
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

436 | P a g e

www.ijacsa.thesai.org

Enhancement in System Schedulability by

Controlling Task Releases

Basharat Mahmood

Department of Computer Science

COMSATS Institute of Information Technology

Islamabad, Pakistan

Saif ur Rehman Malik

Department of Computer Science

COMSATS Institute of Information Technology

Islamabad, Pakistan

Naveed Ahmad

Department of Computer Science

COMSATS Institute of Information Technology

Islamabad, Pakistan

Adeel Anjum

Department of Computer Science

COMSATS Institute of Information Technology

Islamabad, Pakistan

Abstract—In real-time systems fixed priority scheduling

techniques are considered superior than the dynamic priority

counterparts from implementation perspectives; however the

dynamic priority assignments dominate the fixed priority

mechanism when it comes to system utilization. Considering this

gap, a number of results are added to real-time system literature

recently that achieve higher utilization at the cost of tuning task

parameters. We further investigate this problem by proposing a

novel fixed priority scheduling technique that keeps task

parameters intact. The proposed technique favors the lower

priority tasks by blocking the release of higher priority tasks

without hurting their deadlines. The aforementioned strategy

helps in creating some extra space that is utilized by a lower

priority task to complete its execution. It is proved that the

proposed technique dominates pure preemptive scheduling.

Furthermore the results obtained are applied to an example task

set which is not schedulable with preemption threshold

scheduling and quantum based scheduling but it is schedulable

with proposed technique. The analyses show the supremacy of

our work over existing fixed priority alternatives from utilization

perspective.

Keywords—Real-time Systems; Fixed Priority Scheduling; RM

Scheduling; Priority Inversion

I. INTRODUCTION

Real-time systems are built to execute temporally
constrained tasks. On such platforms, the accuracy of a system
depends not only upon the correctness of response, but also
the time these results are obtained. Missing a task deadline
may result in serious damage, especially in hard real-time
systems [8]. It is not a must for a real-time system to be very
fast, but it must be enough capable to execute its tasks within
a specified time. Priority assignment to real-time tasks, is the
process of deciding the order in which different tasks are
executed. In real-time scheduling, the scheduler is responsible
to allocate tasks on the processor in such a way that all timing
constraints are satisfied.

Fulfilling the timing constraints of tasks is essential to
real-time systems and hence the scheduling problem plays an
important role in real-time systems theory. The fixed priority
scheduling technique is widely used in real-time systems due

to its simplicity and predictability. Under fixed priority class,
Rate-monotonic (RM) algorithm is a well-known fixed
priority assignment algorithm. It is an optimal algorithm for
the implicit deadline model [10] [2]. The RM scheduling
algorithm is subdivided into two main streams, preemptive
scheduling and non-preemptive scheduling. In preemptive
scheduling, a lower priority task is preempted when a higher
priority task is released, while non-preemptive scheduling
does not allow such preemptions. Generally, preemptive
scheduling provides better schedulability than non-preemptive
scheduling, but it is not always the case. Both preemptive and
non-preemptive scheduling fail to guarantee 100 % CPU
utilization.

Lot of efforts have been made recently to improve the
schedulability of fixed priority scheduling. Different variants
of preemptive scheduling have been proposed, which use the
concept of priority inversion in order to improve the
schedulability. These techniques allow a lower priority task to
block a higher priority task. Deferred preemption [19],
Preemption threshold scheduling [2] and Quantum based
scheduling [5] are examples of such techniques, which
improve the schedulability of fixed priority scheduling by
priority inversion at runtime.

In this paper a new fixed priority scheduling technique
named as CTR is proposed. The CTR technique blocks the
task releases for a predefined interval of time without hurting
their deadline in order to create some extra space for the
currently executing task. In CTR technique, each task is
assigned a feasible release block time. At runtime, tasks are
kept in block state at their actual release times and are released
after their assigned block time. In this way, some extra space
could be created for the lower priority tasks to execute. It is
proved that such blockage of task releases, does not hurt the
deadline of tasks. It is also proved that the CTR technique
dominates the RM preemptive scheduling in terms of
schedulability. A task set is also given which is not
schedulable with preemption threshold scheduling and
quantum based scheduling but, it is schedulable with the CTR
technique. This shows that the CTR technique has at least an
incomparable relation with these techniques.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

437 | P a g e

www.ijacsa.thesai.org

A. Related Work

In 1973, Liu and Layland did the pioneer and the most
influential work in real-time scheduling theory. In their
seminal paper [10], they proposed an optimal fixed priority
assignment algorithm called rate-monotonic algorithm for the
implicit deadline task model. In the same paper, they derived a
sufficient schedulability test called LL-bound to predict the
feasibility of the system. After that, a lot of work has been
done to improve the system feasibility prediction. This work is
mainly of two types, the exact schedulability tests
[16][15][3][9] and sufficient schedulability tests[10][12].

