
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 9, 2016

99 | P a g e

www.ijacsa.thesai.org

High Performance Computing Over Parallel Mobile

Systems

Doha Ehab Attia

Department of Computer Science

Faculty of Computers and

Information,

Cairo University

Cairo, Egypt

Abeer Mohamed ElKorany

Department of Computer Science

Faculty of Computers and

Information,

Cairo University

Cairo, Egypt

Ahmed Shawky Moussa

Department of Computer Science

Faculty of Computers and

Information,

Cairo University

Cairo, Egypt

Abstract—There are currently more mobile devices than

people on the planet. This number is likely to multiply many

folds with the Internet of Things revolution in the next few years.

This may treasure an unprecedented computational power

especially with the wide spread of multicore processors on mobile

phones. This paper investigates and proposes a new methodology

for mobile cluster computing, where multiple mobile devices

including their multicore processors can be combined to perform

possibly massively parallel applications. The paper presents in

details the steps for building and testing the mobile cluster using

the proposed methodology and proving the successful

implementation.

Keywords—Parallel computing; High-performance computing;

Mobile computing; Cluster computing; Android OS

I. INTRODUCTION

The International Telecommunication Union (ITU)
estimates that by the end of 2016 there will be almost 7.3
billion mobile subscriptions [1], which is equivalent to 95
percent of the world population. The number of mobile
broadband subscriptions is also rising significantly due to the
ever increasing popularity of mobile devices (e.g.,
smartphones, tablets, notebooks, iPads, etc.) with an estimate
that the number of subscribers will reach 2.3 billions globally
by the end of 2016.

Another important prediction is that the number of mobile
devices per capita, already increasing significantly, is expected
to reach 1.5 by 2020 [2]. These numbers and predictions
understandably made the mobile communications one of the
fastest growing fields of technology. Many people are starting
to depend on their smartphones as a primary and, sometimes,
only computing device. The constant development in the
capabilities of mobile devices enabled those devices to be in
some cases an adequate replacement for traditional computers
where it can compute with comparable performance.

With both the rapidly growing capabilities and wide spread
of mobile devices, the authors expect further growth of using
mobile devices in general and smartphones in particular for
more performance-intensive computing tasks that were
previously handled by traditional computers. To deal with this
tidal wave of high-performance applications the quality of
experience on devices based on single core CPUs rapidly
degrades when users run several applications concurrently, or
run performance-intensive applications. Therefore, smartphone

industry transitioned to multicore CPUs to cope with the
performance challenges. The availability of multicore mobile
devices makes them a prime candidate for parallel computing
applications. Similar to what happened with traditional
computers, the authors expect another extension of mobile
parallel computing to include multi-node High Performance
Computing (HPC) clusters.

Another critical factor to consider is the underutilization of
mobile devices compared with the energy consumed. Most
mobile computing and communication devices recharge their
batteries because of the power leakage and the power
consumed just to keep the devices on, without actual use. This
observation applies more to the corporate mobile systems. This
was another motivation for both the research community and
industry to develop solutions to use the wasted energy in
distributed mobile systems for larger combined computational
power. For example, HTC and Samsung recently launched
mobile applications (HTC Power to Give [3] and Samsung
Power Sleep [4]) to enable smartphone owners to contribute
unused computational power in mobile grids.

Using smartphones as a portable high performance
computing infrastructure can be beneficial in many ways:

 Situations where access to HPC machines is non-
existent and the only means for accomplishing
resource-intensive computations are mobile devices.
Those situations turned out to be widely spread in many
military as well as civilian applications.

 Performance and energy-efficiency gains. By splitting
the processing among several devices. This will, not
only speed up the processing, but will also distribute the
battery drain across all devices. Several solutions have
been proposed to enhance the CPU performance [5], [6]
and to manage the disk and screen in an intelligent
manner to reduce power consumption [7], [8].
However, these solutions require changes in the
structure of mobile devices, or they require a new
hardware that results in cost increase and may not be
feasible for all mobile devices. But distributing the
workload over a large number of processors may reduce
the power consumption of each device separately.

