustrated on a detailed example in the next Section. In
addition, the algorithm is tested with tow different selection
functions, and in both it outperforms evolutionary and game
theory based algorithms.

VI. ILLUSTRATIVE EXAMPLE

Let us consider the multi-user example given in Section
3, and demonstrate the algorithm above in order to find an
appropriate allocation matrix. All initial values for inputs are as
given in the example above. We start calculating initial values
using the algorithm above, then we choose α = 3, β = 2
using the selection function. Then we choose two entries in ∆
with minimum values: γα = 5 and γβ = 4. The combination
(γα, γβ) = (5, 4) is selected, hence, a subtask for user u3 will
be scheduled to service R5, followed by a subtask of user u2

to service R4. Based on this, the allocation matrix, A, will be
updated with these schedules in the next step. This is illustrated
in the initial step indicated as λ0 in Table I below, where the
numbers in bold represent the active ones.

In the next step, λ1, k3 and k2 are decremented,
leading to k = {2, 2, 3}. All variables are updated and new
selection function values are calculated, which will lead to
α = 3, β = 2, γα = 2, γβ = 3. Hence, subtask for user u3 is
assigned to R2, and for user u2 is assigned to R3, which will
appear in A in the next step λ2, where k becomes {2, 1, 2},
and the selection functions gives α = 3, β = 1, γα = 1, and
γβ = 5. Hence, subtask of u3 is assigned to R1, and subtask
of u1 is assigned to R5. The step λ3 leads to k = {1, 1, 1},
α = 3, β = 2, γα = 2, and γβ = 4. Hence, subtask of u3

is assigned to R2, and subtask of u2 is assigned to R4. In
step λ4, k = {1, 0, 0}, therefore only user u1 has subtasks,
selection function for α = 1 will give γα = 3, hence, the last
subtask for user u1 is assigned to R3. The final allocation
matrix obtained as below, which give uA = 0.134. Note that
this utility value is better than the result obtained using game
theory with Nash equilibrium in [25].

A =

(
0 0 1 0 1
0 0 1 2 0
1 2 0 0 1

)

We observed that the selection function has direct effect on
the outcome for the algorithm, therefore, we did execute the
algorithm by choosing the selection function as follows Θi =

1
1+ki

+ 1
∆il

, then applying the above steps will lead into the
schedule A given below, which has a utility of uA = 0.1416,
obviously, this shows an enhancement of around 6.2% over
the utility in achieved in [25].

A =

(
0 0 0 0 2
0 0 1 2 0
2 2 0 0 0

)

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 6, 2016 

432 | P a g e
www.ijacsa.thesai.org 



TABLE I: Execution of the algorithm on the above example

Step A ∆ k Θ α, γα β, γβ

λ0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

12.0 11.0 10.0 9.8 9.0
10.0 9.2 9.0 8.4 8.4
8.0 7.7 8.0 7.8 7.2

2
3
4

0.131
0.149
0.179

3, 5 2, 4

λ1

0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

27.6 26.6 25.6 31.9 30.0
22.6 21.8 21.6 24.0 26.2
21.2 20.9 21.2 26.8 22.8

2
2
3

0.059
0.066
0.078

3, 2 2, 3

λ2

0 0 0 0 0
0 0 1 1 0
0 1 0 0 1

38.9 46.4 44.5 42.6 40.2
33.3 40.2 35.9 34.7 35.8
31.4 34.6 38.2 36.4 33.0

2
1
2

0.046
0.040
0.052

3, 1 1, 5

λ3

0 0 0 0 1
0 0 1 1 0
1 1 0 0 1

59.4 56.4 55.8 53.9 55.6
58.8 56.2 53.2 52.0 60.0
51.4 50.6 54.2 52.4 54.4

1
1
1

0.028
0.029
0.030

3, 2 2, 4

λ5

0 0 0 0 1
0 0 1 2 0
1 2 0 0 1

71.4 76.9 67.6 72.2 67.6
68.4 73.5 65.0 66.8 69.6
63.4 66.1 64.4 67.8 66.4

1
0
0

0.025
0.015
0.016

1
3

λ6

0 0 1 0 1
0 0 1 2 0
1 2 0 0 1

0
0
0

VII. CONCLUSION AND FUTURE WORK

While cloud computing technology is increasingly being
used, effective resource allocation methods are required in
order to maximize profit for cloud service providers, provide
energy efficient methods, and at the same time achieving user
satisfaction. This paper proposes a model for task-oriented
resource allocation in cloud computing, where the problem
of scheduling single user with multiple dependant subtask on
multiple available resources with different execution time and
cost is addressed first. Then, the general problem of scheduling
multiple users, each with multiple subtask on multiple avail-
able resources is addressed. The proposed solution is provided
by introducing a selection pairwise function based on subtasks
completion time and task costs. The problem addressed in
this paper is described as NP-Complete, hence, the presented
solution present a local optimum schedule. The proposed
method, compared to existing techniques, is applicable on
scheduling problems without any restrictions on the execution
time and price, in particular as compared to game theoretic
approaches [25], where the execution time must be given in
ascending order, and the price in descending in order to find
Nash equilibrium. In addition, the proposed method outputs
schedule with better utility than game theoretic one.

