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Abstract—Constrained multiobjective optimization arises in
many real-life applications, and is therefore gaining a constantly
growing attention of the researchers. Constraint handling tech-
niques differ in the way infeasible solutions are evolved in
the evolutionary process along with their feasible counterparts.
Our recently proposed threshold based penalty function gives
a chance of evolution to infeasible solutions whose constraint
violation is less than a specified threshold value. This paper
embeds the threshold based penalty function in the update and
replacement scheme of multi-objective evolutionary algorithm
based on decomposition (MOEA/D) to find tradeoff solutions for
constrained multiobjective optimization problems (CMOPs). The
modified algorithm is tested on CTP-series test instances in terms
of the hypervolume metric (HV-metric). The experimental results
are compared with the two well-known algorithms, NSGA-II and
IDEA. The sensitivity of algorithm to the adopted parameters is
also checked. Empirical results demonstrate the effectiveness of
the proposed penalty function in the MOEA/D framework for
CMOPs.

Keywords—Decomposition; MOEA/D; threshold based penalty
function; constrained multiobjective optimization

I. I NTRODUCTION

This paper handles following type of constrained multiob-
jective optimization problem (CMOP) [1] [2]:

Minimize F (x) = (f1(x), f2(x), . . . , fm(x))T ;
Subject to gj(x) ≥ 0, j = 1, . . . , p;

lk ≤ xk ≤ uk, k = 1, . . . , n;
(1)

wherex = (x1, . . . , xn)
T ∈ Rn is an n dimensional vector

of decision variables,F is the objective vector function that
consists ofm real-valued objective functions, andgi(x) ≥
0 are inequality constraints (equality constraints, if any, can
be transformed into corresponding inequality constraint as per
common practice in literature). The objective and constraint
functions,fi’s and gj ’s, could be linear or non linear real-
valued functions.lk and uk are the lower and upper bounds
(called bound constraints) ofxk, k = 1, . . . , n, respectively,
which define the search regionS = {x = (x1, . . . , xn)

T | lk ≤
xk ≤ uk, k = 1, . . . , n}.

A solutionx ∈ S is called a feasible solution, if it satisfies
all the inequality constraints in (1). The set of all feasible
solutions is called the feasible region. Mathematically, we can
write: F = {x ∈ S ⊂ Rn|gj(x) ≥ 0, j = 1, · · · , p}. However,
if a solution is not feasible, we call it infeasible. The set of all
infeasible solutions is called the infeasible region. Moreover,
the feasible attainable objective set (AOS) can be defined as
{F (x)|x ∈ F}.

In CMOPs, due to conflicting objectives, a single solution
that could optimize all the objectives at the same time is often
hard to be found. Therefore, in such problems, normally one
has to look for a set of feasible optimal compromising/tradeoff
solutions. Pareto-optimality [3], [4] defines the best tradeoffs
among the conflicting objectives.

A solutionx Pareto-dominates or simply dominates another
solutiony, mathematically denoted asx � y, if fi(x) ≤ fi(y),
∀i = 1, . . . ,m and fj(x) < fj(y) for at least onej ∈
{1, . . . ,m}1. A solution x∗ ∈ F is Pareto-optimal to (1) if
there is no solutionx ∈ F such thatF (x) � F (x∗). F (x∗)
is then called a Pareto-optimal (objective) vector. The set of
all Pareto-optimal solutions is called thePareto Set (PS) in the
decision space andPareto Front (PF) in the objective space [3].

In most of the constrained optimization problems, the
Pareto-optimal solutions lie on the constraints’ boundaries
Thus, to locate such solutions, a good practice could be to
evolve some good infeasible solutions with small degree of
constraint violation along with the feasible solutions during
the evolutionary process (In [5]–[7] such practice has been
adopted). The main goal of evolving infeasible solutions in
the search process is to use the information they carry. Since
EAs are stochastic search and optimization methods, so ig-
noring infeasible solutions might guide the EA being stuck in
local optima, especially in CMOPs with disconnected search
space [8], [9]. Additionally, finding a single feasible solution
in some highly constrained optimization problems by itself
could be a challenging problem [10], [11]. Therefore, one

1All the inequalities should be reversed if the purpose is to maximize the
objectives in (1)
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can distinguish different constraint handling techniques that
are used in multiobjective optimization (MOO) by the way
the infeasible solutions are mixed up and evolved with their
feasible counterparts during the evolutionary process.