 Using the mobile cluster for educational purposes by
creating an on spot parallel computing cluster using the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 9, 2016

100 | P a g e

www.ijacsa.thesai.org

available smartphones in the classroom, especially
when obtaining HPC machinery for education purposes
is not feasible or possible.

 Another usage for the smartphone-based computing
infrastructure is that an enterprise could benefit from
significant energy savings and better operation by
offloading tasks to clusters of smartphones and
converging the clusters to the larger cloud.

Based on the above introduction and motivation, the
research team investigated a solution based on developing a
portable parallel computing cluster made of available
smartphones. A key point is that the cluster uses standard
parallel computing languages and techniques to facilitate the
migration between the developed solution and standard HPC
systems and clouds. Therefore, the solution is entirely based on
standard C programming with Message Passing Interface
(MPI).

The rest of the paper is organized as follows: Section 2
reviews the previous approaches identifying the shortcomings
of each, which lead to the current research. Section 3, describes
the details of building the proposed solution. Testing and
evaluation of the developed mobile cluster are introduced in
Section 4. Finally, Section 5 provides the conclusions and
potential future applications.

II. PREVIOUS APPROACHES

There have been several parallel processing attempts on
mobile devices, specifically on smartphones. In 2008 Daniel
Doolan, Sabin Tabirca, and Laurence Yang implemented an
MPI library on a Bluetooth network in a Java based
environment [9]. The authors of the current paper attempted
reproducing the reported Bluetooth cluster as described in the
paper with no success. Despite the failure to replicate, we have
three reservation on the published work today: (1) Doolan et al.
reportedly redefined the MPI library to fit with the Bluetooth
network. Hence, the MPI implementation is no longer standard
to fit, and integrate, with other cross-compiled MPI systems,
(2) The Java-based environment is on the decline [10] which
makes the resulting cluster based on outdated technology, and
(3) Typical HPC software systems are not developed with Java
due to the virtual machine nature preventing full performance
control.

Another attempt was carried out by Hinojos et al. [11]. The
project is named BlueHoc, a system that enables distributed
computation on Android smartphones via Bluetooth networks.
It was designed for military fields where there might be no
access to a fixed computing infrastructure. MPI was not used
for the parallel programming on the BlueHoc system. An
alternate approach was developed using the radio frequency
communication (RFCOMM) protocol. This is clearly a
nonstandard HPC programming library which, again, impedes
the integration of parallel mobile systems into clouds and fixed
HPC infrastructures.

Felix Büsching, Sebastian Schildt, and Lars Wolf
developed another approach titled DroidCluster, based on
installing Debian ARM on the SD card of a smartphone rather
than direct Android programming. Their published paper lists a

number of potential applications of portable clusters and uses
the LINPACK benchmark to test the cluster performance [12].

In 2013 Chien-Chung Wu and Juyn-Jie Huang published a
study implementing Android parallel programming based on
the dual-core Cortex A9 [13]. This study focused on single
node multicore programming with OpenMP rather than cluster
computing with MPI.

Finally, Iulian Vîrtejanu and Costică Nitu developed a
mobile cluster based on cross compiling the MPICH2 library
for Android phones. The paper does not mention the
communication protocol used to form the mobile cluster (e.g.
ssh). Also, the detailed steps for cluster building were not
mentioned [14].

III. CLUSTER BUILDING

A. Software

In July 2016, Android's market share was 66.01%,
exceeding all other smartphone's operating systems [10]. The
availability of Android phones was not the only reason for
choosing it for building our mobile cluster. The fact that
Android is open source, Linux-based operating system allowed
us to assume that all Linux applications can be easily ported to
Android mobile devices. But that was proven incorrect. While
Android is Linux-based it does not fully utilize the standard
Linux kernel. Because Linux is open-source, the Android
developers modified the Linux kernel to fit their needs
[11][16]. There are some major differences between Android
and Linux. For example, some of the standard GNU libraries
are not included in Android. It does not rely on the GNU libc,
for instance; it uses bionic instead [11].

