
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

An IoT Middleware Framework for Industrial
Applications

Nicoleta-Cristina Gaitan1,2, Vasile Gheorghita Gaitan1,2, Ioan Ungurean1,2
1Faculty of Electrical Engineering and Computer Science, 2Integrated Centre for Research, Development and Innovation in

Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD)
Stefan cel Mare University of Suceava, Romania

Abstract—Starting from the RFID and the wireless sensor
networks, the Internet of connected things has attracted the
attention of major IT companies and later, of the industrial
environment that recognized the concept as one of their key axes
for future growth and development. The implementation of IoT
in the industrial environment raises some significant issues
related to the diversity of fieldbuses, the large number of devices
and their configuration. The requirements related to reliability,
security and real-time are very important. This paper proposes
an industrial IoT and communications at the edge framework
which has some outstanding features related to: the easy
integration of fieldbuses and devices used in industrial
environments with automatic configuration features, integration
of multiple middleware technologies (CORBA, OPC and DDS),
the uncoupling of the industrial activity from the publishing data
on the Internet, security at different levels of the framework.
Another important feature of the proposed framework is that it
is based on mature standards and on open source or public
implementations of these standards. The framework is modular,
allowing the easy integration of new fieldbus protocols,
middleware technologies and new objects in the client
application. This paper is focused mainly on CORBA and DDS
approaches.

Keywords—Internet of Things; Middleware; CORBA; ACE
ORB (TAO); Data Distribution Service

I. INTRODUCTION
KEVIN Ashton, from the MIT Auto-ID Center, was the

first who proposed the term "Internet of Things" (IoT),
referring to the connection between the information provided
by radio frequency identifiers (RFID) and the Internet [1].
Quickly, the interest in the Internet of connected things caught
the attention of governments and IT companies which have
recognized the concept as one of the key axes for their future
growth and development [2]. An increasingly accepted
definition of the IoT was provided in [3]. In this definition, the
emphasis is placed on virtual and physical “things” which: use
intelligent interfaces; are fully integrated into an information
network; have identifiers, physical attributes, and virtual
personalities using a global infrastructure network with
dynamic configuration (mobile), auto-configuration facilities,
and interoperable communication protocols.

The potential growth of IoT technologies has led to
increased interest in their use in various industries, where
devices, machines, sensors, or simple things communicate with
each other using standard Internet technologies [4]. It can be
stated that the real value of the Industrial IoT (IIoT) is the

availability of ubiquitous information and consequently, the
decisions that can be made from it. An IIoT platform must
validate the sharing of dispersed and ubiquitous data in an
efficient and timely way for the web, cloud, desktop,
embedded, and mobile applications. Therefore, IIoT can be
defined [5] as the connection between the sensors from the
physical world, devices and machines on the Internet and, by
applying a thorough analysis using the software, the
transformation of massive data into powerful insight, and
intelligence.

It is becoming increasingly clear that the industry needs a
functional and useful architecture for the Industrial Internet of
Things (IIoT), which should include the recent progresses and
novelty technologies in the field. Such an architecture should
be easily understood and, at the same time, complete. Most
projects and specialized literature are focused on how "things"
can be converted so that they can be connected to the Internet
through the addition of intelligence and connectivity, for
instance by using the RFID technology for things/objects in
everyday life [6][7]. Beside the RFID technology, they also
take into account the wireless sensor networks. These
architectures can be found in [8][9][10][11][12]. An important
issue of this solution is security [13].

Although the issues listed above are essential for the IoT, it
can be considered that in addition of RFID, wireless
communication, sensors and actuators as IoT things, it can be
added devices and machines with wired communication in
order to define IIoT things. Furthermore, it can be pointed out
that industrial automation involves difficult requirements
regarding communication and the ensuring security and
reliability. These requirements must be met by IIoT from the
beginning. Currently, the implementation and operation of the
complex production processes or of the Internet applications
(Internet-enabled) requires time and a manual network setup
that is susceptible to errors. This situation is generated by the
need to ensure a high level of determinism, safety, and security
during the production process and to avoid both critical
security failures and costly production interruptions. These
objectives should be IIOT-specific, including a high level of
automation for the network configuration processes (including
the fieldbuses pertaining to the industrial environment).