In [1], a threshold based penalty function is introduced.
In order to penalize infeasible solutions, this penalty function
uses a threshold value. The infeasible solutions with degree of
constraint violation smaller than the threshold value are less
penalized as compared to the ones with degree constraint vio-
lation greater than the threshold value. Consequently, a chance
is given to some good infeasible solutions with less degree of
constraint violation to evolve during the evolutionary process.
In [12], the framework of MOEA/D-DE [13], an improved
variant of MOEA/D [14] is modified for CMOPs; The modified
framework is denoted by CMOEA/D-DE [12]. Two penalty
parameterless constraint handling techniques are employed in
this framework to solve CTP-series [4], [15] and CF-series
[16] test instances. However, in this work, the threshold based
penalty function is implanted in the replacement and update
scheme of CMOEA/D-DE for handling constraints in CMOPs.
As a result, a constrained version of MOEA/D-DE, denoted
by CMOEA/D-DE-ATP is introduced. Empirical results have
shown the capability of the proposed algorithm for handling
hard CTP-series [4], [15] test instances.

The remainder of this paper is organized as follows. Section
II presents a few basic concepts and the suggested thresh-
old based penalty function. Section III introduces MOEA/D
and adapts the algorithmic framework of MOEA/D-DE for
CMOPs. Section IV presents and discusses experimental re-
sults on CTP-series [4], [15] test instances. This section also
compares our experimental results with those of IDEA [7]
and NSGA-II [17]. Section V provides some remarks on the
sensitivity of the performance of CMOEA/D-DE-ATP to its
parameters. Finally, Section VI concludes this paper.

II. BASIC CONCEPTS AND THEPROPOSEDTHRESHOLD
BASED PENALTY FUNCTION

A. Degree of Constraint Violation

The degree of constraint violation of a solutionx ∈ S can
be defined as follows [1], [4]:

V (x) = |

p
∑

j=1

min(gj(x), 0)|. (2)

Clearly, V (x) = 0 implies thatx is feasible; otherwise, it is
infeasible.

B. Tchebycheff Aggregation Function

MOEA/D [14] decomposes an MOP into a number of
scalar objective subproblems. In this paper, the Tchebycheff
aggregation function is employed for this purpose, since it is
less sensitive to the shape of PF, and it can be utilized to obtain
the Pareto-optimal solutions in both convex and nonconvex
PFs. It is defined as follows [18]:

Minimize gte(x|λ, z∗) = max1≤i≤m{λi|fi(x)− z∗i |}; (3)
Subject to x ∈ F ⊂ Rn;

wherez∗ = (z∗
1
, . . . , z∗m)T is the reference point, i.e.,z∗i =

min{fi(x)|x ∈ F} ∀i = 1, . . . ,m and λ = (λ1, . . . , λm)T

is a weight vector such thatλi ≥ 0 ∀i = 1, . . . ,m and
∑m

i=1
λi = 1.

C. The Threshold Based Penalty Function

Let us consider that MOEA/D [14] decomposes the MOP
into N subproblems. In each iteration, MOEA/D retainsN
solutions x1, . . . , xN , where xi is the current solution to
subproblemi. Let us considerP to be the mating and update
range in MOEA/D. Then define [1] [2]:

Vmin = min{V (xi), i ∈ P}, (4)

Vmax = max{V (xi), i ∈ P}, (5)

whereV (xi) is the degree of constraint violation of solution
xi. The adopted threshold value,τ is then defined as follows
[1] [2]:

τ = Vmin + s(Vmax − Vmin), (6)

where the parameters controlsτ . In [1], we experimented with
s = 0.3.

The threshold based penalty function not only encourages
the algorithm to search the feasible region, but also the
infeasible region close the feasible region for optimal solutions.
It is defined as follows [2]: Fori = 1, . . . ,m

f i
p(x) =







fi(x) + s1V
2(x), if V (x) < τ ;

fi(x) + s1τ
2+

s2(V (x)− τ), otherwise,
(7)

wheres1 and s2 are two scaling parameters withs1 << s2.
As can be observed from the penalty function, the penalty
sharply increases whenV (x) is greater than the threshold. This
is realized by scaling the degree of constraint violation,V (x)
of an infeasible solution by a relatively high value of parameter
s2 than parameters1.

