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Abstract—The Arrangement-Star is a well-known network in 

the literature and it is one of the promising interconnection 

networks in the area of super computing, it is expected to be one 

of the attractive alternatives in the future for High Speed Parallel 

Computers. The Arrangement-Star network has many attractive 

topological properties such as small diameter, low degree, good 

connectivity, low broadcasting cost and flexibility in choosing the 

desired network size. Although, some of the research work has 

been done on Arrangement-Star network, it still needs more 

investigation and research efforts to explore these attractive 

topologies and utilize it to solve some real life applications. In this 

paper we attempt to fill this gap by proposing an efficient 

algorithm for load balancing among different processors of the 

Arrangement-Star network. The proposed algorithm is named as 

Arrangement Star Clustered Dimension Exchange Method 

ASCDEM presented and implemented on the Arrangement-Star 

network. The algorithm is based on the Clustered Dimension 

Exchange Method (CDEM). The ASCDEM algorithm is shown to 

be efficient in redistributing the load balancing among all 

different processors of the network as evenly as possible. A 

complete detail of this algorithm in addition to examples and 

discussions to explore the benefits of applying this distributed 

algorithm is presented in this paper. Furthermore an analytical 

study on the algorithm is presented and discussed to explore the 

attractive performance of the proposed algorithm. 

Keywords—Interconnection Networks; Topological Properties; 

Arrangement-Star; Load balancing 

I. INTRODUCTION 

The Arrangement-Star network as a case of study on 
vertex product networks [1, 2, 3, 4], it is constructed from the 
cross product of the Star and Arrangement graphs. It has 
shown to have superior topological properties over its 
constituents: the Star and Arrangement graphs [5, 6, 7]. 
Besides having a smaller diameter, node degree, and number 
of links, it has a lower broadcasting cost and more flexibility 
in choosing the desired network size. 

Although some algorithms proposed for the Arrangement-
Star graph such as distributed fault-tolerant routing algorithm 
[5], some of the important problems that the Arrangement-Star 
network still needs more efforts and researchers is the issue of 
load balancing among different processors of this network. 
Since there is no enough research work in literature for 
proposing efficient algorithms for load balancing on the 
Arrangement-Star network. In this research effort we move 
one more step in filling this gap by investigating and 
proposing the ASCDEM algorithm on the Arrangement-Star 

network, the proposed algorithm is based on the CDEM 
algorithm which was able to redistribute the load balance 
among all node of the networks on OTIS-Hypercube network 
as evenly as possible [8]. A reasonable and efficient 
implementation of the ASCDEM algorithm on the 
Arrangement-Star network will make it more attractive for the 
solving real life applications problem. 

This paper is organized as follows: In the next section we 
present the related work on load balancing, section III 
introduces the necessary basic notations and definitions, 
section IV presents the implementation of the ASCDEM 
algorithm on the Arrangement-Star network, furthermore we 
present examples on SCDEM algorithm to explain and explore 
detailed transactions of the algorithm on different 
Arrangement-Star network sizes, section V presents an 
analytical study of the ASCEDM algorithm, finally section VI 
concludes this research work. 

II. BACKGROUND AND RELATED WORK 

Many attractive properties for the Arrangement-Star graph 
have been shown in the literature enabled it to be one of the 
candidate’s networks for the High Speed Parallel Computers 
(HSPC) and a reasonable choice for any real life applications 
[5]. This outcome about Arrangement-Star network has 
motivated us to spend more time and do some research on it 
for some important class of algorithms such as: the load 
balancing because still this networks suffers from shortening 
in number of algorithms for the load balancing problem in 
general and for load balancing problem in specific. This 
algorithm has been studied and proposed for many HSPC 
infrastructures ranging from electronic networks [5] and also 
for Optoelectronic networks [9, 10]. 