In this paper, it is proposed an IIoT framework organized
on three levels, based on the three observations outlined above
(italic): the device that integrates the hardware (sensors,
actuators, RFID) in order to sense/control the physical world
and to acquire data, middleware for data transport and an

31 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

application which provides the means to interact with the user
and other IoT applications [14]. The proposed framework can
be the edge that bridges the information technologies and
world of things, where the available resources in the cloud
cannot be directly accessed [14]. In this case, the operational
technologies are the fieldbuses with their features that
represents additional challenges. At the low level, the
framework understands different network topology, and data
protocols that will be found into the world of things. This
contains solutions for automatically discovery and
identification of the real industrial things, data associated and
to be able to perform storage at high-frequency updates. At the
high level, the framework collects the data and sent it to the
cloud via IIoT standards. In the CISCO visions [15], the
framework represents the Edge Computing (that is also called
Fog Computing).

The framework is in accordance with the IIoT definition
which was presented previously. The solution uses OPC (Open
Platform Communication) [16], OPC .NET [16], OPC UA
[16], TAO [17] and DDS (Data Distribution Service) standard
[18][19] are used as middleware (an important component in
IIoT) in order to show the data at enterprise level and DDS for
the external enterprise interoperability. This article mainly
takes into account the implementations based on TAO and
DDS. In the process of defining the framework, three great
challenges arise: (i) the large number of fieldbuses, description
of devices and automatic configuration; (ii) middleware choice
and provision of real-time services; and (iii) separation of the
industrial activity from the operations, for the sake of data
publication and subscription on the Internet, and incorporation
of different types of technology. The proposed framework can
be used in smart factory but the utilisation can be extended for
smart home, smart buildings, smart living, and smart city.

Furthermore, this paper is organized as follows: Section II
briefly presents different architectures proposed for the use of
IoT in industry. Section III presents our proposal for an IoT
based on TAO for the industry field. Section IV presents the
test performed in order to compare the bandwidth used by a
TAO-based server with one based on OPC DA, OPC UA and
OPC.NET in a local network. Section V presents a comparison
between TAO/OpenDDS and OPC UA as support for IIoT.
The final conclusions are drawn in Section VI.

II. RELATED WORK OF THE INDUSTRIAL IOT
ARCHITECTURE

When a new IIoT architecture and a practical
implementation are proposed, a natural question which arises
is: what are the existing solutions? The literature specialised in
the field is very poor in such solutions because IIoT is at the
beginning. A courageous attempt is made in [20]. The authors,
relying on a rich bibliography, tried to understand the current
status and the future research opportunities related to the use of
the IoT concept in industry. Only Section V strictly refers to
the applications of IoT in industry, fields such as healthcare
service, food supply chain, transport and logistics, and
firefighting, which are more in the field of services and
infrastructure and not industry, are being taken into account.
The only industrial sector already addressed is mining
production [21][22]. Our bibliographic studies have led to

similar conclusions. There are few articles related to IIoT and
those are strictly focused on specific applications. In what
follows, we will briefly present some concerns present at
institutional level or which are covered by research projects.

In Germany, the IoT is associated with the field of
production and logistics through the term "Industry 4.0"[23],
and the grounds are being prepared for a new social and
technological revolution which will drastically change the
whole industrial environment. Industry 4.0 is a sophisticated
change of the entire chain of values: communication, planning,
logistics, and production. Due to the success it recorded in the
fields of information and communication technologies (ICT)
(currently 90% of all manufacturing processes are already
supported by ICT) and embedded systems, (strong autonomous
microcomputers) either connected to each other or to the
Internet, wired or wireless, it will lead to a convergence
between the physical and the virtual (cyberspace) world. This
convergence takes the form of a Cyber- Physical Systems
(CPS), term used international to describe Industry 4.0 concept.
With the development of IPv6 standards, there are now enough
addresses to allow, for the first time, the networking of
resources, information, objects, and people, in order to create
the Internet of Things and Services. The proposed architecture
is set on four levels (from bottom to top): Internet of Things,
Internet-based System & Service Platforms, Internet of
Services and Applications. More details can be found in [23].

Another interesting research project in the IIoT field is the
IoT@Work [24]. The project focuses on the exploitation of IoT
technologies in the industrial and automation sectors. The
architecture proposed in this project has five horizontal levels
and three vertical planes. The horizontal levels refer to:
Field/Control Infrastructure & Network, Device and Network
Embedded Services (auto-configuration, device semantic,
network management), Device Resource Creation &
Management Services (abstraction, context/dependencies),
Application Level Middleware Services (commissioning,
composition, adaptation), and Automation Applications. The
vertical planes are the following: communication plane,
security plane and management plane. The project proposes the
following technologies for the IIoT: Directory Service, Auto-
Configuration of Real-Time Ethernet, Event Dispatching
(Event Notification Service), Capability-based Access Control,
Complex Event Processing, Network Slices, and Embedded
Access Control. More details on the proposed architecture and
technologies can be found in [24].

