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Abstract—The literature of building computational and math-
ematical models of proteins is rich and diverse, since its practical
applications are of a vital importance in the development of many
fields. Modeling proteins is not a straightforward process and in
some modeling strategies, it requires to combine concepts from
different fields including physics, chemistry, thermodynamics,
and computer science. The focus here will be on models that
are based on the concept of cellular automata and equivalent
systems. Cellular automata are discrete computational models
that are capable of universal computation, in other words, they
are capable of doing any computation that a normal computer
can do. What is special about cellular automata is its ability
to produce complex and chaotic global behavior from local
interactions. The paper discusses the effort done so far by
the researchers community in this direction and proposes a
computational model of protein folding that is based on 3D
cellular automata. Unlike common models, the proposed model
maintains the basic properties of cellular automata and keeps a
realistic view of proteins operations. As in any cellular automata
model, the dimension, neighborhood, boundary, and rules were
specified. In addition, a discussion is given to clarify why these
parameters are in place and what possible alternatives can be
used in the protein folding context.

Keywords—Proteins 3D Folding; Bioinformatics; Computa-
tional Modeling; Cellular Automata; Theoretical Computer Sci-
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I. INTRODUCTION

Modeling any complex biological phenomenon is essen-
tially a form of abstraction. The game of building a meaningful
model usually falls back to making choices of what to keep and
what to eliminate from available information. Nevertheless,
Models have many advantages, as they tend to be more
accessible and convenient for understanding the subject of
study. Additionally, models can act as objects of further ex-
perimentation [1]. This perfectly applies to modeling proteins,
because not only they are diverse, but also the simplest protein
endures a huge amount of details.

Artificial Intelligence and image processing concepts are
heavily used in the domain of modeling proteins such as neural
networks [2], optimized evidence-theoretic K-nearest neighbor
classifier [3], complexity measure factor [4], moments [5], in
addition to fusing multiple classifiers [6].

A cellular automaton (CA) is a discrete model of compu-
tation that is studied in computability theory. CAs are simple
since they are based on local interactions only but they are
capable of exhibiting complex behavior [7].

Simply a CA has a collection of identical cells that are
distributed spatially in one dimension, two dimensions or
higher. Every cell in the CA has a finite number of possible
internal states, the CA evolves from one iteration to the other
based on transition rules that are applied simultaneously to all
CA cells. The rules depend mainly on the cell neighborhood
and may or may not consider the cell state itself.

There are many options for almost all aspect of CAs. CAs
differ in their spatial distribution, cell neighborhood, transition
rules, cell possible states, boundary, number of generations
(iterations), cells shape, and the initial configuration from
where the CA starts.

Although, all proteins composition is based on twenty
amino acids, proteins are diverse and cover multiple functions
in nature. Some proteins contain a surfeit of one amino acid
whereas others may have one or two members of the twenty
amino acids missing entirely [8]. Since there are many details
in real proteins, simplified models called simple exact models
(SEMs) were proposed. The most common one is the HP
model, which consists of only hydrophobic (H) and polar (P)
Monomers [9].

This paper discusses the CA potential in the domain of
protein modeling and shed light on the possibilities offered by
the CA concept. In addition, it focuses on the process involved
in protein modeling when CA is used which is quite different
from other computational paradigms. Finally, a 3D CA model
is proposed and the challenges of protein modeling in terms
of CA are discussed.

The remaining of this paper is organized as follows: Section
IT gives the related work; Section III includes background
information about proteins; Section IV discusses the CA
potential in the context of protein modeling; Section V presents
the proposed model; Finally, section VI concludes the work
done and gives direction to future work.

II. RELATED WORK

The CA concept is related to many disciplines including
mathematics, physics, biology, and computer science [10]. The
idea of employing CA to the central dogma of molecular
biology is not new and many attempts were made to model the
central dogma in terms of structure, function, and evolution.
CA models were used in modeling DNA sequences [11],
evolution [12], mutation prediction [13], and gene networks
[14].
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One of the most attractive properties of CA is its ability
to represent global behavior, and this is truly important in
modeling the central dogma of molecular biology since the
initial state of the protein synthesis process does not help in
understanding the system behavior as a whole.