III. M ULTIOBJECTIVE EVOLUTIONARY ALGORITHM
BASED ON DECOMPOSITION

Zhang and Li [14] introduced a simple yet efficient MOEA,
named as multi-objective evolutionary algorithm based on
decomposition (MOEA/D). In order to approximate the PF,
MOEA/D employs an aggregation function to explicitly de-
compose an MOP into a number of scalar objective optimiza-
tion subproblems (this work uses the Tchebycheff function to
serve the purpose of decomposition). Then, an EA is employed
to optimize these subproblems concurrently and collaboratively
by evolving population of solutions. The Euclidean distances
between the aggregation coefficient vectors of the subproblems
are utilized to determine the neighborhood relations among
them, which are then used to optimize a subproblem.

An improved version of MOEA/D, MOEA/D-DE is intro-
duced in [13]. It distinguishes from its predecessor (MOEA/D)
in the following aspects [13]:

• For maintaining population diversity, MOEA/D-DE
takes two measures:

1) It picks out three parent solutions from the
whole population with a low probability1−δ,
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where δ = 0.9 is the probability of select-
ing the parents from the neighborhood of a
solution. Because of the dissimilarity among
these parent solutions, a very wide range of
child solutions could be brought about and, as
a result, the exploration ability of the search
could be ameliorated.

2) It limits the maximal number of solutions
replaced by a better child solution by a param-
eternr << T , whereT is the neighborhood
size of the child solution. Thus, there is a little
chance that a better child solution has many
copies in the population. While, in MOEA/D,
the maximal number of solutions replaced by
a better child solution could be as large asT .

• Since DE [19] operators often surpass other genetic
operators in single objective optimization, MOEA/D-
DE benefits from DE operator for generating off-
spring.

The penalty function defined by Eq. 7 is employed in the
update scheme of CMOEA/D-DE [12] to solve CTP-series [4],
[15] test instances. This produced a new algorithm, denoted by
CMOEA/D-DE-ATP. The pseudo-code of the update scheme
of CMOEA/D-DE-ATP is given in Algorithm 1.

Algorithm 1 Pseudo-codeof the Update Scheme of
CMOEA/D-DE-ATP.nr is the Number of Solutions Updated
by a Better Child Solution.

1: Each new offspringy replacesnr parent solutions from
the setP of its neighboring solutions as follows:

2: Setc = 0 and then do the following:
3: if c = nr or P = ∅ then
4: return;
5: else
6: Choose randomly an indexj from P ;
7: Calculate the Tchebycheff aggregation function val-

ues ofy andxj with the new objective values of Eq.
7;

8: if gte(y|λj , z) ≤ gte(xj |λj , z) (or gtep (y|λj , z) ≤
gtep (xj |λj , z) ) then

9: xj = y, F (xj) = F (y), V (xj) = V (y), and
c = c+ 1;

10: end if
11: Removej from P and go to step3;
12: end if

IV. EXPERIMENTAL RESULTS

In all experiments, the same parameters’ settings as given
in [12] are used. The weight vectors used in Eq. 3 are selected
as per the proposed criteria in [16]. If not stated otherwise, Eq.
6 is used withs = 0.3 and Eq. 7 withs1 = 0.01 ands2 = 20
in all our experiments.

Hypervolume metric (HV-metric) computes the volume in
the function space covered by the elements of a setP for prob-
lems with minimizing objectives [20], [21]. The HV-metric
statistics are used to compare the experimental results obtained
from CMOEA/D-DE-ATP on CTP-series test instances. To

calculate the HV-metric values, the reference point (2, 20) is
used for test instances CTP6 and CTP8, while it is (2,2) for
the remaining test instances, CTP1-CTP5, CTP7.

Table I presents the HV-metric statistics based on 30 inde-
pendent runs of CMOEA/D-DE-ATP when using Eq. 6 with
s = 0.3, 0.5, 0.7 for the CTP-series test instances (the three
different adopted values are intended to look at the behavior
of the algorithm by evolving various percentages of infeasible
solutions during the evolutionary process). These statistics are
based on feasible solutions found in the final populations of
each algorithmic run and include the best (i.e., highest), mean,
and standard deviation values of the HV-metric.