An interesting discussion is launched by Herman Storey (co
-chair ISA 100), Rick Bullota and Daniel Drolet in [25]. The
discussion begins with the observation that IIoT should
primarily provide security, robustness, and punctuality as far as
the requirements of automation networks are concerned and,
secondly, remote access. The IIOT proposed architecture has
four horizontal levels: multiple physical media and link layer,
IPv6/6LoWPAN common network layer, more communication
stack layers and multiple applications layer. Vertically, the
architecture has two levels: Common time and Common
network management and security. As an essential element, the
IIoT must provide a way to integrate multiple physical
environments and multiple applications in a single industrial
network system using common technologies. To integrate such

32 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

a variety of communication and application environments, the
IIoT must use IPv6 as a network protocol. IPv6 has an
extension called 6LoWPAN which allows it, as a network
layer, to be used for low power networks or limited bandwidth.
Although it was designed for battery-powered wireless devices,
it may be used for wired networks as well. ISA 100.15
published a document which provides models and concepts for
architectures adequate for IIoT.

Following the analysis of the three architectures presented
above, it can be said that currently, there is a low degree of
standardization. Efforts are being made to achieve an IIoT
standard (Industry 4.0, ISA 100). The IIoT is a different IoT
from the non-industrial ones due to the special characteristics
of the production processes. Except for Industry 4.0, IIoT
architecture is based on ground level devices, which are
interconnected via fieldbuses and which have access points to
local networks and the Internet, while on the upper level it has
specific applications. Intermediate levels ensure services for
the safe transport of information. In addition to the horizontal
levels, there may also be vertical planes, able to ensure
management and security, time management, and so on. The
expectations of IIoT refer to the possibility that devices,
machines, and other objects could interact with each other
without relying on human intervention to achieve added value.
Among the most important requirements for IIoT [26], we can
mention: reliability, robustness, reasonable cost, security and
safety, easy use, low/no maintenance, optimal and adaptive set
of features, standardization, integration capabilities, reach
sensing and data capabilities, industry degree support, and
services. The challenges faced by IIoT refer to IoT devices,
lifetime and energy, data and information, humans and
business.

III. THE IOT FRAMEWORK PROPOSED FOR INDUSTRY
In this section, it is presented the new proposed IoT

framework for industry where devices, machines, sensors, or
simple things must communicate with each other. This IIoT
framework is composed of three levels (device, middleware,
and application). The first level is the device level. It is
composed of three elements, namely: the device which
acquires data directly from the environment and can transfer
this information using a wired or wireless network/fieldbus, the
gateway which adapts the specific network protocol to the
specific computer protocol used by the middleware in order to
connect to the IIoT environments (which can also add real time
facilities) and the software driver for the gateway device which
adapts the information sent or received to/from the gateway in
order for it to be compatible with the middleware. The
middleware level is designed to provide data transportation
inside the IIoT and it is based on the OPC, CORBA (with TAO
implementation (The ACE ORB)) and DDS. The application
level provides support for the implementation of the basic
applications pertaining to the proposed framework and the
level’s middleware objects which can be embedded in other
IIoT applications [27]. The specific interoperability model is
provided by the OPC and TAO, while the global
interoperability is ensured by the DDS middleware standard
[28].

A. The motivation of the proposed framework
In order to motivate the proposed framework, we can begin

from the question: is it a new technology? The answer is that it
is a new vision related to the reorganisation of a sum of
existing technologies in order to satisfy new requirements
concerning the future development of the industry.

Regarding the device level, the following major problems
were considered: there are different physical and data link
layers which respond to different requirements of specific
applications in the industry field; at the extremity of the global
network, there are fieldbuses that are intended to acquire
information from sensors and transducers, and to emit
commands via actuators; and that all these fieldbuses must
have common support for IPv4/IPv6. For this level, a gateway
device is defined, one which must implement the gateway
function [29] in order to transfer the information to the higher
level. It must transform the process-specific information into
information useful for the higher level [30] and it must provide
real-time behaviour at fieldbus level. Furthermore, a
description method for devices, recognised by all partners who
require information about devices, must be developed.
Network/fieldbus configuration for acquisition of information
from the process is a time-consuming and expensive operation
which means that tools capable of automating this operation
must be created. In the fieldbuses area field, there is currently a
multitude of standards (and perhaps new standards will appear
in the future) which means that, consequently, the framework
must support the integration of new protocols.