To reduce the run-time overhead due to task preemptions,
limited-preemptions model has been proposed [21][22]. In this
model each task is divided into a number of non-preemptive
regions and is considered non-preemptive within those
regions. These regions may be either fixed or floating [22].
Under fixed pre-emption point model, the non-preemptive
regions are predefined while in floating preemption point
model the location of non-preemptive regions are un-known.

Different variants of RM preemptive scheduling have been
proposed in literature, to improve the schedulability [20][19]
[2][5]. In [20] dual priority scheduling model is presented. In
this model each task is executed in dual phases with different
static priorities. The transition from one phase to another is
made at fixed points. This model dominates the RM
scheduling but, is considered not viable due to its complexity.

The deferred preemptions scheduling technique [19]
assigns each task τi an interval qi for which it remains non-pre-
emptible. At runtime when a higher priority task is released, it
is kept blocked if the lower priority task is in non-preemptible
section otherwise it is preempted.

Preemption threshold scheduling [2] is a dual priority
scheduling technique. It assigns each task a regular priority
and a preemption threshold value which is greater or equal to
its priority. At runtime when a task is executed, its priority is
raised to its preemption threshold value. In this way a task can
block those higher priority tasks whose priority is less than its
preemption threshold value. Preemption threshold scheduling
dominates preemptive and non-preemptive scheduling in
terms of schedulability.

Another variant of preemptive scheduling is the quantum
based scheduling [5]. In quantum based scheduling, CPU time
is divided into discrete units called quanta. At runtime, the
CPU time is allocated to tasks in the form of quantum. When a
quantum is allocated to the task, that task cannot be preempted
until the quantum expires or task is completed. Both
preemption threshold scheduling and quantum based
scheduling improve the schedulability of fixed priority
scheduling, but still fail to guarantee 100 % utilization.

In [23] ready-Q locking mechanism is proposed. Ready-Q
locking improves the schedulability by locking the ready
queue at runtime in order to reduce the interference from
higher priority task during the execution of a lower priority
task. For further improvement in schedulability, preemption

threshold scheduling is also merged with ready-Q locking
mechanism [23].

B. Contribution of the Paper:

This work has the following contributions

 A novel fixed priority scheduling technique CTR
scheduling is proposed in this paper. The CTR
scheduling controls the task releases in order to
enhance schedulability

 It is proved that the CTR scheduling dominates RM
preemptive scheduling in terms of schedulability

 It is also proved that the CTR scheduling has at-least
an incomparable relation with preemption threshold
scheduling and quantum-based scheduling

 The improvement in schedulability is also shown by
experiments on synthetic task sets

C. Paper Organization:

The rest of the paper is organized as follows. In section II,
the system model and basic terminologies are discussed. In
section III, the proposed technique is explained in detail with
examples. The proposed technique is compared with existing
techniques in section IV and finally our work is concluded in
section V.

II. SYSTEM MODEL, ASSUMPTIONS AND NOTATIONS

A. Task Model

We consider the classical periodic real-time task model.
Each task τi is defined by the tuple (Ci, Pi, Di). Each task
consists of a sequence of infinite jobs. The time at which the
first job of a task is released is called its phase. If the phase of
a task τi is Φi then the k

th
 job of τi is released at Ji,k =

φi+(k−1)*Pi. The absolute deadline of the k
th

 job of task τi is
di,k = ri,k + Di. The portion of CPU time used by a task τi is
called its utilization and can be calculated by Ci/Pi. The total
utilization of the system can be determined by ∑

 .

B. System Model:

We consider a real-time system which consists of a single
processor. The workload for the system is defined by set τ of n
tasks. A fixed priority scheduler is used to schedule tasks. The
scheduler assigns priorities to tasks according to RM
algorithm. Each task τi is assigned a feasible release block
time (Δri). When the k

th
 job of τi is released at ri,k, it is

considered in blocked state for the interval (ri,k, ri,k + Δri) and
is released at ri,k + Δri time. During block state a task can only
be executed if the CPU is free.

C. Assumptions:

We consider the following assumption for our technique

(A1) Task sets follow the implicit deadline model. It
means that for any task (τi), relative deadline is equal to its
period i.e. Di = Pi therefore, a task can be simply defined by
(Ci, Di)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

438 | P a g e

www.ijacsa.thesai.org

(A2) Workload is defined by a set τ of n tasks and all tasks
in τ are periodic

(A3) It is assumed that only computational resources are
required to execute a task and all other resources are
negligible

(A4) Any task can be preempted at any time and no task
has any non-pre-emptible part

(A5) All tasks are independent and no precedence
constraints exist among them

(A6) All runtime costs are negligible

The notations used are shown in TABLE I

TABLE I. NOTATIONS USED AND MEANINGS

III. CONTROLLED-TASK-RELEASES (CTR) REAL-TIME

SCHEDULING

The CTR scheduling technique is discussed in following
subsections in detail

A. Overview of the Technique

If we analyze the runtime behavior of RM preemptive
scheduling, it is observed that when a higher priority task τi is

released at time t, currently executing job of lower priority
task τj is preempted immediately. Now, τj misses its deadline
if

where
 is the remaining execution time of τj at current

time t, dj,t is the absolute deadline of currently preempted job

of τj , t is the current time and

 is the interference from

tasks with higher priority than τj during (t, dj,t) interval.