For CTP1, the better best value is found by CMOEA/D-
DE-ATP with all used parameters values. However, for better
mean and standard deviation values, it needs to be run with
s = 0.3. For CTP2, the better best and mean values are found
by CMOEA/D-DE-ATP withs = 0.3, while the better standard
deviation value is found withs = 0.5. For CTP3, the better
best value is found by CMOEA/D-DE-ATP withs = 0.5.
However, for better mean and standard deviation values, it
needs to be run withs = 0.3. For CTP4, CTP5, and CTP6,
the better best, mean and standard deviation values are found
with s = 0.5, s = 0.3, ands = 0.7, respectively. For CTP7
and CTP8, the better best value is found withs = 0.7, while
the better mean and standard deviation values are found with
s = 0.3, 0.5. Overall, better performance of the algorithm can
be achieved, in terms of mean and standard deviation values,
with s = 0.3.

Figure 1 plots, in the objective space, the nondominated
solutions with the best (i.e., highest) HV-metric value found
by CMOEA/D-DE-ATP in 30 independent runs for CTP-
series test instances. In order to look at the variation of
the nondominated solutions found by CMOEA/D-DE-ATP, all
the 30 final nondominated fronts attained are also plotted in
the same figure. This figure clearly shows that CMOEA/D-
DE-ATP found good approximations of the PFs for all test
instances except CTP4, where it can be noted that in some
of the runs the obtained Pareto optimal solutions did not
completely converge to the PF.

A. Comparison with NSGA-II and IDEA

This section compares the experimental results of
CMOEA/D-DE-ATP with those of IDEA [7] and NSGA-
II [17] on CTP-series test instances. Table II presents the
HV-metric statistics, obtained from 30 independent runs of
CMOEA/D-DE-ATP when using Eq. 6 withs = 0.3 and Eq.
7 with s1 = 0.01 and s2 = 20, IDEA with α = 0.2 (α
determines the percentage of infeasible solutions to be retained
during evolution and NSGA-II with the constraint domination
principle [17] for seven CTP-series test instances, CTP2-CTP8.
The statistics of IDEA and NSGA-II are picked from [7],
and are rounded to four decimal places. From this table, it
can be seen that CMOEA/D-DE-ATP has found best HV-
metric values for four test instances, CTP3, CTP5, CTP6
and CTP8 and the second best results for CTP4 and CTP7.
NSGA-II and IDEA have found the best HV-metric value for
CTP1 and CTP4, respectively, while for CTP7 both algorithms
have obtained the same best HV-metric value. The table also
shows that even with a small threshold value, CMOEA/D-
DE-ATP has found better mean and standard deviation values
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TABLE I: The HV-Metric statistics of CMOEA/D-DE-ATP with three different values of parameters. The results
in boldface and in italic show the better and the second better results. If not, they are same.

best (highest) mean st. dev.

Test Instance s = 0.3 s = 0.5 s = 0.7 s = 0.3 s = 0.5 s = 0.7 s = 0.3 s = 0.5 s = 0.7

CTP1 2.7647 2.7647 2.7647 2.7642 2 .7638 2.7615 0.0006 0 .0007 0.0042

CTP2 3.0591 3.0564 3 .0580 3.0511 3 .0492 3.0477 0 .0174 0.0169 0.0177

CTP3 3.0256 3.0265 3 .0257 3.0137 3 .0012 2.9816 0.0242 0 .0394 0.0481

CTP4 2.8688 2.9327 2 .8778 2.4736 2.5531 2 .5129 0 .2058 0.2001 0.2297

CTP5 3.0313 3 .0292 3.0283 3.0032 3.0011 3 .0014 0.0201 0 .0226 0.0201

CTP6 36.8196 36 .8200 36.8202 36.8184 36 .8181 36.8184 0 .0017 0.0027 0.0012

CTP7 3 .6125 3 .6125 3.6128 3.6124 3.6124 3 .6099 0.0001 0.0001 0 .0138

CTP8 36.1821 36 .1822 36.1825 36.1652 36.1449 36 .1464 0.0342 0 .0532 0.0578

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0.4

0.5

0.6

0.7

0.8

0.9

1

f2

CTP1 Pareto Front

Unconstrained PF
Constraint Boundries
Constraint Boundries
Obtained PFs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f2