Bionic is a C library that is not only much smaller in size
than the GNU libc but also has less memory requirements. This
means one cannot simply run Linux applications and libraries
on Android [11]. For example, one of the libraries that cannot
be directly ported to Android is the Message Passing Interface
(MPI) library. MPI is an open source, portable library used in
high-performance computing for message passing between
parallel computing nodes. In order to build an MPI-based
mobile cluster, we had to cross compile an MPI version with a
library other than Bionic because Bionic does not support the
full C/C++ standard [11]. In the current research project, the
authors have chosen to cross compile and statically link
MPICH which is a freely available implementation of the MPI
standard to the Uclibc library.

Uclibc is a C library that is smaller in size than glibc; it was
intended for Linux-based embedded systems [17]. A Uclibc
based GNU toolchain was generated for the ARM architecture,
the processor's architecture of the devices used in the current
research. The authors used Buildroot, an open source tool to
generate embedded Linux systems [18], to generate the
required toolchain for the ARM architecture. In addition, The
research team used the Android Debug Bridge (ADB) tool to
access the used smartphone's shell. Finally, The researchers
had to unlock the bootloader of the Android devices used in the
experiment to enable access to the devices with root-level
permission as a super user.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 9, 2016

101 | P a g e

www.ijacsa.thesai.org

B. Hardware

Table I shows the hardware specifications for each of the
two devices used in building the mobile cluster.

TABLE I. HARDWARE SPECIFICATIONS

specifications
Devices used

Device 1 Device 2

Number of cores 4 (1.2GHz) 2(1.5GHz)

Operating system Android™ 4.4.2 Android™ 4.1.1

RAM 1GB 1GB

ROM 8 GB 8 GB

C. The steps for building a cluster of Android devices

1) Generate the toolchain. After downloading Buildroot

software, go to the Buildroot directory and use make

menuconfig command to open Buildroot configuration tool.

After choosing the suitable configuration options, start the

building process using make command. The Output will be

found in '/PathToBuildroot/output/host/usr/bin' directory.

2) Compile MPICH for the ARM architecture. After

downloading MPICH, create a new folder with the name

“build”. Then use the following command to statically build

MPICH (from the MPICH directory):

./configure –prefix=/mpich/build/

CC=/PathToBuildroot/output/host/usr/bin/arm-buildroot-

linux-uclibcgnueabi-gcc

CFLAGS="-I/PathToBuildroot/output/host/usr/include/ "

LDFLAGS="-L/PathToBuildroot/output/host/usr/lib/ " --

host=arm-linux --disable-shared --enable-static –disable-

fortran.”

3) Use /mpich/build/bin/mpicc command to compile your

C code. e.g.: /mpich/build/bin/mpicc -o myCode mycode.c

Then copy the generated “myCode” file to each device /data

directory.

4) Change /system/etc/hosts file on each device to contain

all IP addresses. Any file explorer application that requires

root permission can be used. The hosts file should look like

this:

10.0.0.1 localhost

10.1.1.1 hostname1

10.2.2.2 hostname2
NOTE: The default hostname ”localhost” was changed on

all devices and each device was give a distinct hostname.

5) Copy the files in the generated /mpich/build/bin

directory to each device in /system/xbin directory.

The files can be copied from your computer to the mobile

phones using ADB. Connect your phone to the computer, open

the terminal and run:

adb push -p /mpich/build/bin /system/xbin
In case that „Read-only file system‟ message appears you

can mount your system to read/write by running the following
commands from your terminal: type adb shell, the phone's
terminal will open. Then type su command to have super user

permissions. By using the following command mount -o rw,
remount /system you should be able to copy the files.
In case that „permission denied‟ message appears:
Run chmod 777 /system on the phone's terminal.
Now MPICH should be running on the device to test it you can
run the following command from the phone terminal:
mpiexec -n 1 /data/myCode.