The Load balancing algorithm is a famous type of 
problems that is needed by all HSPC infrastructures. The load 
balancing problem have been investigated from many angles 
and point views. As an example on the literature work this 
problem was investigated by the researchers Ranka, Won, and 
Sahni [11], As conclusion of their work they come out with an 
efficient algorithm to be implemented on HSPC called the 
Dimension Exchange Method (DEM) on the hypercube 
topology. This algorithm (DEM) constructed and developed 
by issuing and getting the average load of neighbors’ nodes, 
where the symmetric degree of the hypercube is n, All 
adjacent nodes which are connected on the n

th
 dimension they 

will exchange their task loads to redistribute the task load and 
as evenly as possible, the processor with extra load will share 
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any extra amount of the load to its adjacent neighbor node. 
The DEM algorithm main advantage that it was able to 
redistribute the load balances of processors among all 
neighbors as evenly as possible. Furthermore Ranka and et al 
have enhance the load balance in the DEM algorithm in its 
worst case to achieve log2n on the cube network [11]. 

Zaho, Xiao, and Qin have investigated and proposed 
hybrid structure of diffusion and dimension exchange called 
DED-X which worked in a perfect manner for the load 
balancing algorithm on Optoelectronic networks [12]. The 
DED-X problem main task was to redistribute the load 
balancing between different nodes of the network to three 
different phases. The achieved outcome on Optical Transpose 
Interconnection System networks proved that the 
redistribution of load balance between all nodes of the 
topology was efficient and mostly even. Furthermore the 
reached outcome and the issued results of the simulation from 
Zaho et al of the proposed algorithms on load balancing has 
shown a considerably big improvements in enhancement in 
redistribution the load balancing of the processors of the 
topology [12]. In a different literature and research done by 
Zaho and Xiao they investigated a different algorithm named t 
DED-X for load balancing on homogeneous optoelectronic 
technology and they proposed new algorithm framework, 
Generalized Diffusion-Exchange- Diffusion Method, this 
framework was efficient for the load balancing distribution on 
the Heterogeneous optoelectronic technology [11, 13, 14]. 

On the other hand Zaho, Xiao, and Qin have investigated 
and proved that the efficiency of the new investigated load 
balancing algorithms to be more effective than the X old load 
balancing algorithm [12]. 

The target of this research effort is to investigate a new 
algorithm for the load balancing among the nodes of the 
Arrangement-Star networks named Arrangement Star 
Clustered Dimension Exchange Method (ASCDEM). The 
algorithm is based on the Clustered Dimension Exchange 
Method (CDEM) [13]. 

III. DEFINITIONS AND TOPOLOGICAL PROPERTIES 

During the last two decades a big number of 
interconnection networks for High Speed Parallel Computers 
(HSPC) investigations are proposed in literature [6, 13, 15]. 
As an example one of these networks was the hypercube 
interconnection network [8, 13]. Also a well know example is 
the Star network [6]. Some properties of this network have 
been studied in the literature including its basic topological 
properties, parallel path classification, node connectivity and 
embedding [17, 18, 19, 20]. The authors Akers and 
Krishnamurthy have proved that the Star graph has several 
advantages over the hypercube network including a lower 
degree for a fixed network size of the comparable network 
sizes, a smaller diameter, and smaller average diameter. 
Furthermore they showed that the Star graph is maximally 
fault tolerant edge, and vertex symmetric [6]. 

The major drawback of the Star network is related to its 
scalability problem [21]. The size of the Star network 
increases as a factorial function, and thus grows widely very 
rapidly; for example, the value of 5! is equal to 120 while the 

value of 6! is 720. Until today despite its attractive topological 
properties, the Star graph has not been used in practical 
systems yet because of this problem. 

In an attempt to address this problem in the Star network, 
Day and Tripathi [7] have proposed the Arrangement graph as 
a generalization of the Star graph. The Arrangement graph is a 
family of undirected graphs that contains the Star graph 
family. It slightly brings a solution to the problem of the 
scalability, which the Star graph suffers from (i.e. the problem 
of growth of the number n! of nodes in the n-Star). It also 
preserves all the nice qualities of the Star graph topology 
including, hierarchical structure, vertex and edge symmetric, 
simple shortest path routing and many fault tolerance 
properties [7]. Still a common drawback of the Star and 
Arrangement graphs is the restriction on the number of nodes: 
n! for the Star graph and m!/(m-k)! for the Arrangement graph. 
The set of values of n! (or m!/(m-k)! ) is spread widely over 
the set of integers; so, one will be faced with the choice of too 
few or too many available nodes. 

