
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

205 | P a g e

www.ijacsa.thesai.org

Efficient Load Balancing Algorithm for the

Arrangement-Star Network

Ahmad M. Awwad

Computer Science Department

Petra University

Amman, Jordan

Jehad A. Al-Sadi

Information Technology and Computing Department

Arab Open University

Amman, Jordan

Abstract—The Arrangement-Star is a well-known network in

the literature and it is one of the promising interconnection

networks in the area of super computing, it is expected to be one

of the attractive alternatives in the future for High Speed Parallel

Computers. The Arrangement-Star network has many attractive

topological properties such as small diameter, low degree, good

connectivity, low broadcasting cost and flexibility in choosing the

desired network size. Although, some of the research work has

been done on Arrangement-Star network, it still needs more

investigation and research efforts to explore these attractive

topologies and utilize it to solve some real life applications. In this

paper we attempt to fill this gap by proposing an efficient

algorithm for load balancing among different processors of the

Arrangement-Star network. The proposed algorithm is named as

Arrangement Star Clustered Dimension Exchange Method

ASCDEM presented and implemented on the Arrangement-Star

network. The algorithm is based on the Clustered Dimension

Exchange Method (CDEM). The ASCDEM algorithm is shown to

be efficient in redistributing the load balancing among all

different processors of the network as evenly as possible. A

complete detail of this algorithm in addition to examples and

discussions to explore the benefits of applying this distributed

algorithm is presented in this paper. Furthermore an analytical

study on the algorithm is presented and discussed to explore the

attractive performance of the proposed algorithm.

Keywords—Interconnection Networks; Topological Properties;

Arrangement-Star; Load balancing

I. INTRODUCTION

The Arrangement-Star network as a case of study on
vertex product networks [1, 2, 3, 4], it is constructed from the
cross product of the Star and Arrangement graphs. It has
shown to have superior topological properties over its
constituents: the Star and Arrangement graphs [5, 6, 7].
Besides having a smaller diameter, node degree, and number
of links, it has a lower broadcasting cost and more flexibility
in choosing the desired network size.

Although some algorithms proposed for the Arrangement-
Star graph such as distributed fault-tolerant routing algorithm
[5], some of the important problems that the Arrangement-Star
network still needs more efforts and researchers is the issue of
load balancing among different processors of this network.
Since there is no enough research work in literature for
proposing efficient algorithms for load balancing on the
Arrangement-Star network. In this research effort we move
one more step in filling this gap by investigating and
proposing the ASCDEM algorithm on the Arrangement-Star

network, the proposed algorithm is based on the CDEM
algorithm which was able to redistribute the load balance
among all node of the networks on OTIS-Hypercube network
as evenly as possible [8]. A reasonable and efficient
implementation of the ASCDEM algorithm on the
Arrangement-Star network will make it more attractive for the
solving real life applications problem.

This paper is organized as follows: In the next section we
present the related work on load balancing, section III
introduces the necessary basic notations and definitions,
section IV presents the implementation of the ASCDEM
algorithm on the Arrangement-Star network, furthermore we
present examples on SCDEM algorithm to explain and explore
detailed transactions of the algorithm on different
Arrangement-Star network sizes, section V presents an
analytical study of the ASCEDM algorithm, finally section VI
concludes this research work.

II. BACKGROUND AND RELATED WORK

Many attractive properties for the Arrangement-Star graph
have been shown in the literature enabled it to be one of the
candidate’s networks for the High Speed Parallel Computers
(HSPC) and a reasonable choice for any real life applications
[5]. This outcome about Arrangement-Star network has
motivated us to spend more time and do some research on it
for some important class of algorithms such as: the load
balancing because still this networks suffers from shortening
in number of algorithms for the load balancing problem in
general and for load balancing problem in specific. This
algorithm has been studied and proposed for many HSPC
infrastructures ranging from electronic networks [5] and also
for Optoelectronic networks [9, 10].

The Load balancing algorithm is a famous type of
problems that is needed by all HSPC infrastructures. The load
balancing problem have been investigated from many angles
and point views. As an example on the literature work this
problem was investigated by the researchers Ranka, Won, and
Sahni [11], As conclusion of their work they come out with an
efficient algorithm to be implemented on HSPC called the
Dimension Exchange Method (DEM) on the hypercube
topology. This algorithm (DEM) constructed and developed
by issuing and getting the average load of neighbors’ nodes,
where the symmetric degree of the hypercube is n, All
adjacent nodes which are connected on the n

th
 dimension they

will exchange their task loads to redistribute the task load and
as evenly as possible, the processor with extra load will share

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

206 | P a g e

www.ijacsa.thesai.org

any extra amount of the load to its adjacent neighbor node.
The DEM algorithm main advantage that it was able to
redistribute the load balances of processors among all
neighbors as evenly as possible. Furthermore Ranka and et al
have enhance the load balance in the DEM algorithm in its
worst case to achieve log2n on the cube network [11].