CTP2 Pareto Front

Unconstrained PF
Constraint Boundries
Obtained PFs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f2

CTP3 Pareto Front

Unconstrained PF
Constraint Boundries
Obtained PFs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f2

CTP4 Pareto Front

Unconstrained PF
Constraint Boundries
Obtained PFs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0.4

0.5

0.6

0.7

0.8

0.9

1

f2

CTP1

Unconstrained PF
Constraint Boundries
Constraint Boundries
Obtained PFs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f2

CTP2

Unconstrained PF
Constraint Boundries
Obtained PFs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f2

CTP3

Unconstrained PF
Constraint Boundries
Obtained PFs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f2

CTP4

Unconstrained PF
Constraint Boundries
Obtained PFs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f2

CTP5 Pareto Front

Unconstrained PF
Constraint Boundries
Obtained PFs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0

2

4

6

8

10

12

14

16

18

20

f2

CTP6 Pareto Front

FF

F

F

Unconstrained PF
Constraint Boundries
Obtained PFs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f2

CTP7 Pareto Front

F

F

F

F

F

F

Unconstrained PF
Constraint Boundries
Obtained PFs

CTP8 Pareto Front

F

F

F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0

2

4

6

8

10

12

14

16

18

20

f2

Constraint Boundries
Constraint Boundries
Obtained PFs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f2

CTP5

Unconstrained PF
Constraint Boundries
Obtained PFs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0

2

4

6

8

10

12

14

16

18

20

f2

CTP6

F

F

F

Unconstrained PF
Constraint Boundries
Obtained PFs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f2

CTP7

F

F

F

F

F

F

Unconstrained PF
Constraint Boundries
Obtained PFs

CTP8

F

F

F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0

2

4

6

8

10

12

14

16

18

20

f2

Constraint Boundries
Constraint Boundries
Obtained PFs

Fig. 1: Plots of the nondominated front with the best HV-metric value and all the30 final nondominated fronts found by
CMOEA/D-DE-ATP for CTP1 to CTP8.
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TABLE II: Comparison of CMOEA/D-DE-ATP (indicated by ATP) with IDEA and NSGA-II in terms of the
HV-Metric statistics. The results inboldface and in italic indicate the better and the second better results.

best (Highest) mean st. dev.

Test Instance ATP IDEA NSGA-II ATP IDEA NSGA-II ATP IDEA NSGA-II

CTP2 3.0591 3 .0592 3.0593 3.0511 3.0114 2.8707 0.0174 0 .1771 0.2701

CTP3 3.0256 3 .0160 3.0104 3.0137 2 .9608 2.8281 0.0242 0 .1638 0.2547

CTP4 2 .8688 2.9190 2.8485 2 .4736 2.7447 2.4381 0 .2058 0.1393 0.3527

CTP5 3.0313 3 .0247 3.0209 3.0032 2 .9529 2.7235 0.0201 0 .1621 0.2926

CTP6 36.8196 36.8191 36 .8227 36.8184 36 .7878 36.1829 0.0017 0 .0758 2.1873

CTP7 3 .6125 3.6177 3.6177 3.6124 3 .4359 3.2402 0.0001 0.5945 0 .5941

CTP8 36.1821 36 .1804 36.1708 36.1652 35 .9706 32.0859 0.0342 0 .4345 5.1763

than IDEA and NSGA-II for all test instances except CTP4,
where IDEA supersede the two competitors. In particular,
the standard deviation values obtained with CMOEA/D-DE-
ATP are considerably better than the two algorithms. The
small values of the standard deviation for CMOEA/D-DE-ATP
suggests the consistent performance of it.

