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Abstract—A high accuracy quartic approximation for circular
arc is given in this article. The approximation is constructed so
that the error function is of degree 8 with the least deviation
from the x-axis; the error function equioscillates 9 times; the
approximation order is 8. The numerical examples demonstrate
the efficiency and simplicity of the approximation method as well
as satisfying the properties of the approximation method and
yielding the highest possible accuracy.
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I. INTRODUCTION

The use of parametric representation of curves is conve-
nient in the field of CAD. Especially, the parametric methods
approach allows us to make use of some of the properties
that are not available in the approximation of functions. For
example, in [16], the idea that a parametric representation of
a curve is not unique has been used to improve the order of
approximation by polynomial curves of degree n from n + 1
to 2n. Also, the parametric form makes use of the geometric
properties of the curve in design and modelling. In this paper,
given the circular arc c : t 7→ (cos(t), sin(t)) , −θ ≤ t ≤ θ,
where θ ∈ [−π, π], see Fig. 1, the geometric symmetries of the
circle will be utilized to properly select the Bézier points in
order to represent the quartic Bézier curve that has high order
of approximation of 8 and possesses “the best” features.

A circle can be represented using rational Bézier curves
and can be approximated by polynomial curves. Therefore,
approximating a circular arc by polynomial curves with highest
possible accuracy is a very important issue. It is needed for
the construction of any CAD system. To approximate the circle
c, there is a need to find a parametrically defined polynomial
curve p : t 7→ (x(t), y(t)) , 0 ≤ t ≤ 1, where x(t), y(t) are
polynomials of degree 4, that approximates c with “minimum”
error. Many researchers have tackled this issue using different
norms and methods, see [2], [3], [4], [5], [6], [9], [10], [14],
[16], [18]. For details and numerical comparisons with these
works, see section 6. The proper function to measure the error
between p and c is the Euclidean error function:

E(t) :=
√
x2(t) + y2(t)− 1. (1)

The square root limits the possibility of further progress.
Thus, to avoid radicals, the squares of the components of the
parametrization to the circle are used. So, the Euclidean error
function E(t) is replaced by the following error function

e(t) := x2(t) + y2(t)− 1. (2)

This replacement makes sense because both E(t) and
e(t) attain their roots and reach their extrema at the same
parameters.

More precisely, the approximation problem in this paper
is to find p : t 7→ (x(t), y(t)) , 0 ≤ t ≤ 1, where x(t), y(t)
are of degree 4, that approximates c and satisfies the following
conditions:

1) p minimizes maxt∈[0,1] |e(t)|,
2) e(t) equioscillates 9 times over [0, 1],

Note that condition (2) implies that p approximates c with
order 8. We impose a priori these conditions, because they will
be used to determine the values of the parameters that are used
for geometric design of the circular arc.

The term approximation order is used in the context
of Lagrange interpolation: p approximates c with order m
if there exists parameters t1, t2, . . . , tm in [0, 1] satisfying
p(ti) − c(ti) = 0, for all i = 1, 2, . . . ,m. This is a special
case of the more general definition of order of approximation
for the Hermite type including derivatives at the interpolated
points.

We let the angle θ be as large as possible in order to
approximate the largest circular arc with this specified error.
Thereafter, the angle θ has to be scaled by a factor that also
combined with a reduction in the uniform error, see the last
conclusions and open problems’ section.

This paper is organized as follows. Some preliminaries are
given in section 2. The quartic Bézier curve of least deviation
is presented and proved in section 3, and the properties are
presented in section 4. All possible quartic Bézier curves of
least deviation are presented in section 5. Conclusions are
given in section 6.

II. PRELIMINARIES

The notations (x(t), y(t)) and
(
x(t)
y(t)

)
are used to rep-

resent parametric equations, and similarly points will be used
in this article.

In this paper, the curve p(t) is given in Bézier form, see
Fig. 2 for possible Bézier points of quartic Bézier curve. The
Bézier curve p(t) of degree 4 is given by, see [11]

p(t) =

4∑
i=0

piB
4
i (t) =:

(
x(t)
y(t)

)
, 0 ≤ t ≤ 1, (3)
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where p0, p1, p2, p3 and p4 are the Bézier points, and B4
0(t) =

(1− t)4, B4
1(t) = 4t(1− t)3, B4

2(t) = 6t2(1− t)2, B4
3(t) =

4t3(1− t) and B4
4(t) = t4 are the Bernstein polynomial basis

of degree 4.