Zaho, Xiao, and Qin have investigated and proposed
hybrid structure of diffusion and dimension exchange called
DED-X which worked in a perfect manner for the load
balancing algorithm on Optoelectronic networks [12]. The
DED-X problem main task was to redistribute the load
balancing between different nodes of the network to three
different phases. The achieved outcome on Optical Transpose
Interconnection System networks proved that the
redistribution of load balance between all nodes of the
topology was efficient and mostly even. Furthermore the
reached outcome and the issued results of the simulation from
Zaho et al of the proposed algorithms on load balancing has
shown a considerably big improvements in enhancement in
redistribution the load balancing of the processors of the
topology [12]. In a different literature and research done by
Zaho and Xiao they investigated a different algorithm named t
DED-X for load balancing on homogeneous optoelectronic
technology and they proposed new algorithm framework,
Generalized Diffusion-Exchange- Diffusion Method, this
framework was efficient for the load balancing distribution on
the Heterogeneous optoelectronic technology [11, 13, 14].

On the other hand Zaho, Xiao, and Qin have investigated
and proved that the efficiency of the new investigated load
balancing algorithms to be more effective than the X old load
balancing algorithm [12].

The target of this research effort is to investigate a new
algorithm for the load balancing among the nodes of the
Arrangement-Star networks named Arrangement Star
Clustered Dimension Exchange Method (ASCDEM). The
algorithm is based on the Clustered Dimension Exchange
Method (CDEM) [13].

III. DEFINITIONS AND TOPOLOGICAL PROPERTIES

During the last two decades a big number of
interconnection networks for High Speed Parallel Computers
(HSPC) investigations are proposed in literature [6, 13, 15].
As an example one of these networks was the hypercube
interconnection network [8, 13]. Also a well know example is
the Star network [6]. Some properties of this network have
been studied in the literature including its basic topological
properties, parallel path classification, node connectivity and
embedding [17, 18, 19, 20]. The authors Akers and
Krishnamurthy have proved that the Star graph has several
advantages over the hypercube network including a lower
degree for a fixed network size of the comparable network
sizes, a smaller diameter, and smaller average diameter.
Furthermore they showed that the Star graph is maximally
fault tolerant edge, and vertex symmetric [6].

The major drawback of the Star network is related to its
scalability problem [21]. The size of the Star network
increases as a factorial function, and thus grows widely very
rapidly; for example, the value of 5! is equal to 120 while the

value of 6! is 720. Until today despite its attractive topological
properties, the Star graph has not been used in practical
systems yet because of this problem.

In an attempt to address this problem in the Star network,
Day and Tripathi [7] have proposed the Arrangement graph as
a generalization of the Star graph. The Arrangement graph is a
family of undirected graphs that contains the Star graph
family. It slightly brings a solution to the problem of the
scalability, which the Star graph suffers from (i.e. the problem
of growth of the number n! of nodes in the n-Star). It also
preserves all the nice qualities of the Star graph topology
including, hierarchical structure, vertex and edge symmetric,
simple shortest path routing and many fault tolerance
properties [7]. Still a common drawback of the Star and
Arrangement graphs is the restriction on the number of nodes:
n! for the Star graph and m!/(m-k)! for the Arrangement graph.
The set of values of n! (or m!/(m-k)!) is spread widely over
the set of integers; so, one will be faced with the choice of too
few or too many available nodes.

However, there has been relatively a limited research
efforts have been dedicated to design efficient algorithms for
the Arrangement-Star graph including broadcasting [19],
selection and sorting [20, 22], Fast Fourier Transform [23],
and Matrix Multiplications [24] and load balancing. In an
attempt to overcome the load balancing problem we present an
efficient algorithm for load balancing problem on
Arrangement-Star graph to redistribute the load balancing
among all processors of the network as evenly as possible.

An Arrangement graph is specified by two parameters m

and k, satisfying 1  k  m. For simplicity let m = {1,2,…,m}

and  k  = {1,2,…,k}.