We intend to provide implementation for the method, and
test for problems with large number of users and resources. In
addition, we intend to try to modify the selection function to
further improve the utility of the schedule by considering the
weight of the subtasks to be scheduled in the future including
price and completion time. In addition, since formal methods
have been proposed thouroughly for the analysis of differnt
cloud applications [34], we intend to use formal analysis to
model and validate the proposaed algorithm.

REFERENCES

[1] Borko Furht and Armando Escalante, Handbook of Cloud Computing,
Springer, 2010.

[2] Shabnam Khan, “A survey on scheduling based resource allocation in
cloud computing,” International Journal For Technological Research
In Engineering, vol. 1, no. 1, 2013.

[3] K.C. Okafor, F.N. Ugwoke, A.A. Obayi, V.C. Chijindu, and O.U.
Oparaku, “Analysis of cloud network management using resource
allocation and task scheduling services,” International Journal of
Advanced Computer Science and Applications, vol. 7, no. 1, pp. 375–
386, 2016.

[4] VP Anuradha and D Sumathi, “A survey on resource allocation strate-
gies in cloud computing,” in International Conference on Information
Communication and Embedded Systems. IEEE, 2014, pp. 1–7.

[5] V Vinothina, R Sridaran, and Padmavathi Ganapathi, “A survey
on resource allocation strategies in cloud computing,” International
Journal of Advanced Computer Science and Applications, vol. 3, no. 6,
pp. 97–104, 2012.

[6] Artan Mazrekaj, Isak Shabani, and Besmir Sejdiu, “Pricing schemes
in cloud computing: An overview,” International Journal of Advanced
Computer Science and Applications, vol. 7, no. 2, pp. 80–86, 2016.

[7] Sunilkumar S Manvi and Gopal Krishna Shyam, “Resource manage-
ment for infrastructure as a service (iaas) in cloud computing: A survey,”
Journal of Network and Computer Applications, vol. 41, pp. 424–440,
2014.

[8] Edward Walker, Walter Brisken, and Jonathan Romney, “To lease or
not to lease from storage clouds,” Computer, vol. 43, no. 4, pp. 44–50,
2010.

[9] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros, “Intercloud:
Utility-oriented federation of cloud computing environments for scaling
of application services,” in Algorithms and architectures for parallel
processing, pp. 13–31. Springer, 2010.

[10] Zhen Xiao, Weijia Song, and Qi Chen, “Dynamic resource allocation
using virtual machines for cloud computing environment,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 6, pp.
1107–1117, 2013.

[11] Anil Singh, Kamlesh Dutta, and Avtar Singh, “Resource allocation
in cloud computing environment using ahp technique,” International
Journal of Cloud Applications and Computing, vol. 4, no. 1, pp. 33–
44, 2014.

[12] Jorge Ejarque, Javier Álvarez, Raül Sirvent, and Rosa M Badia, “Re-
source allocation for cloud computing: A semantic approach,” Open
Source Cloud Computing Systems: Practices and Paradigms: Practices
and Paradigms, p. 90, 2012.

[13] Daji Ergu, Gang Kou, Yi Peng, Yong Shi, and Yu Shi, “The analytic
hierarchy process: task scheduling and resource allocation in cloud
computing environment,” The Journal of Supercomputing, vol. 64, no.
3, pp. 835–848, 2013.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 6, 2016 

433 | P a g e
www.ijacsa.thesai.org 



[14] Yujia Ge and Guiyi Wei, “Ga-based task scheduler for the cloud
computing systems,” in International Conference on Web Information
Systems and Mining. IEEE, 2010, vol. 2, pp. 181–186.

[15] Joanna Kołodziej, Samee Ullah Khan, Lizhe Wang, and Albert Y
Zomaya, “Energy efficient genetic-based schedulers in computational
grids,” Concurrency and Computation: Practice and Experience, vol.
27, no. 4, pp. 809–829, 2015.

[16] Sagnika Saha, Souvik Pal, and Prasant Kumar Pattnaik, “A novel
scheduling algorithm for cloud computing environment,” in Compu-
tational Intelligence in Data Mining, Volume 1, pp. 387–398. Springer,
2016.