However, there has been relatively a limited research 
efforts have been dedicated to design efficient algorithms for 
the Arrangement-Star graph including broadcasting [19], 
selection and sorting [20, 22], Fast Fourier Transform [23], 
and Matrix Multiplications [24] and load balancing. In an 
attempt to overcome the load balancing problem we present an 
efficient algorithm for load balancing problem on 
Arrangement-Star graph to redistribute the load balancing 
among all processors of the network as evenly as possible. 

An Arrangement graph is specified by two parameters m 

and k, satisfying 1  k  m. For simplicity let m = {1,2,…,m} 

and  k  = {1,2,…,k}. 

Definition 1: The (m,k)-Arrangement graph Am,k = (V1, E1), 

1  k  m-1 is defined as follows [7]: 

V1= {p1p2 … pkpi  m and pi  pj for i  j }=
m

kP , and  

E1 = (p,q) p and q in V1 and for some i in k , pi  qi and 

pj = qj for j  i}. 

That is, the nodes of Am,k labelled with a unique 

Arrangements of k elements out of m symbols m, and the 
edges of Am,k connect Arrangements which differ in exactly 
one of their k positions An edge of Am,k connecting two 
Arrangements which differ only in position i called an i-edge. 
In this case, p and q are i-adjacent and q is called (i, qi)-
neighbour of p. The (m,k)-Arrangement graph Am,k is regular 

of degree k(m-k) and of size m!/(m-k)!, and diameter 3k/2. 
The (m, m-1)-Arrangement graph Am,m-1 is isomorphic to n-
Star graph Sn [3, 7], and the (m,1)-Arrangement graph is 
isomorphic to the complete graph with m nodes [7]. 

Definition 2: The n-Star graph, denoted by Sn, has n 

nodes each labelled with a unique permutation on  n   = 
{1,…,n}. Any two nodes are connected if, and only if, their 
corresponding permutations differ exactly in the first and one 
other position. 

The diameter, , and the degree, , of the Star graph are as 
follows [6]: 
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, of n-Star graph = 1.5 (n-1)  

, of the n-Star graph = n-1, where n1. 
Definition 3: The Arrangement-Star graph is the cross 

product of the n-Star graph and the (m, k)-Arrangement graph, 

and is given by ASn,m,k = Am,k  Sn such that n1 and 1  k  

m. 

Note that if G1 and G2 are two undirected graphs then for 

any node X = x1, x2 in the cross product graph, G = G1G2, 

has an address consisting of two parts, one coming from G1 

and the other coming from G2. We will denote the earlier part 
by lp(X)=x1 and the later part by rp(X)=x2. 

Figure 1 shows the topology of AS2,3,2 that is obtained from 

the graph product of S2 and A3,2 networks. A node X = u, v in 
AS2,3,2 consisting of two parts, left part coming from the Star 
graph and the right part coming from the Arrangement graph 

(lp and rp). Two nodes X = u, v  and Y =  u , v   are 

connected if, lp(X) = lp(Y) and rp(X) is connected rp(Y) in Am,k 
(in this case X and Y are said Arrangement-connected) or 
rp(X)= rp(Y) and lp(X) is connected lp(Y) in Sn (in this case X 
and Y are said Star-connected). For instance in Figure 1 the 
node ab13 is connected to the node ab12, and the node ab23 is 
connected to the node ba23. 

ab23

ba21

ab13

ba23

ba13

ab21

ab12

ba12

ab31

ba32

ba31

ab32

 
Fig. 1. Arrangement-Star graph, AS2,3,2 

IV. THE IMPLEMENTATION OF THE ASCDEM ALGORITHM ON 

THE ARRANGEMENT-STAR NETWORK 

The algorithm we present in this paper ASCDEM is based 
on the Clustered Dimension Exchange Method CDEM for 
load balancing for the Arrangement-Star Interconnection 
networks [8]. 

The main achievement of the new presented ASCDEM is 
to obtain even load balancing for the ASn,m,k network by 
redistributing the load size to reach an equal load size at each 
node within the whole network. The structure of the ASn,m,k 

network consists of Sn network as a first level structure of the 
hierarchal ASn,m,k network, the first level of Sn consists of n! 
Sub-graphs, each sub-graph represented by an Am,k 
Arrangement graph. The links and edges between the nodes of 
the whole graph have been identified and described in the 
above section. 