The middleware level has the important task of transporting
information between different nodes placed in the Intranet,
Extranet, and the Internet. This level implies important design
decisions. Standard-based middleware’s were taken into
account due to their stability and impact on the industry. Since
the OPC specifications are specially designed for industrial
applications, a first major question is: why TAO and DDS? A
second question may be: why not just DDS? The short answer
to the first question is: the OPC specifications have no explicit
real-time requirements and use the client-server paradigm,
which is less suitable for data centre frameworks of the
publisher/subscriber type; and answer to the second question
is: TAO is better prepared for real time. Further, these two
answers are expanded.

A very interesting discussion on the utilization of standards
for real-time distribution middleware is presented in [31]. The
authors, out of several distribution models, chose those which
are based on the standard, are mature, stable and with impact
on the industry; namely: CORBA/RT-CORBA, Distributed
System Ada Annex (DSA), Data Distribution Service for Real-
time System (DDS) and Distributed Real-Time Specification
for Java (DRTSJ). Even though the authors of [31] do not
provide a verdict or have not carried out a ranking, however, a
classification can be made.

CORBA/RT-CORBA has the following advantages: it is
based on a very mature technology, one involved in a wide
range of applications [31], such as Software Defined Radios
[32] and Industrial Robotics [33]; RT-CORBA entities validate

33 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

the development of critical real-time applications; from the
point of view of scheduling, the RT-CORBA provides static
scheduling based on Fixed Priority Scheduling (FPS), the use
of threads as schedulable entities, control of the competition
degree on the servers using thread pools, deterministic access
to shared resources, the use of different scheduling policies,
and the use of distributable threads as a schedulable entity; as
far as network resource management is concerned, it provides
mechanism for the fine-tuning of network properties, it uses
private connections and definitions of priority-banded
connections; it is the only standard which provides
mechanisms for the specification of scheduling parameters
which may be used during execution; facilitate interoperability
between implementations (GIOP - General Inter-ORB
Protocol); TAO implementation is the most popular and
updated open-source implementation for RT-CORBA. As
disadvantages of RT-CORBA, we can mention: unlike the
CORBA specification updated in [34], RT-CORBA is not
currently in the attention of the Object Management Group
(OMG), the last update being performed in 2005 [35][36]; it
does not take into consideration the network scheduling; it uses
TCP/IP stack which means that even the use of Ethernet
switches is unsuitable for implementation of hard real-time
systems; TAO implementation does not provide synchronous
protocols (it is based on the operating system); it does not
implement the priority transforms model, the use of buffers to
store remote requests in thread pools nor the borrowing of
threads among thread pool lanes.

The DDS has the following advantages: it is considered a
mature technology involved in several real-time applications
[31] in the fields such as Defence [17], Automation [37], and
Space [38]; supports anonymous and asynchronous
dissemination of information; has specific requirements for
distributed applications such as control systems, sensor
networks, and industrial automation systems; it is a data-centric
middleware [18] and, therefore, it is aware of the contents of
the interchanged data which can be directly managed; it
provides multiplatform and multi-language support; the types
of shared data can be defined by using IDL language [34];
interoperability between different implementations is provided
by DDS Interoperability Wire Protocol (DDSI) [39]; it is a
recently updated specification, OMG provides specification for
the Extensible and Dynamic Topic Types [40], which provides
support in order to define and modify dynamic (on runtime)
data for the extension and evolution of systems based on DDS;
the DDS model defines a strongly typed Global Data Space
where publishers (Data Writer (DW)) can write (provide) data
and subscribers (Data Reader (DR)) can read (consume) data
allowing the middleware to focus on obtaining data
independent of their origin; the standard was explicitly
designed for distributed real-time systems; specifications
define a set of QoS parameters in order to configure non-
functional properties for each entity and allow the change of
some of them during an operation; a subset of QoS parameters
allows the control of temporal behaviour and improves the
application predictability; it defines different mechanisms
meant to validate the communication between entities (polling,
synchronous mode and asynchronous mode for the DR entity)

and provides the opportunity to notify the application by
Polling, Listeners, Conditions, and Wait-sets; there are both
commercial (CoreDX or RTI-DDS) and open source
(OpenSplice or OpenDDS) implementations. Among the DDS
disadvantages, we can mention: there are no evaluations in
detail done on the DDS real-time performance (an attempt can
be found in [41]); it does not explicitly addressed the
scheduling of threads at processor level; it is oriented on IP
networks and not on the real-time networks (still lists a set of
requirements for network support); considers only network
policies based on fixed priority scheduling and excludes any
other type of predictable network used in industry; some
internal middleware operations generate meta-traffic thus
introducing an override that must be taken into account in the
analysis of behaviour in time; DDSI has an indefinite number
of sub-messages; there is still no profile for safety-critical
applications.