Definition 1: The (m,k)-Arrangement graph Am,k = (V1, E1),

1  k  m-1 is defined as follows [7]:

V1= {p1p2 … pkpi  m and pi  pj for i  j }=
m

kP , and

E1 = (p,q) p and q in V1 and for some i in k , pi  qi and

pj = qj for j  i}.

That is, the nodes of Am,k labelled with a unique

Arrangements of k elements out of m symbols m, and the
edges of Am,k connect Arrangements which differ in exactly
one of their k positions An edge of Am,k connecting two
Arrangements which differ only in position i called an i-edge.
In this case, p and q are i-adjacent and q is called (i, qi)-
neighbour of p. The (m,k)-Arrangement graph Am,k is regular

of degree k(m-k) and of size m!/(m-k)!, and diameter 3k/2.
The (m, m-1)-Arrangement graph Am,m-1 is isomorphic to n-
Star graph Sn [3, 7], and the (m,1)-Arrangement graph is
isomorphic to the complete graph with m nodes [7].

Definition 2: The n-Star graph, denoted by Sn, has n

nodes each labelled with a unique permutation on  n  =
{1,…,n}. Any two nodes are connected if, and only if, their
corresponding permutations differ exactly in the first and one
other position.

The diameter, , and the degree, , of the Star graph are as
follows [6]:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

207 | P a g e

www.ijacsa.thesai.org

, of n-Star graph = 1.5 (n-1)

, of the n-Star graph = n-1, where n1.
Definition 3: The Arrangement-Star graph is the cross

product of the n-Star graph and the (m, k)-Arrangement graph,

and is given by ASn,m,k = Am,k  Sn such that n1 and 1  k 

m.

Note that if G1 and G2 are two undirected graphs then for

any node X = x1, x2 in the cross product graph, G = G1G2,

has an address consisting of two parts, one coming from G1

and the other coming from G2. We will denote the earlier part
by lp(X)=x1 and the later part by rp(X)=x2.

Figure 1 shows the topology of AS2,3,2 that is obtained from

the graph product of S2 and A3,2 networks. A node X = u, v in
AS2,3,2 consisting of two parts, left part coming from the Star
graph and the right part coming from the Arrangement graph

(lp and rp). Two nodes X = u, v and Y =  u , v  are

connected if, lp(X) = lp(Y) and rp(X) is connected rp(Y) in Am,k
(in this case X and Y are said Arrangement-connected) or
rp(X)= rp(Y) and lp(X) is connected lp(Y) in Sn (in this case X
and Y are said Star-connected). For instance in Figure 1 the
node ab13 is connected to the node ab12, and the node ab23 is
connected to the node ba23.

ab23

ba21

ab13

ba23

ba13

ab21

ab12

ba12

ab31

ba32

ba31

ab32

Fig. 1. Arrangement-Star graph, AS2,3,2

IV. THE IMPLEMENTATION OF THE ASCDEM ALGORITHM ON

THE ARRANGEMENT-STAR NETWORK

The algorithm we present in this paper ASCDEM is based
on the Clustered Dimension Exchange Method CDEM for
load balancing for the Arrangement-Star Interconnection
networks [8].

The main achievement of the new presented ASCDEM is
to obtain even load balancing for the ASn,m,k network by
redistributing the load size to reach an equal load size at each
node within the whole network. The structure of the ASn,m,k

network consists of Sn network as a first level structure of the
hierarchal ASn,m,k network, the first level of Sn consists of n!
Sub-graphs, each sub-graph represented by an Am,k
Arrangement graph. The links and edges between the nodes of
the whole graph have been identified and described in the
above section.

The ASCDEM load balancing algorithm is based on the
following two phases:

٠Phase 1: Distributing the load balancing among all sub-

graphs of the first level hierarchal Sn graph, we Start by
balancing the load of every two nodes via the edges that
connect these sub-graphs within the Star topology structure.
By the end of this phase we guarantee that all sub-graphs will
have almost the same total number of loads since each sub-
graph is represented as if it is a single node of the Star
network structure in the first level hierarchy. It worth to
mention here, that the load within each sub-graph is not sorted
at this stage. To complete this phase we need to make n!/2
parallel redistribution steps of load among every two nodes
via a Star structure edge. But at each of these parallel steps,
there will be an n-1 sequential exchanges for each node with
its n-1 neighbors within the Star structure.