In this section, the discussion covers the work that depends
on elementary cellular automata combined with pseudo-amino
acid composition. In addition to the methods that combine
CA with evolutionary algorithms, and finally work done in
L-Systems is covered, since L-Systems were proved to be
equivalent to CAs.

One work that is used in predicting multiple protein at-
tributes is that based on elementary Rule 84 and pseudo-amino
acid composition. This line of research depends on amino
acid coding language proposed in [15] to act as the initial
configuration of the elementary CA. This model is used to
predict protein subcellular location [16], the G-protein-coupled
receptor functional classes [17], and protein structural classes
[18] [19].

The process starts with converting the protein amino acid
sequence to the binary encoding and assumes the binary repre-
sentation of each protein sequence as the initial configuration
of the CA, after the CA runs for 100 generations, the resulting
image parameters are extracted as given in Figure 1. These
CA image parameters are then considered along with 20 more
attributes to calculate the PseAA representation of each protein
and each group of proteins as given in Figure 2.

In fact, PseAA proposed in [20] is widely used in protein
modeling, which differs from traditional AAC in that it adds
the protein sequence order effect in a set of discrete numbers.
Surveys tailored to methods depending on the pseudo amino
acid composition are given in [21] and [22].

In addition, CA was combined with evolutionary algo-
rithms. An interesting work is the one that proposes a CA-
like structure or a neural CA, where the cellular automaton is
implemented by means of a simple feed forward neural model.
The artificial neural network output correspond to the possible
relative movements.

The idea was implemented in two-dimensions (2D) [23]
and three-dimensions (3D) [24]. In 2D case the possible
movements are forward, left and right while in the 3D case,
the possible movements are forward, up, down, left, and right.

The work done in [25] combines CA with genetic algo-
rithms to predict the protein secondary structure, where the
genetic algorithm is used to optimize the parameters (Rules)
involved. The authors summarizes what effects the prediction
to three factors: the neighborhood, weights assigned to the
neighborhood and the number of generations.

Specially designed cellular automata were proposed to
model the chemical reactions of DNA replication, mRNA
transcription, and splicing process in [26], where the protein
synthesis process was left for future work.

Moreover, Systems proven to be equivalent to cellular
automata such as L-systems [27] [28] were used to model
proteins in [29] [30] and [31].

In this paper, the design of a 3D CA proteins model is
discussed. The model is meant to be as simple as possible and
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within the known CA configurations. It does not require any
combined representation nor does it require searching capabil-
ities and evolutionary algorithms. The discussion also covers
challenges in such design and present alternative solutions to
each.

III. PROTEINS

Proteins are the end product of the DNA decoding process.
The central dogma of molecular biology states that DNA is
transcribed into messenger RNA (mRNA), which is translated
into proteins. This way of viewing the process is quite sim-
plified, in reality this biological process is a rich and complex
set of events [32].

In a cell, proteins are the workhorses and lead performers
of cellular functions [33], they can be considered as specialized
machines, each of which fulfills its own task. All the complex
molecules of the cell are proteins except DNA and RNA which
are not proteins and considered complex as well [32].

To simplify things, proteins are all united through their
reliance on the same group of twenty amino acids, they consist
of a linear arrangement of amino acid residues assembled
together into a polypeptide chain and the order of linking
the residues together is ultimately derived from the genes
information.

Amino acids contain amine (-NH2) and carboxylic acid
(-COOH) functional groups, usually along with a side-chain
usually referred to as an R group that is specific to each amino
acid. The key elements of an amino acid are carbon, hydrogen,
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oxygen, and nitrogen, though other elements are found in the
side-chains of certain amino acids [34].

The translation to proteins starts by the ribosomes which
proceed along the mRNA one codon at a time incorporating
one amino acid at each step and finally leaving the mRNA
from the last codon.

This process results in a chain of amino acids called the
primary structure of a protein. Mathematical and computational
modelling of ribosomal movement along with a discussion
of the impact of modeling studies on experimentalists is
summarized in [35].