V. SENSITIVITY OF CMOEA/D-DE-ATP TO ITS
PARAMETERS

This section analyzes the sensitivity of the the performance
of CMOEA/D-DE-ATP to the proposed penalty function pa-
rameters –s, s1 and s2 and the algorithmic parameters–T ,
nr, δ, N , CR, andF . In this regard, a comparatively simple
test instance CTP2 and a hard test instance CTP4 are used.
In CTP2, the PF consists of disconnected continuous Pareto-
optimal regions, while in CTP4, an algorithm has to travel
through long narrow feasible tunnels to find the lone Pareto-
optimal solutions at the end of each tunnel.
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Fig. 2: The average HV-metric values vs. parameters in CTP2
and CTP4.

A. Sensitivity of CMOEA/D-DE-ATP to s

To study the sensitivity of the performance of CMOEA/D-
DE-ATP to parameters that controls the threshold,τ range
where infeasible solutions are less penalized, 9 different values

of parameters (i.e.,s = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
are used in CMOEA/D-DE-ATP for test instances CTP2 and
CTP4. Figure 2 shows the average HV-metric values versus
the values of parameters. The figure clearly indicates the
sensitivity of the performance of the algorithm to parameter
s on different test instances. As can be seen from Figure 2
(a) that for test instance CTP2 the best (i.e., highest) average
value of the HV-metric is found by CMOEA/D-DE-ATP with
s = 0.3 (one can also see the value obtained withs = 0.8
is very close to the one obtained withs = 0.3 ), while for
test instance CTP4, it is found withs = 0.9 (see Figure 2
(b)). This indicates that for test instances like CTP2 a small
value of parameters could be used to get a small value ofτ
and, as a result, a small infeasible region close to feasibility
boundary is explored. This small value ofτ allows a small
number of infeasible solutions to survive, which results in
achieving a higher HV-metric value. However, for hard test
instances like CTP4, a higher value of parameters could
be used to get a larger value ofτ and, thereby, a large
infeasible region is explored along with the feasible ones in
search of the lone Pareto-optimal solutions situated at the end
of each disconnected narrow feasible regions. This allows a
large number of infeasible solutions to be less penalized. As a
result, these infeasible solutions will evolve along with feasible
solutions found and thus result in obtaining a higher HV-metric
value.

B. Sensitivity of CMOEA/D-DE-ATP to s1 and s2

To study the sensitivity of the performance of CMOEA/D-
DE-ATP to parameterss1 ands2, 25 different combinations of
five values ofs1 (i.e., s1 = 0.0001, 0.001, 0.01, 0.1, 0.5) and
five values ofs2 (i.e., s2 = 10, 20, 30, 40, 50) are tested in
CMOEA/D-DE-ATP on test instances CTP2 and CTP4. Each
combination of the two parameters is tried 30 times.

Figure 3 shows the average HV-metric values obtained by
the algorithm with 25 different combinations ofs1 and s2.
It is obvious that CMOEA/D-DE-ATP is less sensitive to the
settings of these two parameters under the considered ranges
for test instances like CTP2 and CTP4.
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Fig. 3: The average HV-metric values obtained by CMOEA/D-
DE-ATP with 25 different combinations ofs1 ands2 on CTP2
and CTP4.
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Fig. 4: The average HV-metric values vs. the neighborhood
size (T ) in CTP2 and CTP4.

C. Sensitivity of CMOEA/D-DE-ATP to T

To study the sensitivity of the performance of CMOEA/D-
DE-ATP to T , 10 different values of neighborhood size
(i.e., T = 5, 10, 20, 30, 40, 50, 100, 150, 200) are used in
CMOEA/D-DE-ATP for test instances CTP2 and CTP4.

Figure 4 shows the average HV-metric values versus the
neighborhood sizeT . It is clear from this figure that the
performance of CMOEA/D-DE-ATP is sensitive to the setting
of neighborhood sizeT . For test instance CTP2, the best (i.e.,
highest) HV-metric value is found by CMOEA/D-DE-ATP
with T = 40. One can see from Figure 4 (a) that CMOEA/D-
DE-ATP with T = 30 andT = 50 can find the average HV-
metric values very close to the one obtained withT = 40.
This indicates that CMOEA/D-DE-ATP can still find the good
approximation of the PF of CTP2 when the neighborhood size
varies in an appropriate range. Figure 4 (a) also shows that
CMOEA/D-DE-ATP with T < 30 or T > 100 (although, the
HV-metric values withT < 30 are much better than those with
T > 100) will be unable to find good approximation of the
PF of CTP2 as withT = 40, because the average HV-metric
values found are smaller than the one obtained withT = 40.
This can be explained by the exploration and exploitation of
the search space in CMOEA/D-DE-ATP. This explains that, on
one hand, CMOEA/D-DE-ATP lacks the ability of exploring
the search space with smallT , while on the other hand, it is
unable to exploit the PS well with largeT . In the latter case,
the mating parents could be apart from each other (i.e., very