Such tasks can be made schedulable if the release of higher
priority task is delayed without hurting its deadline. Such
delays create some extra space for the lower priority tasks to
complete their execution. The CTR technique utilizes this idea
to improve the schedulability.

Ci + Ih(p) Si

Ri,k Fi,k di,k

Ei=RiΔri=Si,k

ai ri

Si.k

ai=ri Fi,k Di,k

Fi,k=di,k

Ei=Ri

Fig 1(a): RM preemptive Scheduling

Fig 1(b): CTR Scheduling

Fig 1(c): CTR Scheduling when Δri=0

Fig. 1. Comparison of runtime behavior of RM preemptive and CTR

scheduling (a) RM scheduling (b)CTR scheduling (c) CTR scheduling with

Δri = 0

The CTR scheduling assigns each task τi a feasible release
block time (Δri). At runtime, a task τi is considered in blocked
state at its actual release time and remains in this state for Δri
time. After Δri time τi is released and its priority is compared
with the currently executing task. If τi has higher priority than
the currently executing task, then the task is preempted
otherwise it continues. At runtime, if the CPU is free and no
task is executing then the lowest priority blocked task is
executed.

In Fig 1, the runtime behavior of CTR scheduling is
compared with RM preemptive scheduling. Fig 1(a) shows the
execution of τi with RM scheduling. The kth job of τi is
released at ri,k and completes its execution at Fi,k ahead of its
deadline di,k. This difference is shown by Si,k where Si,k = di,k –

(

()

). On the other hand, the proposed technique

blocks the release of task τi for Δri (or Si,k) amount of time

therefor, it completes at its deadline as shown in Fig 2(b). The
CTR scheduling behaves similarly to RM preemptive

scheduling if the release of the task τi is not blocked i.e. in Δri

= 0 (shown in Fig 1(c)).

Notation Meaning

τ Set of tasks

τi Task i, τi ∈ τ

Ci Worst case execution time of τi

Pi Period of τi

Ri Worst case response time of τi under RM scheduling

Ei
The time period during which a task τi is released and
completes its execution under CTR scheduling

Ui Utilization of τi

Di Relative deadline of τi

Ji,k Kth job of τi

dj,t Absolute deadline of τj at time t

t Current time

Φi Release time of first job of τi

ri Feasible release block time of τi

ri,k Release time of kth job of τi

 Time available to τi at time t

 Time required to τi at time t

 Task executing at time t

 Task released at time t

 Highest priority ready task at time t

 Remaining execution time of task τi at time t

R[] Queue of released tasks

J[] Queue of tasks

P (τi) Priority of τi

Interference from tasks having higher priority than τi
during (t, di,t)

ej,t
Extra space created for τj at time t due to the delay in

release of higher priority tasks

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

439 | P a g e

www.ijacsa.thesai.org

Time
 0 1 2 3 4 5 6 7

J1,1,J2,1,J3,1

J1,1 J2,1

J1,2

J3,1 J2,2
J3,1

J1,3

J3.1 misses its deadline

Job releases

Job completes

Job releases and other

is preempted

Legend

τ
1

τ
2

τ3

Fig. 2. RM preemptive scheduling of task set given in TABLE II, τ3 misses

its deadline

B. Motivational Example

The following example illustrates the benefits of CTR
scheduling. The tasks and their attributes for this example are
given in TABLE II.

TABLE II. EXAMPLE TASK SET

Task(τi) WCET(Ci) Period(Pi)
Release-Block time

(Δri)

τ1 1 3 2

τ2 1.5 4 0.5

τ3 1.5 6 0

If we apply the RM preemptive scheduling on the example
task set given in TABLE II, then the task set is not
schedulable because the deadline of τ3 is missed. The
scheduling of task set with RM preemptive scheduling is
shown in Fig 2.

Now, if we apply the CTR scheduling on the same task set
by assigning each task a feasible task release-block time as
given in TABLE II, then the task is schedulable (The method
of assigning release-block time is discussed in the following
subsection). TABLE III shows the sequence of jobs in which
they are activated and released under the task release
mechanism of the CTR scheduling. The runtime behavior with
the CTR technique is shown in Fig 3.