٠Phase 2: Distributing the load size within each sub-graph,

this will the second level of the hierarchal ASn,m,k network,
where each sub-graph is an Arrangement graph representation,
by the end of the phase 1, all sub-graphs will have the same
load size, then by redistributing the load sizes among these
Arrangement graphs, the whole ASn,m,k network will have
almost equal load sizes at each node. This phase requires
m!/2(m-k)! parallel redistribution steps of load among every
two nodes via an Arrangement structure edge. But at each of
these parallel steps, there will be a k*(m-k) sequential
exchanges for each node with its k*(m-k) neighbors within the
Arrangement structure. By the end of this phase, all nodes will
have almost the same load size, the following algorithm in Feg
2 describe the ASCDEM method of load balancing.

ASCDEM algorithm works on redistributing load
balancing among all processors of the network, phase 1 is
done in parallel among all nodes via the Star topological
connections. Then Phase 2 is also done in parallel among all
nodes via the Arrangement topological connections.

٠Phase 1: The load balancing between the processors; sub-
graphes; of Sn based on ASCDEM algorithm is exchanged as
in steps 1 to 14 in parallel, at first step the load exchange will
be between all the processors in which they differ in 1

st

position and 2nd position for all the factor networks of Sn i.e.
Sn -1. Then the same process will be repeated continually until
it reach the neighbours pj that are n positions far away from pi.
By the end of this phase all sub-graphs will have almost the
same total number of load sizes.

Note that n-1 is the number of neighbors of any processor in

Sn:

1. for p = 2; p ≤ n; p++ // Start of phase#1

2.

3. for all neighbour nodes pi and pj which they differ in

1
st
 and p position of Sn do in parallel

4. Give-and-take pi and pj total load sizes of the two

nodes

5. TheAverageLoad pi,j = Floor (Load pi + Load pi)/2

6. if (Totalload pi >= excess AverageLoad pi,j)

7. Send excess load pi to the neighbour node pi

8. Load pi = Load pi – extra load

9. Load pj = Load pj + extra load

10. else

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

208 | P a g e

www.ijacsa.thesai.org

11. Receive extra load from neighbour pj

12. Load pi = Load pi + extra load

13. Load pj = Load pj – extra load

14. Repeat steps (1 to 13) ⌊

 ⌋ times // diameter

of the Star Topology -End of phase#1

15. for p = 1; p ≤ k; p // the k
th

 positions- Start of

phase#2

16. for d = 1; d <k*(m-k+1); d++ // differ of k
th

position

17. for all neighbor nodes pki and pkj which they differ in

exactly one k position of Am,k do in parallel

18. Give-and-take pki and pkj total load sizes of the every

two neighbor nodes where there are differ in exactly

d in their k
th

 position // |ki –kj | = d excluding the

fixed positions

19. TheAverageLoad pki,kj = Floor (Load pki + Load pki)/2

20. if (Totalload pki >= excess AverageLoad pki,kj)

21. Send excess load pki to the neighbour node pki

22. Load pki = Load pki – extra load

23. Load pkj = Load pkj + extra load

24. else

25. Receive extra load from neighbour pkj

26. Load pki = Load pki + extra load

27. Load pkj = Load pkj – extra load

28. Repeat steps (15 to 27) ⌊

 ⌋times // diameter of the

Arrangement topology -End of phase#2

Fig. 2. The ASCDEM load balancing Algorithm

٠Phase 2: The load balancing within the processors of each
sub-graph where each sub-graph is an Am,k network. The
ASCDEM algorithm in steps 15 to 28 performed in parallel, at
first step the load exchange will be between all the processors

in which they differ in exactly one k position for any two
neighboring nodes, which means they are connected via an
Arrangement structure. Then the same process will be

repeated continually all of the ⌊

 ⌋ neighbors. By the end of

this phase all nodes of the network will have almost the same
load size.

15

10

30

8

50

7

ab23

ba21

ab13

ba23

ba13

ab21

40

30

16

20

10

ab12

ba12

ab31

ba32

ba31

12

ab32

Fig. 3. Arrangement-Star graph, AS2,3,2 with initial loads

23

30

22

8

30

7

ab23

ba21

ab13

ba23

ba13

ab21

28

20

28

16

20

ab12

ba12

ab31

ba32

ba31

16

ab32

Fig. 4. Arrangement-Star graph, AS2,3,2 after performing ASCDEM phase 1

Example 1: - To explain the ASCDEM algorithm
presented in Fig. 2, the following example implements the
load balancing algorithm on a ASn,m,k network where n=2,
m=3, and k=2.