Protein folding is the process that folds the protein primary
chain to its native three-dimensional structure, which is a
specific and stable structure. The three-dimensional structure
of a protein defines its function [33].
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IV. CELLULAR AUTOMATA
A. Cellular Automata Potential

Starting this section with some historical information may
sound redundant but it is essential to get a feel of why CA
has potential to model proteins properly. The use of CA as a
model is justified by its roots in biology and that it is especially
relevant to the problem of protein modeling.

CAs were originally proposed as formal models of self-
reproducing organisms. In the forties, John Von Neumann
wanted to design a machine that can reproduce itself. He
suggested a programmable assembly machine that can build
a copy of itself, and he defined two phases in the machine
blueprint, which are translation and transcription. The problem
of this machine is in its components, which are sophisticated
logical units. This is when Stanislaw Ulam suggested that Von
Neumann use cellular automata, which Ulam used to study the
growth of crystals at the time.

Also, the theory of Konrad Zuse is very relevant in this
context, which suggests that physics is just computation. Zuse
tried to apply an information and automata theory approach
to certain problems of physics [36] in his article written in
German (Rechnender Raum) which literally means space that
is computing. In 1969, he published the book Rechnender
Raum [37] which was translated into English as “Calculating
Space”, Zuse proposes that the universe is computed by some
sort of CA or other discrete computing machinery.

In addition to being a suggested framework for researching
connections between biology and automata theory, CAs design
is open and flexible, there is no restrictions or mathemati-
cal formulas that restricts the construction of CAs. Another
advantage of using CAs is the different behavior dynamics
resulting from different rules namely, stable, periodic, chaotic
and complex ones.

Finally, CAs are parallel in their nature which can be
applied in many different ways using commercially-available
parallel computers where the state of cells can be updated
simultaneously, or using specialized CA machines.

B. Cellular Automata Technical Details

CA can be described as a set of cells arranged in any
dimension, for example, cells can be arranged in a two
dimensional grid or a one dimensional array. These cells can
take a finite number of states and the states can be of any type
for example the set of states can be binary (0,1) or an integer
number or any other finite set of states.

The state of each cell may change or stay the same at every
generation, the stability or change of the states depends on
predefined rules (a transition function). The rules use the state
of a cell neighbors as input and may or may not use the cell
state itself to determine the cell state in the next generation.

According to Wolfram, it seems that the patterns which
arise from different types of cellular automata can almost
always be assigned to one of just four basic classes [38] [39]
[10]. In class 1, patterns evolve into a stable, homogeneous
state; in class 2, patterns evolve to a periodic state; in class
3 a chaotic behavior appears; and in class 4, configurations
contain structures that interact in complex ways.
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Langton [40] defines the Lambda parameter, which is a way
to quantify the qualitative approach of Wolfram. In ideal cases,
transition rules with the same Lambda evolve to a similar
behaviour [41].

Although it is widely accepted that the power of CA is its
ability to exhibit fascinatingly complex behavior from local
rules, there is no superior behavior in CAs. In biological
modeling, the appropriate behavior is the one that represents
reality. In practical applications, the best behavior is the one
that achieves the goals of the application, for example, work
done in [42] uses chaotic behavior in image security and
chaotic elementary CAs had an equivalent effectiveness as
complex game of life in a multimedia related application [43]
[44].

The simplest cellular automata (elementary CA) is one
dimensional and the rules depend on the cell state and the state
of its left and right neighbors (values of the nearest neighbor).
So the combinations of each cell and its neighbors have
8 possibilities only. There are only 256 elementary cellular
automata, each of which can be indexed with an 8-bit binary
number. All the behavioral cases defined by Wolfram are
covered within the 256 rules of the elementary CA.

The CA is referenced by its rule number, which can be
easily computed in the case of elementary CA. The rule
number is simply the decimal number representing the rule
output, so for every combination of the three cells (core cell
and its neighbors) the rule give an output that is either zero
or one, this output is then concatenated to a binary string and
converted to a decimal number representing the rule number.
Figure 3 shows the 8 states of rules 22, 110, and 84.