TABLE III. ACTIVATION AND RELEASE SEQUENCE OF TASKS UNDER CTR

SCHEDULING

Fig. 3. CTR scheduling of task set given in TABLE II, task set is

schedulable

The execution sequence with the proposed technique is
explained below

 At t=0, τ1 and τ2 are active, but τ3 is released. Therefore
τ3 is started

 At t=0.5, τ2 is released. As τ2 has higher priority than
τ3, therefore τ3 is preempted and τ2 starts

 At t=2, not only τ2 is completed, but also τ1 is released.
So τ1 starts

 At t=3, τ1 completes its execution. As at t=3, only τ3 is
ready which was preempted earlier , therefore τ3 starts
and is completed at t=4

 At t=4, no task is ready, but τ1 and τ2 are active. As the
CPU is free therefore the highest priority active task
(τ1) is assigned to the CPU

 At t=5, τ1 completes its execution and τ2 starts

The process continues in a similar way.

C. Assignment of Feasible Release-block Time

The feasible release-block time (Δri) for a task τi is the

difference between the available time to it and the maximum
time it may require in worst case. The available time to a task

τi released at time t is

 

The maximum required time to a task τi in the worst case
is

 ∑⌈

⌉

   

Now, the feasible release-block time (Δri) value for a task
τi is



 ∑ ⌈

⌉

  

The Algorithm 1 to assign values to tasks is given
below

Task Jobs(Ji,k) Activation time Release time

J
1,1 0 2

J
2,1 0 0.5

J
3,1 0 0

J
1,2 3 5

J
2,2 4 4.5

J
1,3 6 8

J
3,2 6 6

J
2,3 8 8.5

J
1,4 9 11

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

440 | P a g e

www.ijacsa.thesai.org

Algorithm 1: assigning feasible release-block time ()

Require: Set of n tasks (τ)

for i = 1 → n − 1

do

 ∑⌈

⌉

 if then

 End if

end for

Theorem1: Given a task ∈ released at time t, if τi is
schedulable under the RM preemptive scheduling then it
remains schedulable even if its release is blocked for ri time.

Proof: The given task τi released at time t is RM
schedulable then

Where Ri is the worst case response time of τi under RM
preemptive scheduling and can be calculated by using
Response-Time Analysis [3]. When the release of τi is blocked
for ri time, then the available time to τi is reduced to

Now, τi remains schedulable if following inequality is
satisfied

We solve the above inequality

 ∑⌈

⌉

 ∑⌈

⌉

 ∑⌈

⌉

The above condition always remains true. Hence, it is
proved that blocking the release of a RM task schedulable for
 time does not hurt its schedulability.

D. Scheduling Algorithm

Now, we present the CTR scheduling algorithm. Initially,
priorities are assigned to tasks according to RM algorithm.
Then each task is assigned a feasible release-block time. At
the start, all tasks with positive value remain in blocked
state and the highest priority ready task with zero is

assigned to the processor. When a task τi is released after

remaining in blocked state for time, its priority is

compared with the priority of the currently executing task τj

and if τi has higher priority than τj, then τj is preempted

otherwise it continues. During runtime if a task is completed
and there is no ready task, then the first task in blocked state is
assigned to the processor. The scheduling process under the
CTR scheduling is shown by algorithm 2.

E. Implementation of the CTR Scheduling

In this section, we discuss the implementation of CTR
scheduling and the performance overheads associated with it.

1) Implementation
The implementation of mechanism to block the release of

tasks at runtime is the core issue in the implementation of
CTR scheduling. For this, the scheduler is required to
distinguish the active and ready states of a task at runtime. In
order to have better synchronization of task parameters, the
job table is required to keep information about activation time
and release time of jobs. The CTR scheduler requires two task
queues named as job queue and ready queue. The job queue
keeps the jobs which are next to release. These jobs are
ordered by earliest to release first basis. The ready queue
keeps the jobs which are ready to execute, but waiting for
CPU due to the execution of a high priority job. These jobs are
kept by descending order of their priorities. At run time, the
scheduler sets the timing hardware to interrupt the CPU at the
release time of the job at the head of the job queue. When an
interrupt is generated the scheduler moves all the jobs with the
same release time as of the interrupt time, to the ready queue
and updates the timing hardware. Under CTR scheduling,
when the ready queue is empty the scheduler is required to
move an active job to the ready queue. To do this, the
scheduler finds the first job in the job queue whose activation
time is before or the same as of the current time and moves it
to the ready queue.

2) Overheads
Here we discuss the overheads associated with CTR

scheduling and compare with other scheduling techniques.
The first major overhead associated with CTR scheduling is
the assignment of release block time to tasks. This assignment
is done off-line and has an O(n) complexity. As this
assignment is made off-line therefore it does not cause any
performance cut at runtime. No such assignment is required in
RM preemptive scheduling. On the other hand, preemption

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

441 | P a g e

www.ijacsa.thesai.org

threshold scheduling has a more complex mechanism to assign
preemption threshold values which has an O(n

2
) complexity.