dissimilar) in the decision space. However, as can be seen from
Figure 4 (b),T can be chosen from the range50 < T < 100
for better performance of the algorithm on test instance CTP4.
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Fig. 5: The average HV-metric values vs. the maximal number
of solutions updated by each new offspring (nr) in CTP2 and
CTP4.

D. Sensitivity of CMOEA/D-DE-ATP to nr

To study the sensitivity of the performance of
CMOEA/D-DE-ATP to nr, 10 values of nr (i.e.,
nr = 1, 2, 3, 4, 5, 6, 7, 10, 15, 20) are tested in the algorithm
for test instances CTP2 and CTP4.

Figure 5 presents the average HV-metric values versus the
ten different values ofnr. As clearly shown in Figure 5 (a),
CMOEA/D-DE-ATP with smallnr = 1, 2, 3 values can find
the good approximation of the PF of CTP2. However, when
nr is large (i.e.,≥ 4), CMOEA/D-DE-ATP performs clearly
worse in maximizing the HV-metric values.

For test instance CTP4, higher HV-metric value is achieved
when nr = 2 (see Figure 5 (b)), and whennr > 2 except
nr = 6 (as the value of HV-metric obtained withnr = 6 is
very close the one obtained withnr = 2 ), the values of the
HV-metric get worsen.
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Fig. 6: The average HV-metric values vs. the probability of
selecting mating parents from the neighborhood (δ) in CTP2
and CTP4.
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E. Sensitivity of CMOEA/D-DE-ATP to δ

In order to study the sensitivity of the performance of
CMOEA/D-DE-ATP to the probability of selecting mating
parents from the neighborhood,δ, 10 values of δ (i.e.,
δ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) are tried in
CMOEA/D-DE-ATP for test instances CTP2 and CTP4.

Figure 6 shows the average HV-metric values versus the
values of δ. It is clear from Figure 6 (a) that CMOEA/D-
DE-ATP with δ = 0.9 has the best performance in terms
of the HV-metric for test instance CTP2. This indicates that
selecting90% solutions from the neighborhood of a solution
and 10% of the solutions from the whole population for
recombination does improve the performance of CMOEA/D-
DE-ATP on CTP2. In the latter case, the solutions that are
apart from each other in the search space will get a chance to
mate with a low probability. Although this procedure boosts
the capability of CMOEA/D-DE-ATP to explore the search
space, but still more computational efforts are utilized on
the recombination between neighboring solutions in order to
exploit the PS efficiently.

However, for better performance on test instance like
CTP4, 40% of the solutions are needed to be selected from
the neighborhood and60% from the whole population for
recombination (see Figure 6 (b)).
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Fig. 7: The average HV-metric values obtained by CMOEA/D-
DE-ATP with 50 different combinations ofCR andF values
on CTP2 and CTP4.

F. Sensitivity of CMOEA/D-DE-ATP to CR and F

The genetic operator DE employs two control parameters
CR and F for generating offspring. To study the effects
of these two parameters on the behaviour of CMOEA/D-
DE-ATP, 50 combinations of five values ofF (F =
0.1, 0.25, 0.5, 0.75, 1.0) and ten values ofCR (CR =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) are tested on test
instances CTP2 and CTP4. Each combination ofCR andF
is tested 30 times.

Figure 7 shows the average HV-metric values with 50
different combinations ofCR andF values. It is evident from
this figure that CMOEA/D-DE-ATP is less sensitive to the
settings ofCR and F under the considered ranges and test
instances.
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Fig. 8: Plots of the final solutions obtained from CMOEA/D-
DE-ATP with population sizes of 50 (column a) and 100
(column b) evolved over 200 generations for CTP2 and CTP4.