The ASCDEM load balancing algorithm is based on the 
following two phases: 

٠Phase 1: Distributing the load balancing among all sub-

graphs of the first level hierarchal Sn graph, we Start by 
balancing the load of every two nodes via the edges that 
connect these sub-graphs within the Star topology structure. 
By the end of this phase we guarantee that all sub-graphs will 
have almost the same total number of loads since each sub-
graph is represented as if it is a single node of the Star 
network structure in the first level hierarchy. It worth to 
mention here, that the load within each sub-graph is not sorted 
at this stage.  To complete this phase we need to make n!/2  
parallel redistribution steps of load among every two nodes 
via a Star structure edge. But at each of these parallel steps, 
there will be an n-1 sequential exchanges for each node with 
its n-1 neighbors within the Star structure. 

٠Phase 2: Distributing the load size within each sub-graph, 

this will the second level of the hierarchal ASn,m,k network, 
where each sub-graph is an Arrangement graph representation, 
by the end of the phase 1, all sub-graphs will have the same 
load size, then by redistributing the load sizes among these 
Arrangement graphs, the whole ASn,m,k network will have 
almost equal load sizes at each node. This phase requires 
m!/2(m-k)! parallel redistribution steps of load among every 
two nodes via an Arrangement structure edge. But at each of 
these parallel steps, there will be a k*(m-k) sequential 
exchanges for each node with its k*(m-k) neighbors within the 
Arrangement structure. By the end of this phase, all nodes will 
have almost the same load size, the following algorithm in Feg 
2 describe the ASCDEM method of load balancing. 

ASCDEM algorithm works on redistributing load 
balancing among all processors of the network, phase 1 is 
done in parallel among all nodes via the Star topological 
connections. Then Phase 2 is also done in parallel among all 
nodes via the Arrangement topological connections. 

٠Phase 1: The load balancing between the processors; sub-
graphes; of Sn based on ASCDEM algorithm is exchanged as 
in steps 1 to 14 in parallel, at first step the load exchange will 
be between all the processors in which they differ in 1

st
 

position and 2nd position for all the factor networks of Sn i.e. 
Sn -1. Then the same process will be repeated continually until 
it reach the neighbours pj that are n positions far away from pi. 
By the end of this phase all sub-graphs will have almost the 
same total number of load sizes. 

Note that n-1 is the number of neighbors of any processor in 

Sn: 

1. for p = 2; p ≤ n; p++    // Start of phase#1 

2.  

3. for all neighbour nodes pi and pj which they differ  in 

1
st
 and p  position of Sn do in parallel 

4. Give-and-take pi and pj total load sizes of the two 

nodes 

5. TheAverageLoad pi,j = Floor (Load pi + Load pi)/2      

6. if ( Totalload pi >= excess AverageLoad pi,j ) 

7.      Send  excess load pi to the neighbour node pi 

8.      Load pi  = Load pi – extra load 

9.      Load pj  = Load pj + extra load 

10.   else 
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11.     Receive extra load from neighbour pj  

12.     Load pi  = Load pi + extra load  

13.     Load pj  = Load pj – extra load 

14. Repeat steps (1 to 13) ⌊
 

 
     ⌋ times  // diameter 

of the Star Topology -End of phase#1 

15. for p = 1; p ≤ k; p // the k
th

  positions- Start of 

phase#2 

16. for d = 1; d <k*(m-k+1); d++    //  differ of k
th

  

position  

17. for all neighbor nodes pki and pkj which they differ  in 

exactly one k position of Am,k do in parallel 

18. Give-and-take pki and pkj total load sizes of the every 

two neighbor nodes where there are differ in exactly 

d in their k
th

 position  // |ki –kj | = d excluding the 

fixed positions 

19. TheAverageLoad pki,kj = Floor (Load pki + Load pki)/2 

20.   if ( Totalload pki >= excess AverageLoad pki,kj ) 

21.      Send  excess load pki to the neighbour node pki 

22.      Load pki  = Load pki – extra load 

23.      Load pkj  = Load pkj + extra load 

24.    else 

25.      Receive extra load from neighbour pkj  

26.      Load pki  = Load pki + extra load  

27.      Load pkj  = Load pkj – extra load 

28. Repeat steps (15 to 27) ⌊
 

 
 ⌋times  // diameter of the 

Arrangement topology -End of phase#2 

Fig. 2. The ASCDEM load balancing Algorithm 

٠Phase 2: The load balancing within the processors of each 
sub-graph where each sub-graph is an Am,k network.  The 
ASCDEM algorithm in steps 15 to 28 performed in parallel, at 
first step the load exchange will be between all the processors