Fig. 3 shows the AS2,3,2 network, it consists of two sub-
graphs connected to each other via a Star stricture, each sub-
graph is represented as an Arrangement graph; A3,2 which has
6 processors. The total number of processors in the AS2,3,2

network is twelve. Each node has an original load size
assigned to it and it is represented in the figure inside every
node. Since the degree of AS2,3,2 is 3, it follows that each
node connected to three other direct nodes, two of nodes via
the Arrangement graph edges, and one node via the Star graph
edge.

First we Start by implanting phase 1 of the algorithm by
following the steps 2-12. Fig. 4 shows the new load size for
each node after completing the first phase, edges in bold and
dash lines represent the Star graph structure links, the curve
line is to distinguish between the two Arrangement graphs in
the figure. By the end of this phase, the total load sizes for
each of the two sub-graphs are almost equal.

27

26

26

14

26

14

ab23

ba21

ab13

ba23

ba13

ab21

22

13

22

22

14

ab12

ba12

ab31

ba32

ba31

22

ab32

Fig. 5. Arrangement-Star graph, AS2,3,2 after performing phase 2 where k=1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

209 | P a g e

www.ijacsa.thesai.org

20

24

20

20

24

21

ab23

ba21

ab13

ba23

ba13

ab21

18

17

18

24

18

ab12

ba12

ab31

ba32

ba31

24

ab32

Fig. 6. Arrangement-Star graph, AS2,3,2 after performing phase 2 where k=2

In phase 2 of the algorithm all adjacent nodes which differ
in one and only one of their k position will redistribute their
load balancing equally, this phase is done for each sub-graph
separately and in parallel, at each parallel step, each node do
this redistribution with its neighbors via an Arrangement
graph edges. Figure 5 shows the parallel redistribution of
loads within each Arrangement sub-graph for the first position
where k=1, the dashed lines represent these exchanges
between every two pair of nodes. Figure 6, shows the results
for the k position=2. Figure 7 shows the final redistributed
load size of every node, noting that the second phase of the
algorithm is repeated 3 times; m!/2(m-k)!; to guarantee that
equal distribution is done across the whole network to reach
nodes at diameter distance from each other. Furthermore, all
node exchanges at the same k position are done in parallel.
The final results prove the efficiency of our algorithm where
all nodes’ loads are almost equal.

To present the Arrangement-Star network clearly, figure 8
is an example of this network where we refer to it as AS3,3,2.
The size of the Star is 6 and the each node of the Star is
presented by an Arrangement network of A3,2. The size of each
Arrangement network is also 6 nodes. The total size of the
whole network is 36 nodes as it is obvious from the figure
below that each node is connected other neighboring nodes
based of the properties of the Star and the Arrangement
networks. For example the node abc13 is connected to the two
neighboring nodes; abc12 and abc23; via the Arrangement
graph properties and also it is connected to the two
neighboring nodes; bac13 and cba13; via the Star network
properties.

21

21

21

21

21

21

ab23

ba21

ab13

ba23

ba13

ab21

20

20

20

21

20

ab12

ba12

ab31

ba32

ba31

21

ab32

Fig. 7. Arrangement-Star graph, AS2,3,2 after performing the ASCDEM

algorithm

In the following example we will present the ASCDEM
algorithm behavior on AS3,3,2 described above to give more
details about this algorithm:

Example 2: - To explore the ASCDEM algorithm
presented in Fig. 2 in more details, we present another
Arrangement-Star network to implement the load balancing
algorithm on it. This network is denoted as ASn,m,k network
where n=3, m=3, and k=2.

Fig. 9 shows the Arrangement-Star graph of AS3,3,2
interconnection network, where each node in of the 6 nodes
Star graph is represented by a complete Arrangement network
of A3,2, which consists of 6 nodes. Since the degree of AS3,3,2
is n-1 + k(m-k) which is equal to 4, it follows that each node
connected to four other direct nodes, two of nodes via the
Arrangement graph edges, and two nodes via the Star graph
edge.

First we Start by implanting phase 1 of the algorithm by
following the steps 2-12. Fig. 10 shows the new load size for
each node after completing the first phase. By the end of this
phase, the total load sizes for each of the six sub-graphs are
almost equal. Where each sub-graph is represented by an
Arrangement network of A3,2.