Since it is intended to represent the arc with a polynomial
curve with minimum error, it is not important if the errors
occur at the endpoints or anywhere else; it is important to
maintain this disruption as low as possible there where the
error occurs. In some other schemes, it is necessary that the
approximating Bézier curve is Gk-continuous at the end points,
see [20]. To represent a circular arc, the Bézier points are
selected to take advantage of the symmetry properties of the
circle. As the scheme in this paper is built on the idea of
minimizing the error over all of the segment [0, 1], therefore,
the right choice for the beginning control point p0 is as follows
p0 = (−α0 cos(θ), −β0 sin(θ)), where values of α0 and β0
could but should not be the same. For symmetry reasons, the
right choice for the end control point p4 is as follows p4 =
(−α0 cos(θ), β0 sin(θ)). Let p1 = (γ, −ζ) then by symmetry
p3 = (γ, ζ). For symmetry reasons, the point p2 must be on
the x-axis, and thus it has the form p2 = (ξ, 0). Using the
substitution α = α0 cos(θ), β = β0 sin(θ), then the proper
options for the Bézier points should be, see Fig. 2,

p0 =

(
−α
−β

)
, p1 =

(
γ
−ζ

)
, p2 =

(
ξ
0

)
,

p3 =

(
γ
ζ

)
, p4 =

(
−α
β

)
. (4)

In order to have the Bézier curve p begin in the third quadrant,
go counter clockwise through fourth and first quadrants and
end in the second quadrant as the circular arc c, the following
conditions should be fulfilled

α, β, γ, ζ > 0, ξ > 1. (5)

The Bézier curve p(t) in (3) with the Bézier points in (4)
is arranged as follows

p(t) =

(
x(t)
y(t)

)
, 0 ≤ t ≤ 1. (6)

=

(
−α

(
B4

0(t) +B4
4(t)

)
+ γ(B4

1(t) +B4
3(t)) + ξB4

2(t)
β
(
B4

4(t)−B4
0(t)

)
+ ζ

(
B4

3(t)−B4
1(t)

) )
.

There are 5 parameters α, β, γ, ζ, ξ that will be used to have
the polynomial curve p comply with the conditions of the
approximation problem by substituting x(t) and y(t) into e(t)
and solving the resulting equation using a computer algebra
system. Thereafter, it is shown that these values satisfy the
approximation conditions; this is carried out in the following
section.

III. THE QUARTIC BÉZIER CURVE OF LEAST DEVIATION

In the following theorem, the values of α, β, γ, ζ, ξ that
meet the terms of the approximation problem are given.

Theorem 1: The Bézier curve (6) with the Bézier points
in (4), wherein

α = α∗ := 0.91658426813952,

β = β∗ := 0.40949454135449,

γ = γ∗ := 0.00389865026306327,

ζ = ζ∗ := 2.164585487675,

ξ = ξ∗ := 2.9773929563972596 (7)

fulfils the following three conditions: p minimizes the infinity
norm of th error function maxt∈[0,1] |e(t)| and approximates c
with order 8, and the error function e(t) equioscillates 9 times
in [0, 1]. The error functions satisfy:

− 1

27
≤ e(t) ≤ 1

27
, − 1

27(2− ε)
≤ E(t) ≤ 1

27(2 + ε)
, (8)

where ε = max0≤t≤1 |E(t)| ≈ 2−8,∀t ∈ [0, 1].