In a two-dimensional context (2D) some parameters are
different. In 2D CA Moore and von Neumann are two widely
used neighborhood configurations. In von Neumanns neigh-
borhood, every cell has four neighbors: the cells at its North,
South, East, and West, whereas in Moores neighborhood the
cells at the four diagonals are also considered, as given in
Figure 4.

One famous two-dimensional CA is the Game of life
proposed by John Conway [45]. The rules of Conways game
of life are simple and assumes a Moore Neighborhood.
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V. PROPOSED MODEL

The problem of modeling proteins using cellular automata
requires representing the problem in a way that maps to
reality and that is suitable for cellular automata at the same
time, it also requires setting multiple parameters such as the
dimension, neighborhood, boundary, number of generations,
and most importantly the transition rule as given in figure 5.
In addition, there must be a way to check the validity of the
CA used and to make sure it represents a realistic behavior,
maybe by finding certain attributes specified by this process.

A. Problem Representation

The process of modeling proteins starts with the challenge
of representing the problem in a set of finite, discrete values.
Proteins in reality are full of details. Until today, the functional
motions of proteins usually operate at timescales and condi-
tions that are beyond the limits of current technology [46].

One way to specify the values that each cell in the CA
uses, is to convert the twenty amino acids to a five digits binary
representation. The binary representation has many advantages
in the context of CA since the properties of CA are mostly
studied in the binary domain.

The conversion between amino acids and binary represen-
tation is not random. Authors in [15] and [47] makes use of
similarity rule, complementarity rule, molecular recognition
theory, and information theory to give the digital coding of
amino acids. Figure 6 shows the use of this coding in protein
modeling using rules 22, 110, and 84. The figure shows the
initial configuration and 100 generations of the same protein.
The reason why these rules were chosen is that rule 22 is
known for the chaotic behavior and rule 110 proved to being
capable of complex behavior and rule 84 was used before in
the context of protein modeling.

A comparison of four coding methods is given in [48],
the binary codes presented are either based on biochemical
properties or generated by artificial intelligence (AI) methods.
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Another approach is the use of the HP model, which clas-
sifies the amino acids into two classes, the hydrophobic ones
and the polar ones. Although this is a very useful abstraction,
keeping the 20 amino acids with their one letter representation
might allow for adding more rules of biochemistry.

Notice that some approaches combines two methods to-
gether. In [16] [18], [17] and [19], the binary representation
is followed by the Pseudo-amino acid composition (PseAA).
In those Papers, CA is applied to the binary representation,
then the CA image parameters are extracted by methods such
as the geometric moments of Hu [49] and the GLCM texture
features [50]. As explained before in the related works section,
the discrete numbers identifying the protein are added to 20
attributes to form the PseAA composition of proteins.

B. Environment and CA parameters

The environment effects the protein folding, for example,
the hydrophobic and hydrophilic properties of the amino acids
forming the proteins are important in the context of protein
folding since the environment surrounding the protein contains
water.

The work done in [29] [30] and [31] models the folding
of protein-like structures using local rewriting rules with
environmental interaction. In the context of cellular automata,
the dynamic environmental factors may be modeled by the
CA rules whereas the static environmental factor such as the
existence of water may be assumed as a part of the initial
configuration.

It is assumed that CAs have an infinite grid then every
cell has neighbors. Nevertheless, the actual implementation
of space is usually finite and therefore there must be a way
to handle the neighborhood over the edges. The proposed
model uses water as the boundary of the initial configuration.
Therefore, if the CA is implemented in a one-dimensional
space the neighbors of the first cell and the last cell are two
cells of water and in the case of two-dimensional space, the
extreme cells in the four dimensions are assumed water cells,
as shown in Figure 7.
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(a) 1D space

(b) 2D space

Fig. 7. Suggested CA initial configuration in 1D and 2D spaces

The proposed model uses 3D CA space, so now the CA
used is more like a cube. The reason why the 3D model was
chosen is that it maps to proteins reality. At first, the finite
spatial space and the water boundary are assumed, then the
flexibility of expanding the spatial space is given.