Fig. 11 shows the final load size for each node after
completing the second phase which is also the final phase of
the algorithm. By the end of this phase, the total load size for
each node is almost equal. This proves that our algorithm
works properly and performs the load balancing accurately.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

210 | P a g e

www.ijacsa.thesai.org

abc13
abc12 abc32

abc31

abc21

abc23

cba23
Cba13

cba21 cba12

cba31

cba32

bca23 bca13

bca21

bca12

bca31

bca32

bac31
bac32

bac21

bac12

bac23

bac13

cab31cab32

cab21

cab12

cab23cab13

acb23acb31

acb21

acb13
acb12

acb32

Fig. 8. Arrangement-Star graph, AS3,3,2

6
8

16
6

4

10

48

2 410

6

16
18

14
12

16

20

6
10

8
4

12

2

6
4

10
4

8

2

1830

24 2820

16

abc13
abc12 abc32

abc31

abc21

abc23

cba23
cba13

cba21 cba12

cba31

cba32

bca23 bca13

bca21

bca12

bca31

bca32

bac31
bac32

bac21

bac12

bac23

bac13

cab31cab32

cab21

cab12

cab23cab13

acb23acb31

acb21

acb13
acb12

acb32

Fig. 9. Arrangement-Star graph, AS3,3,2 –Initial state

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

211 | P a g e

www.ijacsa.thesai.org

11
12

11
11

13

10

1111

11 1112

11

10
11

10
12

10

12

10
12

11
11

13

10

11
11

11
12

11

12
1211

11 1111

12

abc13
abc12 abc32

abc31

abc21

abc23

cba23
cba13

cba21 cba12

cba31

cba32

bca23 bca13

bca21

bca12

bca31

bca32

bac31
bac32

bac21

bac12

bac23

bac13

cab31cab32

cab21

cab12

cab23cab13

acb23acb31

acb21

acb13
acb12

acb32

Fig. 10. Arrangement-Star graph, AS3,3,2 – End of phase 1

11
11

11
11

12

11

1111

11 1112

11

11
11

11
11

10

11

11
12

11
11

11

11

11
11

11
12

11

12

1211

11 1111

12

abc13
abc12 abc32

abc31

abc21

abc23

cba23
cba13

cba21 cba12

cba31

cba32

bca23 bca13

bca21

bca12

bca31

bca32

bac31
bac32

bac21

bac12

bac23

bac13

cab31cab32

cab21

cab12

cab23cab13

acb23acb31

acb21

acb13
acb12

acb32

Fig. 11. Arrangement-Star graph, AS3,3,2 End of phase 2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

212 | P a g e

www.ijacsa.thesai.org

V. ANALYTICAL STUDY

In this section we introduce analytical results of the
ASCDEM load balancing algorithm behavior on the
Arrangement-Star network. The following propositions are
summarizing the outcome of this analytical study.

Proposition #1: By performing the first phase of
ASCDEM algorithm, the total number of sequential steps is

equal to the diameter of the Star network which is ⌊

 ⌋.

Since the structure of the Arrangement-Star graph is based
on representing an Arrangement graph as a node within the
Star graph with parallel connectivity within the nodes of the
whole network, ASCDEM algorithm utilizes this feature to
distribute the load sizes among the sub-graphs of the graph;
Arrangement networks; by utilizing the properties of the Star
graph to distribute the loads where the longest length between
any two sub-graphs is equal to the diameter of the Star graph.

Proposition #2: The total number of sequential steps
performed by ASCDEM algorithm in the second phase is
equal to the diameter of the Arrangement network which is

⌊

 ⌋.

As mentioned earlier, the structure of the Arrangement-
Star graph is based on representing an Arrangement graph as a
node within the Star graph. By the Start of phase 2 of the
ASCDEM algorithm, each sub-graph which is represented by
an Arrangement graph will distribute the load sizes among its
nodes distantly from other sub-graphs of the whole graph. To
do this redistribution we need to perform a diameter
sequentially steps to reach the farthest two nodes of the
Arrangement graph.

Proposition #3: To perform the two phases of ASCDEM
algorithm, the total number of sequential steps is equal to:

⌊

 ⌋+ ⌊

 ⌋ where ⌊

 ⌋ is the diameter of the

Arrangement graph and ⌊

 ⌋ is the diameter of the Star

graph.
Propositions number 1 and 2 justifies the outcome

presented in proposition number 3.

Proposition #4: By the end of the first phase of ASCDEM
algorithm, the total number of load sizes at each sub-graph of
the whole network is almost equal.

After the ⌊

 ⌋ exchanges of load sizes which

represent the diameter of the Star graph, every node of the Star
structure will has almost an equal size of load. Furthermore
since each node of the Star structure is represented by a sub-
graph of Arrangement graph structure, then each sub-graph
will have an almost the same size of load. These exchanges are
performed in the first phase of the ASCEDM algorithm.