[17] Georgios C Chasparis, Martina Maggio, Enrico Bini, and Karl-Erik
Årzén, “Design and implementation of distributed resource management
for time-sensitive applications,” Automatica, vol. 64, pp. 44–53, 2016.

[18] Dinesh Prasad Sahu, Karan Singh, and Shiv Prakash, “Resource
allocation and provisioning in computational mobile grid,” International
Journal of Applied Evolutionary Computation, vol. 6, no. 2, pp. 1–24,
2015.

[19] Karthik Kumar, Jing Feng, Yamini Nimmagadda, and Yung-Hsiang Lu,
“Resource allocation for real-time tasks using cloud computing,” in
International Conference on Computer Communications and Networks.
IEEE, 2011, pp. 1–7.

[20] Zhen Kong, Cheng-Zhong Xu, and Minyi Guo, “Mechanism design for
stochastic virtual resource allocation in non-cooperative cloud systems,”
in IEEE International Conference on Cloud Computing. IEEE, 2011,
pp. 614–621.

[21] Paul Marshall, Kate Keahey, and Tim Freeman, “Elastic site: Using
clouds to elastically extend site resources,” in IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing. IEEE Computer
Society, 2010, pp. 43–52.

[22] Daniel Gmach, Jerry Rolia, and Lucy Cherkasova, “Satisfying service
level objectices in a self-managing resource pool,” in IEEE Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems. IEEE,
2009, pp. 243–253.

[23] Atsuo Inomata, Taiki Morikawa, Minoru Ikebe, Yoshihiro Okamoto,
Satoru Noguchi, Kazutoshi Fujikawa, Hideki Sunahara, and
Sk Md Mizanur Rahman, “Proposal and evaluation of a dynamic
resource allocation method based on the load of vms on iaas,” in IFIP
International Conference on New Technologies, Mobility and Security.
IEEE, 2011, pp. 1–6.

[24] Fei Teng and Frédéric Magoulès, “A new game theoretical resource
allocation algorithm for cloud computing,” in Advances in Grid and
Pervasive Computing, pp. 321–330. Springer, 2010.

[25] Guiyi Wei, Athanasios V Vasilakos, Yao Zheng, and Naixue Xiong, “A
game-theoretic method of fair resource allocation for cloud computing
services,” The journal of supercomputing, vol. 54, no. 2, pp. 252–269,
2010.

[26] Zhanjie Wang and Xianxian Su, “Dynamically hierarchical resource-
allocation algorithm in cloud computing environment,” The Journal of
Supercomputing, pp. 1–19, 2015.

[27] Fengyu Guo, Long Yu, Shengwei Tian, and Jiong Yu, “A workflow task
scheduling algorithm based on the resources’ fuzzy clustering in cloud
computing environment,” International Journal of Communication
Systems, vol. 28, no. 6, pp. 1053–1067, 2015.

[28] Dorian Minarolli and Bernd Freisleben, “Virtual machine resource
allocation in cloud computing via multi-agent fuzzy control,” in
International Conference on Cloud and Green Computing. IEEE, 2013,
pp. 188–194.

[29] Wei-Yu Lin, Guan-Yu Lin, and Hung-Yu Wei, “Dynamic auction
mechanism for cloud resource allocation,” in IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing. IEEE, 2010, pp.
591–592.

[30] Hong-Yi Chang, Hsin-Che Lu, Yu-Huei Huang, Yuan-Wei Lin, and Yih-
Jou Tzang, “Novel auction mechanism with factor distribution rule for
cloud resource allocation,” The Computer Journal, p. bxt008, 2013.

[31] Maryam Fayazi, Mohammad Reza Noorimehr, and Sayed Enayatollah
Alavi, “Resource allocation in cloud computing using imperialist
competitive algorithm with reliability approach,” International Journal
of Advanced Computer Science and Applications, vol. 7, no. 3, pp.
323–331, 2016.

[32] Parnia Samimi, Youness Teimouri, and Muriati Mukhtar, “A combina-
torial double auction resource allocation model in cloud computing,”
Information Sciences, 2014.

[33] Chonho Lee, Ping Wang, and Dusit Niyato, “A real-time group auction
system for efficient allocation of cloud internet applications,” IEEE
Transactions on Services Computing, vol. 8, no. 2, pp. 251–268, 2015.

[34] Amjad Gawanmeh and Ahmad Alomari, “Challenges in formal methods
for testing and verification of cloud computing systems,” Scalable
Computing: Practice and Experience, vol. 16, no. 3, pp. 321–332, 2015.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 6, 2016 

434 | P a g e
www.ijacsa.thesai.org 