 

in which they differ in exactly one k position for any two 
neighboring nodes, which means they are connected via an 
Arrangement structure. Then the same process will be 

repeated continually all of the  ⌊
 

 
 ⌋ neighbors. By the end of 

this phase all nodes of the network will have almost the same 
load size. 
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Fig. 3. Arrangement-Star graph, AS2,3,2 with initial loads 
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Fig. 4. Arrangement-Star graph, AS2,3,2 after performing ASCDEM phase 1 

Example 1: - To explain the ASCDEM algorithm 
presented in Fig. 2, the following example implements the 
load balancing algorithm on a ASn,m,k network where n=2, 
m=3, and k=2. 

Fig. 3 shows the AS2,3,2 network, it consists of two sub-
graphs connected to each other via a Star stricture, each sub-
graph is represented as an Arrangement graph; A3,2 which has 
6 processors. The total number of processors in the AS2,3,2 

network is twelve.  Each node has an original load size 
assigned to it and it is represented in the figure inside every 
node. Since the degree of AS2,3,2  is 3, it follows that each 
node connected to three other direct nodes, two of nodes via 
the Arrangement graph edges, and one node via the Star graph 
edge. 

First we Start by implanting phase 1 of the algorithm by 
following the steps 2-12. Fig. 4 shows the new load size for 
each node after completing the first phase, edges in bold and 
dash lines represent the Star graph structure links, the curve 
line is to distinguish between the two Arrangement graphs in 
the figure. By the end of this phase, the total load sizes for 
each of the two sub-graphs are almost equal. 
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Fig. 5. Arrangement-Star graph, AS2,3,2 after performing phase 2 where k=1 
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Fig. 6. Arrangement-Star graph, AS2,3,2 after performing phase 2 where k=2 

In phase 2 of the algorithm all adjacent nodes which differ 
in one and only one of their k position will redistribute their 
load balancing equally, this phase is done for each sub-graph 
separately and in parallel, at each parallel step, each node do 
this redistribution with its neighbors via an Arrangement 
graph edges. Figure 5 shows the parallel redistribution of 
loads within each Arrangement sub-graph for the first position 
where k=1, the dashed lines represent these exchanges 
between every two pair of nodes. Figure 6, shows the results 
for the k position=2. Figure 7 shows the final redistributed 
load size of every node, noting that the second phase of the 
algorithm is repeated 3 times; m!/2(m-k)!; to guarantee that 
equal distribution is done across the whole network to reach 
nodes at diameter distance from each other. Furthermore, all 
node exchanges at the same k position are done in parallel. 
The final results prove the efficiency of our algorithm where 
all nodes’ loads are almost equal. 

To present the Arrangement-Star network clearly, figure 8 
is an example of this network where we refer to it as AS3,3,2. 
The size of the Star is 6 and the each node of the Star is 
presented by an Arrangement network of A3,2. The size of each 
Arrangement network is also 6 nodes. The total size of the 
whole network is 36 nodes as it is obvious from the figure 
below that each node is connected other neighboring nodes 
based of the properties of the Star and the Arrangement 
networks. For example the node abc13 is connected to the two 
neighboring nodes; abc12 and abc23; via the Arrangement 
graph properties and also it is connected to the two 
neighboring nodes; bac13 and cba13; via the Star network 
properties. 

21
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Fig. 7. Arrangement-Star graph, AS2,3,2 after performing the ASCDEM 

algorithm 

In the following example we will present the ASCDEM 
algorithm behavior on AS3,3,2 described above to give more 
details about this algorithm: 

Example 2: - To explore the ASCDEM algorithm 
presented in Fig. 2 in more details, we present another 
Arrangement-Star network to implement the load balancing 
algorithm on it. This network is denoted as ASn,m,k network 
where n=3, m=3, and k=2. 

Fig. 9 shows the Arrangement-Star graph of  AS3,3,2 
interconnection network, where each node in of the 6 nodes 
Star graph is represented by a complete Arrangement network 
of A3,2,  which consists of 6 nodes. Since the degree of AS3,3,2  
is n-1 + k(m-k) which is equal to 4, it follows that each node 
connected to four other direct nodes, two of nodes via the 
Arrangement graph edges, and two nodes via the Star graph 
edge. 