Proposition #5: By the end of phase 2 of ASCDEM
algorithm, the total number of load sizes at each node of the
whole network is almost equal.

Since phase 1 guarantees equal redistribution of load sizes
among the sub-graphs of the network and by the end of second

phase every sub-graph will redistribute the load size among its
nodes, then each node will have an almost the same size of
load. These exchanges are performed in the second phase of
the ASCEDM algorithm.

Proposition #6: At each sequential step of phase 1 of
ASCEDM algorithm, the total number of parallel exchanges
is:

 where n denotes the n-Star network and m,k

denotes the Arrangement Am,k network.

Since every two nodes of the Star graph exchanges their
load sized at once and the number of nodes of the Star graph is

n!, then there are

 exchanges done in parallel. Also since

every node in the Star graph is represented as an Arrangement
graph, then these exchanges are actually performed within the
nodes of every 2 Arrangement sub-graphs, where the size of

each sub-graph is equal to

 .

Proposition #7: The total number of exchanges performed

by phase 1 of ASCEDM algorithm is equal to

 ⌊

 ⌋ where n denotes the n-Star network and m,k

denotes the Arrangement Am,k network.

By referring to proposition number 6 which explain the
number of parallel exchanges at each sequential step and also
by referring to proposition number 1 which explains the
number of sequential steps of the first phase, it gives a clear
justification of the outcome of this proposition.

Proposition #8: At each sequential step of phase 2 of
ASCEDM algorithm, the total number of parallel exchanges
is:

 where n denotes the n-Star network and m,k

denotes the Arrangement Am,k network.

Since every two nodes of the arrangment graph exchanges
their load sized at once and the number of nodes of the

Arrangement graph is

, then there are

exchanges done in parallel. Also since this occurs at every
representation of a node in the Star graph, then these
exchanges are actually performed n! in parallel, where the Star
graph has n! number of nodes.

Proposition #9: The total number of exchanges performed

by phase 2 of ASCEDM algorithm is equal to

 ⌊

 ⌋ where n denotes the n-Star network and m,k denotes

the Arrangement Am,k network

By referring to proposition number 8 which explain the
number of parallel exchanges at each sequential step and also
by referring to proposition number 2 which explains the
number of sequential steps of the second phase, it gives a clear
justification of the outcome of this proposition.

Proposition #10: The total number of exchanges
performed by the whole algorithm of ASCEDM is equal to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

213 | P a g e

www.ijacsa.thesai.org

 ⌊

 ⌋ +

 ⌊

 ⌋ where n

denotes the n-Star network and m,k denotes the Arrangement
Am,k network

The above equation represents the total summation of
proposition number 7 and proposition number 9.

By utilizing the above propositions to the well known
general equations of latency time, communication cost,
throughput, and processors speed we can extend our study to
present real outcomes and results based on the specifications
of the machines that could be built on the above network and
utilizes the ASCEDM algorithm. We think this will be open
ideas for any future work based on our algorithm.

VI. CONCLUSION

In this research we have investigated and proposed an
algorithm named Arrangement-Star Clustered Dimension
Exchange Method (ASCDEM), the proposed algorithm in
based on the well-known efficient algorithm SCDEM which
was proposed by Mahafza and et al named (CDEM).The main
target of the ASCDEM algorithm is to redistribute the load
balancing among all the processors of the Arrangement-Star
network as evenly as possible. As shown above the algorithm
was able to redistribute the load balance among all the nodes
of the ASn,m,k in an efficient approach.

Furthermore, two detailed examples were conducted and
discussed to explore and explain the two phases of the
ASCDEM algorithm. Also an analytical study was performed
on this algorithm which presents the quantities specifications
of the algorithm. This analytical study could be utilized for
any future work to propose a further performance study on the
proposed algorithm such as: total execution time, efficient load
balancing accuracy, latency, number of communication moves
and complexity speed of the ASCDEM.

REFERENCES

[1] K. Day and A. Al-Ayyoub, “The Cross Product of Interconnection
Networks”, IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 2,
Feb. 1997, pp. 109-118.

[2] S. B. Akers, and B. Krishnamurthy, “A Group Theoretic Model for
Symmetric Interconnection Networks,” Proc. Intl. Conf. Parallel Proc.,
1986, pp. 216-223.