Similarly, in quantum-based scheduling the assignment of
feasible quantum size also has and O(n

2
) complexity.

Algorithm 2: The CTR scheduling

Require: Set of n tasks (τ)

 [] // Queue that holds the released tasks

J[] // Queue that holds the active or blocked tasks

i, k=0

RM(τ) // Assign priorities to tasks according to RM algorithm

Assign-Delays(τ) //Assign feasible task release-block times

At t=o:

 //Highest priority ready task gets the CPU

Upon task activation:

 if (

 []

 End if

Upon task completion:

if [] // if ready queue is not empty

End if

else if [] //if the queue holding the blocked tasks is not

empty

 [] // Assign first task from the blocked task to the CPU

End else if

 else

 wait for task release

 End else

Upon task release:

 if (P(
)<P(

) //compare the priority of currently

released task with the executing task

 End if

 else

 End else

The second major overhead, which incurs at runtime is
that, in CTR scheduling when there is no task in ready queue
the scheduler is required to search the job queue to find an
active task to execute. It does not affect the performance much
because in heavily loaded systems it is very rare to have an
empty ready queue.

IV. EVALUATION OF THE CTR SCHEDULING

In this section we compare the CTR scheduling with other
techniques. We have proved the dominance of CTR
scheduling over RM preemptive scheduling in schedulability
perspective. This dominance is also validated by experiments
on synthetic task sets. The incomparable relation of CTR
scheduling with Preemption threshold scheduling and
Quantum-based scheduling has also been proved and validated

by experiments.

A. Dominance of CTR scheduling over RM preemptive

scheduling

RM preemptive scheduling favors high priority task
because it immediately preempts the lower priority task when
a higher priority task is released. Such early preemptions can
cause deadline to miss for lower priority tasks. It is tried in the
CTR scheduling to overcome this deficiency by delaying
preemptions feasibly. The CTR scheduling creates extra space
for lower priority tasks by delaying the release of higher
priority task. As a result, it provides better schedulability than
RM preemptive scheduling. In following theorem, we prove
that the CTR scheduling dominates RM preemptive
scheduling in schedulability perspective. It means that CTR
scheduling can feasibly schedule all those task sets which are
schedulable with RM preemptive scheduling, but it is not
guaranteed that RM preemptive scheduling can schedule all
the task sets which are schedulable with CTR scheduling.

Theorem 2: Given a task set τ consisting of n independent,
periodic tasks whose deadlines are equal to their periods. If τ
is RM schedulable then it is always schedulable with the CTR
scheduling technique while the vice versa is not true always.

Proof: Suppose a lower priority task τj is executing at time
t and a higher priority task τi is released. We discuss the
schedulability of both tasks under RM scheduling and CTR
scheduling

Case 1: (Schedulability of τi) If τi is schedulable with RM

preemptive scheduling then it is also schedulable with CTR
scheduling (by Theorem 1).

Case 2: (Schedulability of τj) If τj is schedulable with RM

preemptive scheduling then it gets its required time before the
deadline of its current job. It can be written as

As under the CTR scheduling the release of τi is blocked
for therefore ri time, it creates some extra space ej,t for τj,
therefore the above in-equality can be written as

Where ej,t ≥ 0. The above in-equality always remains true

because

 

It shows that if τj is schedulable with RM preemptive
scheduling then it is also schedulable with CTR scheduling.
Now, if τj is not schedulable with RM preemptive scheduling
then

Now in similar situation the CTR scheduling creates some

extra space ej,t for τj by blocking higher priority tasks. Now if

 

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

442 | P a g e

www.ijacsa.thesai.org

then the task is schedulable with the CTR technique and if
it holds true for all such situations, then the whole task set is
schedulable with the CTR technique. It shows that the CTR
technique can schedule some tasks which are not schedulable
with the RM technique.

1) Experimental Evaluation:
The CTR Scheduling has been compared with RM

preemptive and non-preemptive scheduling, to evaluate the
schedulability improvement. For this purpose, we have
generated 10

4
 task sets. Each task set consists of periodic tasks

with Di = Pi. The size of task sets is n ∈ {2, 3, 4, 5, 6, 7, 8, 9}
and their period ranges {2, 500}. The utilization of the system
was kept from 88% to 100%. Priorities are assigned to tasks
by RM algorithm. The performance of different techniques has
been evaluated by the percentage of feasible tasks. The results
are discussed below.

Fig4 summarizes the experimental results for the CTR,
RM preemptive (RMP) and RM non-preemptive (RMNP)
scheduling techniques in schedulability perspective. X-axis
represents the system’s utilization while the Y-axis shows the
percentage of feasible task sets. Fig 4(a) shows the results of
task sets with n=2 or 3. It can be seen clearly that the CTR
scheduling surpasses both RMP and RMNP in schedulability
perspective. At lower system utilization levels (88% to 90%)
the performance gap is less (less than 10%) but it goes on
increasing as we move towards higher system utilization
levels. At 100% system utilization, RMP schedule 67% task
sets feasibly while the RMNP schedules 58% and CTR
scheduling schedules 92% task sets. This decrease in
performance of RMP and RMNP occurs due to their extreme
behavior towards preemptions which result in deadline miss
for low priority tasks. On the other hand CTR scheduling
performs better by adopting a more sensible behavior towards
preemptions.