First we Start by implanting phase 1 of the algorithm by 
following the steps 2-12. Fig. 10 shows the new load size for 
each node after completing the first phase. By the end of this 
phase, the total load sizes for each of the six sub-graphs are 
almost equal. Where each sub-graph is represented by an 
Arrangement network of A3,2. 

Fig. 11 shows the final load size for each node after 
completing the second phase which is also the final phase of 
the algorithm. By the end of this phase, the total load size for 
each node is almost equal. This proves that our algorithm 
works properly and performs the load balancing accurately. 
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Fig. 8. Arrangement-Star graph, AS3,3,2 
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Fig. 9. Arrangement-Star graph, AS3,3,2 –Initial state 
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Fig. 10. Arrangement-Star graph, AS3,3,2 – End of phase 1 
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Fig. 11. Arrangement-Star graph, AS3,3,2 End of phase 2 
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V. ANALYTICAL STUDY 

In this section we introduce analytical results of the 
ASCDEM load balancing algorithm behavior on the 
Arrangement-Star network. The following propositions are 
summarizing the outcome of this analytical study. 

Proposition #1: By performing the first phase of 
ASCDEM algorithm, the total number of sequential steps is 

equal to the diameter of the Star network which is ⌊
 

 
     ⌋. 

Since the structure of the Arrangement-Star graph is based 
on representing an Arrangement graph as a node within the 
Star graph with parallel connectivity within the nodes of the 
whole network, ASCDEM algorithm utilizes this feature to 
distribute the load sizes among the sub-graphs of the graph; 
Arrangement networks; by utilizing the properties of the Star 
graph to distribute the loads where the longest length between 
any two sub-graphs is equal to the diameter of the Star graph. 

Proposition #2: The total number of sequential steps 
performed by ASCDEM algorithm in the second phase is 
equal to the diameter of the Arrangement network which is 

⌊
 

 
   ⌋. 

As mentioned earlier, the structure of the Arrangement-
Star graph is based on representing an Arrangement graph as a 
node within the Star graph.  By the Start of phase 2 of the 
ASCDEM algorithm, each sub-graph which is represented by 
an Arrangement graph will distribute the load sizes among its 
nodes distantly from other sub-graphs of the whole graph. To 
do this redistribution we need to perform a diameter 
sequentially steps to reach the farthest two nodes of the 
Arrangement graph. 

Proposition #3: To perform the two phases of ASCDEM 
algorithm, the total number of sequential steps is equal to:  

⌊
 

 
   ⌋+ ⌊

 

 
     ⌋  where ⌊

 

 
   ⌋  is the diameter of the 

Arrangement graph and ⌊
 

 
   ⌋  is the diameter of the Star 

graph. 
Propositions number 1 and 2 justifies the outcome 

presented in proposition number 3. 

Proposition #4: By the end of the first phase of ASCDEM 
algorithm, the total number of load sizes at each sub-graph of 
the whole network is almost equal. 

After the ⌊
 

 
     ⌋  exchanges of load sizes which 

represent the diameter of the Star graph, every node of the Star 
structure will has almost an equal size of load. Furthermore 
since each node of the Star structure is represented by a sub-
graph of Arrangement graph structure, then each sub-graph 
will have an almost the same size of load. These exchanges are 
performed in the first phase of the ASCEDM algorithm. 

Proposition #5: By the end of phase 2 of ASCDEM 
algorithm, the total number of load sizes at each node of the 
whole network is almost equal. 

Since phase 1 guarantees equal redistribution of load sizes 
among the sub-graphs of the network and by the end of second 

phase every sub-graph will redistribute the load size among its 
nodes, then each node will have an almost the same size of 
load. These exchanges are performed in the second phase of 
the ASCEDM algorithm. 

Proposition #6: At each sequential step of phase 1 of 
ASCEDM algorithm, the total number of parallel exchanges 
is: 

  

 
 

  

      
 where n denotes the n-Star network and m,k 

denotes the Arrangement Am,k network. 