One main issue here is that the amino acids move and
since CA is highly parallel, one might expect that these amino
acids will end up in the same cell, which makes the possible
state of a cell more complicated. Based on the basic principles
of CA, there must be a finite set of states for the CA cells.
In order to overcome this problem there are many possible
solutions. The first thing that comes to mind is to restrict the
possible movement of each cell, but that might effect the model
accuracy.

Another work around is to change the cell shape to become
hexagonal (still a homogeneous grid). What is gained from this
conversion is that it is possible to map the hexagonal cell to a
group of square cells with adding the radius of neighborhood
and without effecting the assumption of a finite set of states
in each cell. This work around adds to the complications of
the design.

Another alternative solution is the use of a timed CA where
neighboring cells or competing cells to the same position does
not calculate the transition function at the same time. Each cell
has its turn based on its position. So the cells in the second
round can check the availability of the position. A similar
solution is to use block CA or a partitioning CA, where groups
of cells are divided into non-overlapping blocks and instead
of applying the transition rule to each cell individually, it is
applied to a whole block at each time step.

An interesting challenge in modeling proteins in terms of
CA is keeping the amino acid connected to its neighbors in the
primary structure, one way to do this is to number the primary
chain of the protein, and check that there is no separation
between originally connected amino acids. This problem can
be partially fixed after the final generation or it can be ignored.
A more complicated solution is to backtrack illegal moves after
each generation.

The actual neighborhood chosen is usually crucial for
the global behavior of a CA. most CA studies restrict the
neighborhood to Moore or von Neumann [51]. The details
of the proposed 3D CA is given in Table I. The use of
Moore neighborhood has an advantage in modeling protein
folding, since the presence of certain amino acids and the
connections between them effect the folding. In addition,
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TABLE 1. CA PARAMETERS
No. Parameter Value
1 Dimension 3D
2 Boundary Water
3 Neighborhood 3D Moore Neighborhood
4 Spatial Space Infinite (finite and can be extended)
5 Number of Generations Specified based on the protein stabilization
6 Possible States Amino acids of the primary structure and water

Moore neighborhood might serve the heuristic rules described
in section V-C and gives a meaningful abstraction of each cell
environment.

C. CA Rules

Section V-B discusses the CA configuration before moving
from one generation to the other. The rules or the transition
function is what cause the global behavior to occur; they are
essential to understand the behavior of proteins.

According to Chou [52], the three main strategies devel-
oped in structural bioinformatics, are pure energetic approach,
heuristic approach, and homology modeling approach. Pure
energetic approach depends on the thermodynamics principle.
The heuristic approach on the other hand collects the physical,
chemical, and biological principles as much as possible.

Finally, the homology modeling approach, which is a well-
known method of modeling proteins, compares the protein
in hand (target protein) with related proteins stored in a
database (template proteins). When the target and template
proteins are closely related, homology modeling can produce
accurate structural models with more reliable results than other
methods. Nevertheless, the quality of the homology model
depends on the data used and the quality of the sequence
alignment and template structure.

In the CA context, the heuristic approach seems to be the
most relevant. the priority is given to the chemical properties
of hydrophobic and hydrophilic amino acids. Therefore, if the
amino acid is hydrophobic and is surrounded by water, it
must change its position preferably towards other hydrophobic
amino acids.

The following subsections discuss the possible use of
simple rules and principles of chemistry and thermodynamics.

1) Chemistry: Usually the abstraction of the chemistry
behind protein folding depends on the hydrophobic and hy-
drophilic amino acid properties. In the living cell, Ribosomes
read the mRNA to produce the amino acid chain. After that,
proteins are in an environment full of water (around 70% of
the living cell), so it will spontaneously fold.

In the protein folding process, one can imagine the hy-
drophobic amino acids cluster in the core of the protein
since those amino acids move away from the water in the
environment. On the other hand, hydrophilic amino acids fold
around this core as if they are trying to protect the hydrophobic
amino acids.