In Fig 4(b), the schedulability results are shown for task
sets with n=4 or 5. The dominance of CTR scheduling over
RMP and RMPNP is clearly observable. At lower system
utilization levels, RMP and RMNP perform reasonably well
but as the system utilization increases their performance
decreases hugely. On the other hand, CTR scheduling out
classes both RMP and RMNP techniques. It schedules 10%
more tasks than RMP and RMNP at 88% utilization while this
gap increases to 30% at 100% system utilization. Fig 4(c) and
Fig 4(d) summarize the results for the task set with n= 6 or 7
and n=8 or 9. The dominating performance of CTR scheduling
as compared to RMP and RMNP scheduling is again
observable.

B. Incomparable relation of CTR scheduling with Preemption

threshold scheduling and Quantum-based scheduling

In this section we have compared the CTR scheduling with
Preemption threshold scheduling and Quantum-based

scheduling. We have shown that CTR scheduling has at-least
an incomparable relation with these techniques. It means,
there exists at-least one task set which is not schedulable with
Preemption threshold scheduling and Quantum-based
scheduling but CTR scheduling feasibly schedules it. Consider
a task set given in TABLE IV. The given taskset is not
schedulable with Preemption threshold scheduling. If the
preemption threshold value of τ3 is 1, then its WCRT is 8 and
its deadline is missed. Similarly, at higher preemption
threshold values of 2 and 3, τ3 remains un-schedulable. On the
other hand, if we apply CTR scheduling on the same task sets
by assigning = 2, = 0 and = 0, the task set
becomes schedulable as shown in TABLE IV.

TABLE IV. EXAMPLE TASK SET AND COMPARISON OF WCRT

Task

(τi)

WCET(

Ci)

Period(P

i)

WCRT(Preemption

threshold)

WCRT(CTR

Scheduling)

τ1 1 3 1 3

τ2 2 4 2 3

τ2 1 6 8 4

Quantum-based scheduling also fails to schedule the task
set given in TABLE IV. For the give task set, the upper bound
and lower bound on quantum size is 2. TABLE V shows that
the WCRT of τ3 is 8 and its deadline is missed, when quantum
size is 2.

TABLE V. WCRT OF TASK SET GIVEN IN TABLE IV UNDER QUANTUM-
BASED SCHEDULING

Quantum Size Task(τi) WCRT

 2

τ1 1

τ2 3

τ3 8

Therefore, by this example, the at-least incomparable
relation between the CTR scheduling and Quantum-based
scheduling and Preemption threshold scheduling is proved.

1) Experimental Evaluation:
To evaluate the performance of Preemption threshold

scheduling (PTS) and Quantum-based scheduling (QBS)
against CTR scheduling, we repeated the experiments given in
previous section for these techniques. When PTS and QBS
techniques are applied on same task sets, the obtained results
are shown in Figure 5. It can be seen that both PTS and QBS
performed better than RM preemptive and non-preemptive
scheduling but at higher system utilization (95% and above)
CTR scheduling dominates.

Fig 5(a) shows the experimental results of task sets with n
= {2, 3}. It can be seen that at lower system utilization levels

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

443 | P a g e

www.ijacsa.thesai.org

Fig. 4. Performance analysis of RM preemptive (RMP), RM non-preemptive (RMNP) and CTR scheduling on synthetic data sets in schedulability perspective

(a) n={2,3} (b) n={4,5} (c) n={6,7} (d) n={8,9}

Fig. 5. Performance analysis of CTR, PTS and QBS scheduling on synthetic data sets in schedulability perspective (a) n={2,3} (b) n={4,5} (c) n={6,7} (d)

n={8,9}

(88% to 94%) PTS, QBS and CTR scheduling performed very
well but as we move further towards higher system utilization
the CTR scheduling performs slightly better. At 100% system
utilization the CTR scheduling schedules 92% tasks sets
feasibly while PTS schedules 88% and QBS schedules 87%
task sets. For task sets having 4 or 5 tasks, the obtained results
are shown in Fig 5 (b). The similar performance of CTR, PTS
and QBS scheduling at lower system utilization levels is easy
to observe. At higher system utilization levels, again CTR

scheduling performs better than PTS and QBS scheduling.
Similar result are also obtained for task sets with n=6, 7 and
n=8, 9 and are summarized in Fig 5(c) and Fig 5 (d).