Since every two nodes of the Star graph exchanges their 
load sized at once and the number of nodes of the Star graph is 

n!, then there are  
  

 
 exchanges done in parallel. Also since 

every node in the Star graph is represented as an Arrangement 
graph, then these exchanges are actually performed within the 
nodes of every 2 Arrangement sub-graphs, where the size of 

each sub-graph is equal to 
  

      
 . 

Proposition #7: The total number of exchanges performed 

by phase 1 of ASCEDM algorithm is equal to 
  

 
 

  

      
 

 ⌊
 

 
     ⌋  where n denotes the n-Star network and m,k 

denotes the Arrangement Am,k network. 

By referring to proposition number 6 which explain the 
number of parallel exchanges at each sequential step and also 
by referring to proposition number 1 which explains the 
number of sequential steps of the first phase, it gives a clear 
justification of the outcome of this proposition. 

Proposition #8: At each sequential step of phase 2 of 
ASCEDM algorithm, the total number of parallel exchanges 
is: 

   
         

 
 where n denotes the n-Star network and m,k 

denotes the Arrangement Am,k network. 

Since every two nodes of the arrangment graph exchanges 
their load sized at once and the number of nodes of the 

Arrangement graph is 
  

      
, then there are  

         

 
 

exchanges done in parallel. Also since this occurs at every 
representation of a node in the Star graph, then these 
exchanges are actually performed n! in parallel, where the Star 
graph has n! number of nodes. 

Proposition #9: The total number of exchanges performed 

by phase 2 of ASCEDM algorithm is equal to 
         

 
    

 ⌊
 

 
   ⌋ where n denotes the n-Star network and m,k denotes 

the Arrangement Am,k network 

By referring to proposition number 8 which explain the 
number of parallel exchanges at each sequential step and also 
by referring to proposition number 2 which explains the 
number of sequential steps of the second phase, it gives a clear 
justification of the outcome of this proposition. 

Proposition #10: The total number of exchanges 
performed by the whole algorithm of ASCEDM is equal to 
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         ⌊

 

 
   ⌋  + 

 

      
  ⌊

 

 
     ⌋  where n 

denotes the n-Star network and m,k denotes the Arrangement 
Am,k network 

The above equation represents the total summation of 
proposition number 7 and proposition number 9. 

By utilizing the above propositions to the well known 
general equations of latency time, communication cost, 
throughput, and processors speed we can extend our study to 
present real outcomes and results based on the specifications 
of the machines that could be built on the above network and 
utilizes the ASCEDM algorithm. We think this will be open 
ideas for any future work based on our algorithm. 

VI. CONCLUSION 

In this research we have investigated and proposed an 
algorithm named Arrangement-Star Clustered Dimension 
Exchange Method (ASCDEM), the proposed algorithm in 
based on the well-known efficient algorithm SCDEM which 
was proposed by Mahafza and et al named (CDEM).The main 
target of the ASCDEM algorithm is to redistribute the load 
balancing among all the processors of the Arrangement-Star 
network as evenly as possible. As shown above the algorithm 
was able to redistribute the load balance among all the nodes 
of the ASn,m,k in an efficient approach. 

Furthermore, two detailed examples were conducted and 
discussed to explore and explain the two phases of the 
ASCDEM algorithm. Also an analytical study was performed 
on this algorithm which presents the quantities specifications 
of the algorithm. This analytical study could be utilized for 
any future work to propose a further performance study on the 
proposed algorithm such as: total execution time, efficient load 
balancing accuracy, latency, number of communication moves 
and complexity speed of the ASCDEM. 

REFERENCES 

[1] K. Day and A. Al-Ayyoub, “The Cross Product of Interconnection 
Networks”, IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 2, 
Feb. 1997, pp. 109-118. 

[2] S. B. Akers, and B. Krishnamurthy, “A Group Theoretic Model for 
Symmetric Interconnection Networks,” Proc. Intl. Conf. Parallel Proc., 
1986, pp. 216-223. 

[3] Ayyoub, “The Cross Product of Interconnection Networks”, IEEE Trans. 
Parallel and Distributed Systems, vol. 8, no. 2, Feb. 1997, pp. 109-118. 

[4] A. Al-Ayyoub and K. Day, “A Comparative Study of Cartesian Product 
Networks”, Proc. of the Intl. Conf. on Parallel and Distributed 
Processing: Techniques and Applications, vol. I, August 9-11, 1996, 
Sunnyvale, CA, USA, pp. 387-390. 