Proof: Substituting x(t) and y(t) from equation (6) into
the error function e(t) in (2) and doing thereby some simpli-
fications yields to the following formulation

e(t) = t8
(
4α2 + 32αγ + 64γ2 − 24αξ − 96γξ + 36ξ2

)
+ t7

(
−16α2 − 128αγ − 256γ2 + 96αξ + 384γξ−

144ξ2
)

+ t6
(
40α2 + 16β2 + 272αγ + 448γ2 − 192αξ−

624γξ + 216ξ2 − 64βζ + 64ζ2
)

+ t5
(
−64α2 − 48β2 − 368αγ − 448γ2 + 240αξ+

528γξ − 144ξ2 + 192βζ − 192ζ2
)

+ t4
(
72α2 + 68β2 + 320αγ + 272γ2 − 180αξ−

240γξ + 36ξ2 − 240βζ + 208ζ2
)

+ t3
(
−56α2 − 56β2 − 176αγ − 96γ2 + 72αξ+

48γξ + 160βζ − 96ζ2
)

+ t2
(
28α2 + 28β2 + 56αγ + 16γ2 − 12αξ − 56βζ+

16ζ2
)

+ t
(
−8α2 − 8β2 − 8αγ + 8βζ

)
+ (α2 + β2 − 1).

The last one is a polynomial of degree 8. The substitution of
the values of α = α∗, β = β∗, γ = γ∗, ζ = ζ∗ and
ξ = ξ∗ from (7)-(9) and doing some simplifications leads to

e(t) = 256 t8−1024 t7+1664 t6−1408 t5+660 t4−168 t3+

21 t2 − t+ 1

128
, t ∈ [0, 1].

Making the substitution t = u+1
2 reduces the error function to

the following form

e(u) =
1

128
− 1

4
u2 +

5

4
u4 − 2 u6 + u8, u ∈ [−1, 1].

We know that the last polynomial is the monic Chebyshev
polynomial T̃8(u), u ∈ [−1, 1], which is the unique poly-
nomial of degree 8 that equioscillates 9 times between ± 1

27

for all u ∈ [−1, 1] and has the least deviation from the x-
axis, see [23]. This shows that p satisfies the conditions of
the approximation problem. Now it is time to show the error
formula for E(t). The error function e(t) minimized is related
to the Euclidean error E(t) by the following formula
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e(t) = x2(t) + y2(t)− 1

= (
√
x2(t) + y2(t) + 1) (

√
x2(t) + y2(t)− 1)

= (2 + E(t)) E(t).

Thus

E(t) =
e(t)

2 + E(t)
.

Substituting the bounds of e(t) gives

− 1

27(2− ε)
≤ E(t) ≤ 1

27(2 + ε)
,

where ε = max
0≤t≤1

|E(t)| ≈ 2−8, t ∈ [0, 1].

This proves Theorem 1.

The circular arc and the approximating Bézier curve are
graphed in Fig. 3. The difference between the curve and the
approximation is not recognizable by the human eyes; Fig. 4
shows the corresponding error.

One would not, in general, expect a quartic polynomial to
approximate almost 8/9th the circle more accurately than this
approximation. In the following section, the properties of the
approximating Bézier curve are given.

IV. PROPERTIES OF THE QUARTIC BÉZIER CURVE

In this section, some of the properties of the roots and the
extrema of the error functions are verified. These properties
characterise the approximating quartic Bézier curve. The first
one is about the roots of the error functions e(t) and E(t) that
are given in the following proposition.

Proposition I: The zeros of the error functions e(t) and
E(t) are:

t1 =
1

2
(1+cos(

π

16
)) = 0.9904, t2 =

1

2
(1+cos(

3π

16
)) = 0.9157

t3 =
1

2
(1+sin(

3π

16
)) = 0.7778, t4 =

1

2
(1+sin(

π

16
)) = 0.5976,

t5 =
1

2
(1− sin(

π

16
)) = 0.4025,

t6 =
1

2
(1− sin(

3π

16
)) = 0.222215,

t7 =
1

2
(1− cos(

3π

16
)) = 0.08427,

t8 =
1

2
(1− cos(

π

16
)) = 0.009607.

These roots also satisfy

ti + tj = 1, for i+ j = 9.

Proof: The substitution of ti in e(t) gives e(ti) = 0, i =
1, . . . , 8. These are all zeros, since e(t) is a polynomial of
degree 8. The error function E(t) has the same roots as e(t)
because E(t) = 0 iff

√
x2(t) + y2(t) = 1 iff x2(t)+y2(t) = 1

iff e(t) = 0.