As compared to RM preemptive and non-preemptive
scheduling, preemption threshold scheduling and quantum-
based scheduling adopt more flexible and wise behavior in
preemptions perspective. As a result, preemption threshold
scheduling and quantum based scheduling performed better

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

444 | P a g e

www.ijacsa.thesai.org

Fig. 6. Performance summary on synthetic constrained and arbitrary deadline task sets in schedulability perspective

but still could not attain the optimal system utilization. On the

other hand, CTR scheduling achieves highest system

utilization among all because it avoids preemptions till last

moment and hence allows low priority tasks to complete,

which results in higher utilization. Up-to 95% system

utilization Preemption threshold, Quantum based and CTR

scheduling showed similar performance but, at higher system

utilization [96%, 100%] CTR scheduling achieves highest

system utilization.

C. Scheduling constrained and arbitrary deadline tasks

The analysis given in previous sub-sections demonstrates
the primacy of CTR scheduling in terms of schedulability over
its alternatives but, these results are obtained only for implicit
deadline tasks. In this section, we extend the analysis to
handle tasks with constrained and arbitrary deadlines. Under
the implicit deadline task model, for any task τi, Di is always
equal to Pi. This assumption makes the schedulability analysis
very simple. However, many practical circumstances require
relaxing this assumption. The constrained deadline task model
permits Di to be less than or equal to Pi while in arbitrary
deadline model, Di may be equal to or greater than Pi.

The mechanism to control the release of a task under CTR
scheduling does not distress the RM schedulability of a task
(by Theorem 1). This result is not specific to the implicit
deadline model and remains true for constrained deadline
tasks and arbitrary deadline tasks. Furthermore, the dominance
of CTR scheduling over RM preemptive scheduling also holds
for constrained deadline tasks and arbitrary deadline tasks.
Because when a task set is schedulable with RM preemptive
scheduling, it is also schedulable with CTR scheduling while a

task set which is not schedulable with RM preemptive
scheduling may be schedulable with CTR scheduling due to
the gain achieved by delaying the task releases.

Corollary 1: A RM schedulable task set τ, consisting of n
periodic, independent, constrained deadline tasks is always
schedulable with CTR scheduling but the vice-versa is not
always true.

Corollary 2: A RM schedulable task set τ , consisting of n
periodic, independent, arbitrary deadline tasks is always
schedulable with CTR scheduling but the vice-versa is not
always true.

1) Experimental Evaluation:
To evaluate the performance of CTR scheduling for the

constrained task model and arbitrary deadline task model, we
have created 10

4
 task sets for each category. These tasks are

generated in a similar way as explained in section IV. The
Figure 6 summarizes the results. It can be seen clearly that,
RM non-preemptive scheduling performs fine at low system
utilization but the instant system utilization exceeds 91% the
percentage of feasible task sets under RM non-preemptive
scheduling starts decreasing and it tapers down to less than
53% at 100% system utilization. The performance of RM
preemptive scheduling is better as compared to RM non-
preemptive scheduling due to permitting preemption, but still
at high system utilization the percentage of feasible tasks are
low. At 100% system utilization, RM preemptive scheduling
succeeds to schedule 62% task set feasibly. The performance
of preemption threshold scheduling and quantum-based
scheduling is comparatively better than RM scheduling, but
below than the CTR scheduling at higher system utilization

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

445 | P a g e

www.ijacsa.thesai.org

level.

V. CONCLUSION AND FUTURE WORK

Novel results are established for fixed priority scheduling
by controlled task releases. The controlled release timings are
exploited to improve the schedulability of fixed priority
scheduling. It is proved that the pro-posed technique
dominates RM preemptive technique in the sense that it
schedules all task set that are schedulable with RM preemptive
but vice versa is not true. As an example, it is shown that the
proposed technique successfully schedule a given task system
where preemption threshold scheduling or quantum based
scheduling techniques fail. In this paper tasks are restricted to
be only periodic; however, as a future work more interesting
are expected when applied to sporadic tasks systems.

REFERENCES

[1] Davis, R.I., Burns, A., Baruah, S., Rothvoss, T., George, L., and
Gettings, O., Exact Comparison of Fixed Priority and EDF Scheduling
based on Speedup Factors for both Pre-emptive and Non-pre-emptive
Paradigms, Real-Time Systems Journal, 51(5), pp566-601, 2015.

[2] Wang, Y., and Saksena, M.: ’Scheduling fixed priority tasks with
preemption threshold’. In proceedings of the 6th international
conference on real time computing systems and applications, Hong
Kong, China, Dec 1999, pp. 328-335

[3] Audsley, N.C., Burns, A., Tindell, K., and Wellings, A.: ’Applying new
scheduling theory to static priority preemptive scheduling’, Software
Engineering Journal, 1993, 8, (2), pp. 80-89

[4] Bini, E., and Buttazo, G.C.: ’The space for Rate Monotonic
schedulability’. 23rd IEEE Real-Time Systems symposium, Austin, TX,
USA, Feb 2002, pp. 169-178

[5] Park, M.,Yoo, H.J., and Chae, J.: ’Analysis on Quantum-Based fixed
priority scheduling of Real-Time tasks’. Proceedings of the 3rd
international conference on ubiquitous information management and
communication, Suwon, SKKU, Korea, Jan 2009, pp. 627-634

[6] Davis, R.I, A review of fixed priority and EDF scheduling for hard real-
time uniprocessor systems, ACM SIGBED review, 11(1), pp. 8-19,
2014.