[5] Ahmad Awwad, “vertex Product networks”, University of Glasgow, 
Computer Science Dept. thesis, 2001. 

[6] S. B. Akers, D. Harel and B. Krishnamurthy, “The Star Graph: An 
Attractive Alternative to the n-Cube” Proc. Intl. Conf. Parallel 
Processing, 1987, pp. 393-400. 

[7] K. Day and A. Tripathi, “Arrangement Graphs: A Class of Generalised 
Star Graphs,” Information Processing Letters, vol. 42, 1992, pp. 235-
241. 

[8] Jehad Al-Sadi, “Implementing FEFOM Load Balancing Algorithm on 
the Enhanced OTIS-n-Cube Topology”, Proc. of the Second Intl. Conf. 
on Advances in Electronic Devices and Circuits - EDC 2013, 47-5. 

[9] G. Marsden, P. Marchand, P. Harvey, and S. Esener, “Optical Transpose 
Interconnection System Architecture,” Optics Letters, 18(13), 1993, pp. 
1083-1085. 

[10] Qin Y, Xiao W, Zhao C (2007), “GDED-X schemes for load balancing 
on heterogeneous OTIS networks”, In: ICA3PP, pp 482–492. 

[11] Ranka, Y. Won, S. Sahni, “Programming a Hypercube Multicomputer”, 
IEEE Software, 5 (5): 69 – 77, 1998.  

[12] Zhao C, Xiao W, Qin Y (2007), “Hybrid diffusion schemes for load 
balancing on OTIS networks”, In: ICA3PP, pp 421–432 

[13] B.A. Mahafzah and B.A. Jaradat, “The Load Balancing problem in 
OTIS-Hypercube Interconnection Network”, J. of Supercomputing 
(2008) 46, 276-297. 

[14] N. Imani et al, “Perfect load balancing on Star interconnection network”, 
J. of supercomputers, Volume 41 Issue 3, September 2007. pp. 269 – 
286. 

[15] K. Day and A. Tripathi, “A Comparative Study of Topological 
Properties of Hypercubes and Star Graphs”, IEEE Trans. Parallel & 
Distributed Systems, vol. 5. 

[16] Kaled Day and Abdel-Elah Al-Ayyoub, “Node-ranking schemes for the 
Star networks”, Journal of parallel and Distributed Computing, Vol. 63 
issue 3, March 2003, pp 239-250. 

[17] I. Jung and J. Chang, “Embedding Complete Binary Trees in Star 
Graphs,” Journal of the Korea Information Science Society, vol. 21, no. 
2, 1994, pp. 407-415. 

[18] Berthome, P., A. Ferreira, and S. Perennes, “Optimal Information 
Dissemination in Star and Panckae Networks,” IEEE Trans. Parallel and 
Distributed Systems, vol. 7, no. 12, Aug. 1996, pp. 1292-1300. 

[19] Mendia V. and D. Sarkar, “Optimal Broadcasting on the Star Graph,” 
IEEE Trans. Parallel and Distributed Systems, Vo;. 3, No. 4, 1992, pp. 
389-396. 

[20] S. Rajasekaran and D. Wei, “Selection, Routing, and Sorting on the Star 
Graph,” J. Parallel & Distributed Computing, vol. 41, 1997, pp. 225-33. 

[21] A. Al-Ayyoub and K. Day, “The HyperStar Interconnection Network,” J. 
Parallel & Distributed Computing, vol. 48, no. 2, 1998, pp. 175-199. 

[22] A. Menn and A.K. Somani, “An Efficient Sorting Algorithm for the Star 
Graph Interconnection Network,” Proc. Intl. Conf. on Parallel 
Processing, 1990, pp.1-8. 

[23] P. Fragopoulou and S. Akl, “A Parallel Algorithm for Computing 
Fourier Transforms on the Star Graph,” IEEE Trans. Parallel & 
Distributed Systems, vol. 5, no. 5, 1994, pp. 525-31. 

[24] S. Lakshmivarahan, and S.K. Dhall, “Analysis and Design of Parallel 
Algorithms Arithmetic and Matrix Problems,” McGraw-Hill Publishing 
Company, 1990. 

 