G. CMOEA/D-DE-ATP with Small Population

Decision makers (DMs) often show interest in a small
evenly distributed population at a low computational cost. In
the following, it is shown that CMOEA/D-DE-ATP adopting
small population could attain this objective. CMOEA/D-DE-
ATP is run with population sizes ofN = 50 andN = 100 and
200 generations on test instances CTP2 and CTP4. Accord-
ingly, the algorithm stops after10, 000 and 20, 000 function
evaluations.

Figure 8 plots the final solutions obtained in a single run of
CMOEA/D-DE-ATP with N = 50 (column a) andN = 100
(column b) for test instances CTP2 and CTP4. It is very evident
from this figure that CMOEA/D-DE-ATP found 50 and 100
evenly distributed solutions for test instances CTP2. However,
for test instance CTP4, the 100 final solutions are evenly
distributed along the PF, but the 50 final solutions, although
evenly distributed, misses some Pareto-optimal solutions.

As it can be seen that test instances CTP2 and CTP4
have disconnected continuous/discrete Pareto-optimal re-
gions/solutions. Thus, any Pareto dominance based algorithm
that prefers feasible solutions over infeasible solutions in
their selection/replacement schemes, like NSGA-II with the
constraint-domination principle, is likely to face difficulty in
capturing the whole PF until a large population size is used
to maintain population diversity [7]. On the other hand, de-
composition based algorithm like CMOEA/D-DE-ATP, which
tries to keep some good infeasible solutions in its course of
evolution can capture the whole PF.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 6, 2016 

502 | P a g e
www.ijacsa.thesai.org 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

CTP2

f2

 

Unconstrained PF
Constraint Boundries
Pop at gen =1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

CTP2

f2

 

Unconstrained PF
Constraint Boundries
Pop at gen =2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

CTP2

f2

 

Unconstrained PF
Constraint Boundries
Pop at gen =5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

CTP2

f2

 

Unconstrained PF
Constraint Boundries
Pop at gen =7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

CTP2

f2

 

Unconstrained PF
Constraint Boundries
Pop at gen =10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

CTP2

f2

 

Unconstrained PF
Constraint Boundries
Pop at gen =15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

CTP2

f2

 

Unconstrained PF
Constraint Boundries
Pop at gen =20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

CTP2

f2

 

Unconstrained PF
Constraint Boundries
Pop at gen =25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

CTP2

f2

 

Unconstrained PF
Constraint Boundries
Pop at gen =30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

CTP2

f2

 

Unconstrained PF
Constraint Boundries
Pop at gen =50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

CTP2

f2

 

Unconstrained PF
Constraint Boundries
Pop at gen =100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

CTP2

f2

 

Unconstrained PF
Constraint Boundries
Pop at gen =200

Fig. 9: Evolution of the CMOEA/D-DE-ATP population over generations for CTP2 test run.

H. Population Evolution in CMOEA/D-DE-ATP

Figures 9 and 10 show the progress of CMOEA/D-DE-
ATP populations up to 200 generations for test instances
CTP2 and CTP4. Both these figures demonstrate that how
CMOEA/D-DE-ATP first converges the initial population to
different disconnected constricted feasible regions near the PF
in a few initial generations and then attains the Pareto-optimal
solutions at the end of each one of them.

VI. CONCLUSIONS

A penalty function that penalizes infeasible solutions based
on an adaptive threshold value has been introduced into
the update and replacement scheme of CMOEA/D-DE. This

resulted in a new algorithm, CMOEA/D-DE-ATP for CMOO.
The performance of CMOEA/D-DE-ATP is tested on CTP-
series test instances in terms of the HV-metric values.

From the experimental results in this paper, we can make
the following conclusions.

• The comparison of CMOEA/D-DE-ATP with IDEA
and NSGA-II unveiled that CMOEA/D-DE-ATP can
find better and consistent statistics, in terms of the
HV-metric, than the two contestant algorithms for all
CTP-series test instances except CTP4.

• The study of the sensitivity of CMOEA/D-DE-ATP to
the proposed penalty function and algorithmic param-
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Fig. 10: Evolution of the CMOEA/D-DE-ATP population over generations for CTP4 test run.

eters disclosed that various parameters’ settings are
required for different test instances excepts1 and s2
andCR andF .

• The proposed algorithm can find evenly distributed
optimal solutions with a small population size,N .
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