The approximating quartic Bézier curve p in Theorem 1
and the circular arc c intersect at the points p(ti) = c(ti), i =
1, . . . , 8.

In the following proposition, the extreme values are given.
Proposition II: The extreme values of e(t) and E(t) occur at

t̃0 = 1, t̃1 =
1

2
(1 + cos(

π

8
)) = 0.9619,

t̃2 =
1

2
(1 +

1√
2
) = 0.8536, t̃3 =

1

2
(1 + sin(

π

8
)) = 0.6913,

t̃4 =
1

2
, t̃5 =

1

2
(1− sin(

π

8
)) = 0.3087,

t̃6 =
1

2
(1− 1√

2
) = 0.1465, t̃7 =

1

2
(1−cos(π

8
)) = 0.0380602,

t̃8 = 0.

These parameters satisfy the equality:

t̃i + t̃j = 1, for i+ j = 8.

Proof: Differentiating e(t) gives a polynomial of degree 7.
Substituting t̃1, . . . , t̃7 gives e′(t̃i) = 0, i = 1, . . . , 7. Since
e′(t) is of degree 7 then these are all interior critical points.
Checking at the end points adds t̃0 = 1, t̃8 = 0 to the critical
points. Since for t ∈ [0, 1]: 1− 1

128 ≤ x
2(t)+y2(t) ≤ 1+ 1

128 ,
thus

√
x2(t) + y2(t) 6= 0, ∀t ∈ [0, 1]. Differentiating E(t) and

equating to 0 gives e′(t)√
x2(t)+y2(t)

= 0 iff e′(t) = 0. Thus e(t)

and E(t) attain the extrema at the same values. This completes
the proof of the proposition.

The difference in the values of E(t̃i) for odd and even i’s
is because e(t) equioscillates between ± 1

128 and 1
27(2−ε) ≤

E(t) ≤ 1
27(2+ε) , where ε = max0≤t≤1|E(t)|.

Proposition III: the values of e(t) and E(t) at t̃i’s are given
by:

e(t̃2i) =
1

128
, i = 0, . . . , 4, e(t̃2i+1) =

−1
128

, i = 0, . . . , 3.

E(t̃2i) = 0.003899, i = 0, . . . , 4,

E(t̃2i+1) = −0.003914, i = 0, . . . , 3.

Therefore,
−1
128
≤ e(t) ≤ 1

128
= 2(0.003906), t ∈ [0, 1],

−0.00391391 ≤ E(t) ≤ 0.003899, t ∈ [0, 1].

Proof: Direct substitution in the error functions leads to the
equalities. The details of the proof of the proposition are left
to the reader.
As a consequence of Theorem 1, we have the following
proposition regarding the error at any t ∈ [0, 1].
Proposition IV: For every t ∈ [0, 1], the errors of approximat-
ing the circular arc using the quartic Bézier curves in Theorem
1 are given by:

e(t) = 256t8−1024t7+1664t6−1408t5+660t4−168t3+21t2−

t+
1

128
, ∀t ∈ [0, 1].

www.ijacsa.thesai.org 592 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 7, 2016

Proof: Direct consequence of Theorem 1. The details of
the proof of the proposition are left to the reader.

Using the relation between E(t) and e(t), we get:

E(t)=̃ 128t8−512t7+832t6−704t5+330t4−84t3+
21

2
t2−

1

2
t+

1

256
, ∀t ∈ [0, 1].

To get the solution in Theorem 1, some conditions were
imposed on α, β, γ, ζ and ξ in (5). These conditions give
the Bézier curve with α = α∗, β = β∗, γ = γ∗, ζ = ζ∗

and ξ = ξ∗ that represents the circular arc from third to
second quadrants passing through the fourth and first quadrants
generated counter clockwise, see Fig. 3. However, if these
conditions on α, β, γ, ζ and ξ are removed, there will be other
possible solutions. These are given in the following section.

V. ALL POSSIBLE QUARTIC BÉZIER CURVES

The following theorem lists all the possible Bézier curves.