6) Setup ssh for communication between devices. First

you have to download ssh server for your Android phones. In

our case we used Android ports “Unix command line packages

built for Android”. Use the mobile device's shell to run this

command:
opkg install dropbear openssh. Then generate public and

private key pairs in //.ssh/id_rsa (in system(root)) using this
command /data/local/bin/ssh-keygen -t rsa. After copying the
public key to the other phone //.ssh/authorized_keys (if the file
does not exist, create it). Start dropbear on all devices by
running: /data/local/bin/dropbear. Then Check that ssh is
working by trying this command /data/local/bin/ssh
root@ipaddress.

NOTE: The hotspot was enabled on one of the devices and
the other devices connected to it without being connected to
the Internet just to create a local network.

IV. TESTING AND EVALUATION

A matrix multiplication program was developed to test the
mobile cluster. The cluster was tested by executing a sequential
version of the program on a single device. Then multiple
parallel versions with a different number of processors were
executed on the mobile cluster. Finally, we compared the
execution time of all the runs.

The following is the pseudocode of the matrix
multiplication program that was executed on the developed
mobile cluster

Set the matrix size

If rank equal zero

Initialize the two matrices

Distribute the matrices based on the matrix size and the

number of processes

If rank greater than zero

Multiply the assigned part of the matrix based on the

process number

 Send the process result

If rank equal zero

Receive/collect results from other processes

Table II shows the results of running the matrix
multiplication code using square matrices of increasing sizes.

The table contains the time taken in seconds to execute a
matrix multiplication C code using one processor on device1
then using four processors on device one then using six
processors on device one and device two.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 9, 2016

102 | P a g e

www.ijacsa.thesai.org

TABLE II. THE RESULTS OF RUNNING MATRIX MULTIPLICATION CODE

ON MOBILE CLUSTER

Matrix

Dimensions

Number of processes

1 4 6

200*200 1.136 0.552 2.082

400*400 7.452 3.296 5.802

600*600 27.03 9.686 11.962

800*800 68.194 25.652 34.436

1000*1000 136.152 49.192 56.168

2000*2000 1120.506 479.924 385.81

3000*3000 3994.886667 2231.788 1706.038

4000*4000 13107.08667 6638.176667 4844.5725

5000*5000 23148.62333 13920.55667 9351.23

Fig 1. illustrates the results. It shows that when the matrix
size was small, the run time for the program was almost the
same on single core and multiple cores. As the matrix size
increase, the time taken increased dramatically on the single
core, a clear indication of the need for extra computational
power to cope with the growing problem size. As the number
of processors increases the execution time decreases.

Fig. 1. The result of running matrix multiplication on mobile cluster

V. CONCLUSIONS AND POTENTIAL APPLICATIONS

A. Conclusions

The results show that using a cluster of smartphones as a
high performance computing infrastructure is possible and can
be in some cases an adequate alternative to the traditional
cluster. It can also open the way to a plethora of new
applications where the computational power of the
smartphones are used to their fullest potential.

We also found some limitations in the mobile cluster, one
of which is that the nodes of the cluster are constantly moving
which means that some nodes may leave the cluster before
finishing the job. Another limitation is that nodes of the cluster
have to be predefined, the IP address of each node has to be
mentioned in the hosts file before executing any job on the
cluster.

B. Potential applications

In addition to the previously identified applications in the
literature [12], the current research authors suggest and plant to
work on the following potential applications:

 Personal identification by parallel biometrics computing
using mobile devices. To overcome the limitations of
the existing password-based authentication services on
the Internet, we integrate personal features (ex:
fingerprints, palmprints, hand geometry and face) into a
hierarchical structure for fast and reliable personal
identification and verification. To increase the speed
and flexibility of the process, mobile devices can be
used as a tool for parallel implementation in a
distributed environment. The benefit of using a
corporate or cloud mobile cluster for this application is
two-fold. On one hand, it is increased security with
distributed verification and manipulation of biomarkers.
On the other hand, the use of parallel mobile clusters
saves energy, computational resources, and
consequently operation cost due to the saving of no
longer needed dedicated infrastructure.

 Distributed key agreement. Securing the access to
certain files/ places within the same institution by
distributing the access key over different mobile nodes.
The dynamic re-allocation of the access keys serves like
the multiple keys safes to increase the security and
enables the tracking of intrusion. This highly optimizes
cloud security.