Moreover, the interactions that stabilizes the protein can
be added such as the salt bridge where positively charged side
chains likes to be close to negatively charged side chains. The
salt bridge is a combination of two non-covalent interactions,
namely, hydrogen bonding and electrostatic interactions.
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One more rule that can be added is the contribution of
cysteine in folding. Similar to the case of salt bridges, cysteine
plays an important role in stabilizing the protein because of
the disulfide bridges.

2) Thermodynamics: Thermodynamics is the study of en-
ergy. The second law of thermodynamics states that in an
isolated system, the total entropy always increases or remains
the same but never decreases.

The measure of a molecule energy is Gibbs free energy
(G), let the change in free energy be AG and the energy of
the final state be Gy and the energy of the initial state be G,
then AG is calculated as follows:

AG =Gy —G; 1)

When AG<O0 the process goes from a high free energy
state to a low free energy state which implies that the process
is spontaneous and releases energy, so the process is a favored
reaction and would happen if it could. On the other hand, if
the AG>0 the process is not spontaneous.

Gibbs energy takes into account the total energy or enthalpy
(H), the total disorder or entropy (S), and the temperature (T),
as shown in the following equation:

AG = AH — TAS )

Temperature plays a role in how much the entropy effects the
change in (AG), if a process occurs in a high temperature
environment then the entropy has a higher role in determining
(AG) or how spontaneous the process occurs.

The role of thermodynamics laws in protein folding and
stabilization is explained in [53]. In protein folding enthalpy
changes from a high value in primary structures to a lower
value in the 3D structures which makes AH negative, but
entropy is also negative since it is higher in primary structures,
so the temperature need to be low in order for the protein
to fold. Thermodynamics are important since it is usually
assumed that the protein’s native state corresponds to its free
energy minimum. This is tricky since it needs a global view
and CA models work on the level of local rules. The point is
that one should make the CA go towards this global energy
model at each step in each cell.

D. General Steps

In this subsection, the proposed process of modeling pro-
teins is summarized in some general steps. The input of the
modeling process is the amino acid sequence of the target
protein and the CA number of generations and the output of
the algorithm is the final 3D CA representing the input protein.
The process can be summarized as follows:

e Initialize the CA cells with the amino acid sequence
and initialize the boundary with the water state

e Run CA rules for the number of generations

e at each step, if the spatial space needs extension then
extend it

e Return the folded protein in the form of the input
amino acids in their new positions in the 3D space
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From an implementation point of view, it can be easier to
define a 3D space that is double the size of the input chain
so that the extensions are not needed often. The number of
generations is assumed to be given in the input. Nevertheless,
there are multiple methods that can be used to find an average
number of generations that is suitable for the problem.

The output of the process shows the position of each
Amino acid and how the hydrophobic core of the protein is
created. The accurate results of the model means that CA is
capable of modeling proteins without knowing the global view
beforehand. It also means that proteins depend to some extent
on some internal rules that results in its global behavior.

E. Yet More things to consider

Building a model that is based on CA starts with building
a dataset, although protein information is generously available
online, choosing the proteins or the benchmark needs to be
accounted for. Many researchers depend on more than one
benchmark to test their work. After applying the CA model,
there must be a meaningful way to evaluate the model.

Although not using the CA model, some useful Literature
compares between two or more distance matrices in terms of
predicting protein attributes. For example, work done in [54]
reports detailed results of protein structural classes prediction
using Hamming, Euclidean, and Mahalanobis distances. Com-
parisons also exists in predicting protein subcellular Location
[55].

VI. CONCLUSION AND FUTURE WORK

The aim of many who work in the field of modeling natural
phenomena is to add a step in discovering new things. Usually
models try to capture the main properties and factors of the
phenomenon to get results that are more meaningful in the
sense of modeling one or more realistic attributes.

In this paper, protein modeling using cellular automata was
discussed. Work in this area was analyzed and a suggested 3D
model with heuristic rules was given. In addition, the general
process of modeling proteins using cellular automata was
discussed and alternative solutions to possible design issues
were given.

The actual implementation of the design proposed in this
paper is left for future work. In general, measuring the model
effectiveness includes comparisons against data from labora-
tory experiments, but still the similarity between proteins is an
interesting issue for further investigation.
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