[7] George, L., Riverre, N., Spuri, M.: ’Preemptive and Non-preemptive
Real-Time Uniprocessor Scheduling’, Research Report RR-2966,
INRIA, France, 1996

[8] Huhang, W.H., Chen, J., Zhou, H., and Liu, C., PASS: Priority
Assignment of Real-Time Tasks with Dynamic Suspending Behavior
under Fixed-Priority Scheduling, Technical Reports in Computer
Science, Dortmund University of Technology, 2015.

[9] Bini, E., and Buttazzo, G.C.: ’Schedulability Analysis of Periodic Fixed
Priority Systems’, IEEE Transactions on Computers, 2004, 53, (11), pp.
1462-1473

[10] Liu, C.L., and Layland, J.W.: ’Scheduling algorithms for
multiprogramming in a hard real-time environment’, Journal of the
ACM, 1973, 20,(1), pp. 40-61

[11] Tindell, K.W., Bums, A., Wellings, A.: ’An extendible approach for
analyzing fixed priority hard real-time tasks’, Real-Time Systems
Journal, 1994, 6, pp. 133-151

[12] Bini, E., and Buttazzo, G.C.: ’A Hyperbolic Bound for the Rate
Monotonic Algorithm’. In Proceedings of the 13th Euromicro
Conference on Real-Time Systems, Delft, Netherlands, June 2001, pp.
59-66

[13] Min-Allah, N., Ali, I. , Jian-Sheng, X., Yong-Ji, W.: ’Online Feasibility
Analysis with Composite-Deadline’. In Proceedings of the 4th
International Conference on Innovations in Information Technology,
Dubai, UAE, Nov 2007, pp. 357-361

[14] S. Baruah, V. Bonifaci, G. D’angelo, H. Li, A. Marchetti-Spaccamela, S.
van der Ster, and L. Stougie. Preemptive uniprocessor scheduling of
mixed-criticality sporadic task systems. Journal of the ACM,
62(2):14:1–14:33, 2015.

[15] Lehoczky, J.P., Sha, L., Ding, Y.: ’The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior’. In
Proceedings of the IEEE Real-Time System Symposium, California,
USA, Dec 1989, pp. 166-171

[16] Kim, J.E., Abdelzaher, T., and Sha, L., Budgeted Generalized Rate
Monotonic Analysis for the Partitioned, yet Globally Scheduled
Uniprocessor Model, Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2015 IEEE, pp. 221-231, 2015.

[17] Sha, L., Abdelzaher, T., Erzen, K., Cervin, A., Baker, T., Burns, A.,
Buttazzo, G.C., Caccamo, M.,Lehoczky, J., Mok, A.K.: ’Real-Time
Scheduling Theory: A Historical Perspective’, Real-Time Systems, 28
(2), pp. 101–155, 2004.

[18] Wan-Chen, L., Kwei-Jay, L., Hsin-Wen, W., Wei-Kuan, S.: ’Rate
monotonic schedulability tests using period-dependent conditions’,
Real-Time Systems journal, 37 (2), pp. 123-138, 2007.

[19] Thekkilakattil, A., Dobrin, R., and Punnekkat, S., The limited-
preemptive feasibility of real-time tasks on uniprocessors. Real-Time
Syst, 51(3), pp. 247-273, 2015.

[20] Burns, A., and Wellings, A.: ’Dual Priority Assignment: A Practical
Method for Increasing Processor Utilization’. In Proceedings of 5th
Euromicro Workshop on Real-Time Systems, Oulu, Finland, June 1993,
pp. 48-55

[21] Baruah, S.: ’The limited-preemption uniprocessor scheduling of
sporadic systems’. In ECRTS 05, Pro-ceedings of Euromicro
Conference on Real-Time Systems, Balearic Islands, Spain, July 2005,
pp. 137-144

[22] Buttazzo, G., Bertonga, M., and Yao, G., Limited Preemptive
Scheduling for Real-Time Systems. A Survey, IEEE transactions on
industrial informatics, 9(1), pp. 3-15, 2013.

[23] Marinho.J, Petters, S.M, and Bertogna, M.: ’Extending Fixed Task-
Priority Schedulability by Interference Limitation’. In Proceedings of
the 20th International Conference on Real-Time and Network Systems,
pp. 191-200, 2012.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7106274
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7106274