 Field data collection and processing. Capture, process
and share data in places (such as military fields,
agriculture fields, desert and geological excavations and
navigations, etc.) where access to HPC (high
performance computing) machines is non-existent. The
utilization of the processing power of available devices,
dynamic, mobile, ad hoc clusters can be used for the
initial data collection and preprocessing. This may
reduce or eliminate the need for data and program
transmission.

 Video and image understanding applications.

ACKNOWLEDGMENT

The research team acknowledges the use and contribution
of the HiPer-FC cluster and HPC group at the faculty of
computers and information, Cairo Uuniversity.

REFERENCES

[1] Statistics. (2016). ITU. Retrieved 30 August 2016, from
http://www.itu.int/en/ITUD/Statistics/Pages/stat/default.aspx

[2] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2015–2020 White Paper. (2016). Cisco. Retrieved 31 August
2016, from http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/mobile-white-paper-c11-
520862.html

[3] HTC Power To Give | HTC United States. (2016). HTC. Retrieved 30
August 2016, from http://www.htc.com/us/go/power-to-give/

[4] Power Sleep - DO GOOD WHILE YOU SLEEP. (2016). Samsung.com.
Retrieved 30 August 2016, from
http://www.samsung.com/at/microsite/powersleep/en/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 9, 2016

103 | P a g e

www.ijacsa.thesai.org

[5] Kakerow R. “Low power design methodologies for mobile
communication”, In Proceedings of IEEE International Conference on
Computer Design: VLSI in Computers and Processors, 2003; 8.

[6] Paulson LD. “Low-power chips for high-powered handhelds”. IEEE
Computer Society Magazine 2003; 36(1): 21.

[7] Davis JW. “Power benchmark strategy for systems employing power
management”, In Proceedings of the IEEE International Symposium on
Electronics and the Environment, 2002; 117.

[8] Mayo RN, Ranganathan P. “Energy consumption in mobile devices: why
future systems need requirements aware energy scale-down”, In
Proceedings of the Workshop on Power-Aware Computing Systems,
2003.

[9] D. Doolan, S. Tabirca and L. Yang, "MMPI a message passing
interface for the mobile environment", Proceedings of the 6th
International Conference on Advances in Mobile Computing and
Multimedia - MoMM '08, 2008.

[10] "Operating system market share", Netmarketshare.com, 2016. [Online].
Available: https://www.netmarketshare.com/operating-system-market-
share.aspx?qprid=9&qpcustomb=1.

[11] G. Hinojos, C. Tade, S. Park, D. Shires, and D. Bruno, “Bluehoc:
Bluetooth ad-hoc network android distributed computing”, Int. Conf. on

Parallel and Distrib. Process. Tech. and Appl.(PDPTA), pp.468-473,
2013.

[12] F. Busching, S. Schildt, and L. Wolf, “DroidCluster: Towards
Smartphone Cluster Computing The Streets are Paved with Potential
Computer Clusters”, In Distributed Computing Systems Workshops
(ICDCSW), pp.114-117, 2012.

[13] C. Wu and J. Huang, "The Study of Android Parallel Programming
Based on the Dual-Core Cortex-A9", 2013 Ninth International
Conference on Intelligent Information Hiding and Multimedia Signal
Processing, 2013.

[14] I. VÎRTEJANU and C. NIŢU, "Programming distrinuted applications
for mobile platforms using MPI", U.P.B. Sci. Bull., vol. 75, no. 4, 2013.

[15] "Bionic (software)", Wikipedia, 2016. [Online]. Available:
https://en.wikipedia.org/wiki/Bionic_(software).

[16] W. Project!, "Android Open Source Project", Source.android.com,
2016. [Online]. Available: https://source.android.com/.

[17] "uClibc", Uclibc.org, 2016. [Online]. Available: https://www.uclibc.org/.

[18] "Buildroot - Making Embedded Linux Easy", Buildroot.org, 2016.
[Online]. Available: https://buildroot.org/.