Theorem 2: By removing the conditions on α, β, γ, ζ and ξ
in (5) and reinvestigating the approximation problem, then the
problem has 32 solutions; 24 of these solutions are complex
and the other 8 solutions are real; 4 real solutions are not
admissible because they have the opposite direction for the
tangent; the other 4 real solutions are geometrically feasible
and satisfy the conditions of the approximation problem. These
solutions are sign multiple of the solution in Theorem 1 and
are summarized in table 1.

Proof: The first solution has been confirmed in Theorem
1. To confirm the other 3 cases, we consider the error function
e(t) and do some simplifications and substitutions as in The-
orem 1 to get the monic Chebyshev polynomial of degree 8.
This polynomial possesses the properties of the approximation
problem. The details of the proof are left to the reader.

Remarks:

1) All of the solutions in Table 1 are related to each
other. The second solution coincides with the first
solution, but generated clockwise. The third and
fourth solutions are reflections of the first solution
around the y-axis, generated counter clockwise and
clockwise, respectively.

2) The sign of α is the same as the signs of γ and ξ. If
the sign of α is positive then the curve begins (ends)
in the second quadrant through the first and fourth
quadrants and ends (begins) in the third quadrant, and
if it is negative then the curve begins (ends) in the
first quadrant through the second and third quadrants
and ends (begins) in the fourth quadrant.

3) The sign of β is the same as the sign of ζ.

The roots and extreme values of e(t) and E(t) for all the
solutions in Table 1 are given in the following proposition.

Proposition V: The solutions in Table 1 have the following
properties:

1) The roots of the error functions e(t) and E(t) for
all of the solutions in Table 1 are the same as in
Proposition I.

2) The extreme values of e(t) and E(t) for all of the
solutions in Table 1 occur at the same parameters
that are given in Proposition II.

3) The extreme values of e(t) and E(t) for all of the
solutions in Table 1 have the same values that are
given in Proposition III.

4) The error functions e(t) and E(t), t ∈ [0, 1] for all
of the solutions in Table 1 are given by the formulas
in Proposition IV.

Proof: The proofs are similar to the proofs of the similar
previous cases and are left to the reader.

VI. CONCLUSIONS AND OPEN PROBLEMS

In this article, the best uniform approximation of circular
arcs with parametrically defined polynomial curves of degree 4
are explicitly given. The error function equioscillates 9 times;
the approximation order is 8. Numerical examples are given to
demonstrate the efficiency and simplicity of the approximation
method.

The method in this paper is C0−continuous by construc-
tion. There are methods in the literature that are G1− and
G2−continuous, see for example [6], [9], [10], [13], [14], [16],
[17], [18], [19], [22].

As future works, it is interesting to:

1) study quartic approximation with Gk−continuity, k =
1, 2, using equioscillating error functions and con-
strained Chebyshev polynomials.

2) find a way to write the Bézier points in terms of
the angle θ. It would be very important to have the
best approximation available for all θ perhaps by
employing a semi-numerical method.

3) Apply these results in this paper to perform degree
reduction of Bézier curves to get the best approxima-
tion with the minimum uniform error.

4) It would be interesting to compare our curve with the
quartic exponential Euler spline defined by Schoen-
berg and studied by de Boor, see [7], [8], [24], [25].

Acknowledgement: The author would like to thank the referee
for invaluable comments that lead to improve the paper.
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curves, Journal of Computational and Applied Mathematics, V. 81(1)
(1997), 145-163.

[3] Y. J. Ahn, Y. S. Kim, and Y. Shin, Approximation of circular arcs and
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Design 7 (1990), 33-41.

[10] M. Goldapp, Approximation of circular arcs by cubic polynomials,
Comput. Aided Geom. Design 8 (1991), 227-238.
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Fig. 1: A circular arc
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1

Fig. 2: Possible Bézier points of circular arc.

Solution Sign α Sign β Sign γ Sign ζ Sign ξ from to quadrants generated
1st + + + + + 3rd to 2nd counter clockwise
2nd + − + − + 2nd to 3rd clockwise
3rd − − − − − 1st to 4th counter clockwise
4th − + − + − 4th to 1st clockwise

Table 1: All geometrically feasible real solutions to the approximation problem.
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Fig. 3: Circular arc and it’s quartic Bézier curve in Theorem
1.
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Fig. 4: Euclidean Error of the quartic Bézier curve in Theorem
1.
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