[3] Ayyoub, “The Cross Product of Interconnection Networks”, IEEE Trans.
Parallel and Distributed Systems, vol. 8, no. 2, Feb. 1997, pp. 109-118.

[4] A. Al-Ayyoub and K. Day, “A Comparative Study of Cartesian Product
Networks”, Proc. of the Intl. Conf. on Parallel and Distributed
Processing: Techniques and Applications, vol. I, August 9-11, 1996,
Sunnyvale, CA, USA, pp. 387-390.

[5] Ahmad Awwad, “vertex Product networks”, University of Glasgow,
Computer Science Dept. thesis, 2001.

[6] S. B. Akers, D. Harel and B. Krishnamurthy, “The Star Graph: An
Attractive Alternative to the n-Cube” Proc. Intl. Conf. Parallel
Processing, 1987, pp. 393-400.

[7] K. Day and A. Tripathi, “Arrangement Graphs: A Class of Generalised
Star Graphs,” Information Processing Letters, vol. 42, 1992, pp. 235-
241.

[8] Jehad Al-Sadi, “Implementing FEFOM Load Balancing Algorithm on
the Enhanced OTIS-n-Cube Topology”, Proc. of the Second Intl. Conf.
on Advances in Electronic Devices and Circuits - EDC 2013, 47-5.

[9] G. Marsden, P. Marchand, P. Harvey, and S. Esener, “Optical Transpose
Interconnection System Architecture,” Optics Letters, 18(13), 1993, pp.
1083-1085.

[10] Qin Y, Xiao W, Zhao C (2007), “GDED-X schemes for load balancing
on heterogeneous OTIS networks”, In: ICA3PP, pp 482–492.

[11] Ranka, Y. Won, S. Sahni, “Programming a Hypercube Multicomputer”,
IEEE Software, 5 (5): 69 – 77, 1998.

[12] Zhao C, Xiao W, Qin Y (2007), “Hybrid diffusion schemes for load
balancing on OTIS networks”, In: ICA3PP, pp 421–432

[13] B.A. Mahafzah and B.A. Jaradat, “The Load Balancing problem in
OTIS-Hypercube Interconnection Network”, J. of Supercomputing
(2008) 46, 276-297.

[14] N. Imani et al, “Perfect load balancing on Star interconnection network”,
J. of supercomputers, Volume 41 Issue 3, September 2007. pp. 269 –
286.

[15] K. Day and A. Tripathi, “A Comparative Study of Topological
Properties of Hypercubes and Star Graphs”, IEEE Trans. Parallel &
Distributed Systems, vol. 5.

[16] Kaled Day and Abdel-Elah Al-Ayyoub, “Node-ranking schemes for the
Star networks”, Journal of parallel and Distributed Computing, Vol. 63
issue 3, March 2003, pp 239-250.

[17] I. Jung and J. Chang, “Embedding Complete Binary Trees in Star
Graphs,” Journal of the Korea Information Science Society, vol. 21, no.
2, 1994, pp. 407-415.

[18] Berthome, P., A. Ferreira, and S. Perennes, “Optimal Information
Dissemination in Star and Panckae Networks,” IEEE Trans. Parallel and
Distributed Systems, vol. 7, no. 12, Aug. 1996, pp. 1292-1300.

[19] Mendia V. and D. Sarkar, “Optimal Broadcasting on the Star Graph,”
IEEE Trans. Parallel and Distributed Systems, Vo;. 3, No. 4, 1992, pp.
389-396.

[20] S. Rajasekaran and D. Wei, “Selection, Routing, and Sorting on the Star
Graph,” J. Parallel & Distributed Computing, vol. 41, 1997, pp. 225-33.

[21] A. Al-Ayyoub and K. Day, “The HyperStar Interconnection Network,” J.
Parallel & Distributed Computing, vol. 48, no. 2, 1998, pp. 175-199.

[22] A. Menn and A.K. Somani, “An Efficient Sorting Algorithm for the Star
Graph Interconnection Network,” Proc. Intl. Conf. on Parallel
Processing, 1990, pp.1-8.

[23] P. Fragopoulou and S. Akl, “A Parallel Algorithm for Computing
Fourier Transforms on the Star Graph,” IEEE Trans. Parallel &
Distributed Systems, vol. 5, no. 5, 1994, pp. 525-31.

[24] S. Lakshmivarahan, and S.K. Dhall, “Analysis and Design of Parallel
Algorithms Arithmetic and Matrix Problems,” McGraw-Hill Publishing
Company, 1990.