The DSA and DRTSJ are not competitive for real time as
CORBA/RT-CORBA and DDS. The DSA [31] was
specifically designed to support predictable applications and
several features, which ensure determinism, are left to
application implementation; while the DRTSJ [31]
specification is not complete, there are still problems which
were not addressed and there is no formal DRTSJ specification
(only a draft). On the other hand, all these protocols and their
implementations for real-time communication use IP-based
networks. Even if local networks that use switches are used,
real time is not easily achieved.

For the application level, the design issues taken into
account are: easy embedding and integration of several
technologies (OPC DA, OPC .NET, OPC UA, and CORBA);
default communication between application objects by defining
a "software bus" so that the application objects communicate
with each other and the implementation, at the current level, of
the gateway function between different technologies;
decoupling of the company’s activities and specific production
processes, which requires a high degree of security; the
publication of some information on the Internet; platform-
independent communication between the instances of several
applications; establishment of a connection with the usual
databases which benefit from a specialized middleware for data
communication.

The IoT framework of the system proposed in this article,
in order to integrate IoT in the monitoring and control of the
industrial processes, is presented in Fig. 1. The proposed
framework is based on the OPC specification, DDS and
CORBA middleware (TAO implementation). Furthermore, the
framework will be presented from the point of view of
CORBA and DDS middlewares. These middlewares were used
because they allow the development of applications
distributable on the Internet. In industry, CORBA middleware
is not widely used although there is the DAIS [42] standard
which describes how to develop SCADA applications based on
CORBA. In the proposed framework, new TAO servers and
clients are considered supplementary uses, which, just as
DAIS, are based on the OPC DA 2.05 specification. Our
solution is easier to implement compared to DAIS.

34 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

Fig. 1. Distribution on Internet of the proposed framework

From the point of view of implementation, the proposed
framework consists of two main functional modules: the data-
acquisition module (which will be referred to as the server
module) and the Human-Machine Interface (HMI) module (for
the information retrieved from the server modules) which will
be referred to as the Human Machine Interface - Process
Control and Monitoring (HMI-PCM) module, and it is mainly
a client application for TAO and OPC servers. DDS is
implemented as an object in the HMI-PCM. By using the TAO,
the information acquired from the industrial process can be
distributed on the Internet, in a client-server manner, as
noticeable in Fig. 1. A functional (complex) system can be
composed of multiple servers and multiple HMI-PCM clients.
A HMI-PCM client can connect to multiple server modules
and database servers, as described in the following sections.
Clients can generate history based on the data read from the
server, history stored in a database which can be consulted later
by the client who generated this history or by other clients.

B. Server module
The architecture of the server module is shown in Fig. 2.

This architecture is structured on three main levels. On the
lower level, we have the drivers which acquire data from the
fieldbuses and store it on the cache located on the upper level.
This level is integrated in the device level of the IIoT
framework. Its main role is the implementation of the
acquisition cycle which is specific to the fieldbuses protocol
used for communication. On this level there are more software
modules, each module specific for one fieldbus. Furthermore,
these modules receive data from the top level, which will be
sent to the fieldbuses (e.g. commands for actuators). These
modules receive all the data which must be updated
continuously from the top level (data that is in at least one
client's subscription list). This data is included in the
acquisition cycle implemented in the drivers. Furthermore,
these modules implement mechanisms for the data read on
request (asynchronously read). They rely on a running platform
(Linux or Windows) and are developed as independent
modules (as libraries). This allows the development of new
drivers without recompiling the other server modules. Between
this level and the upper level, there is a well-defined interface
that allows the integration of drivers for new fieldbus protocols
(API 1 from Fig. 2).

Fig. 2. The server module architecture

On the intermediate level, we have the Fieldbuses Cache
Management (FCM) module which deals with the management
of the cache which stores the data read from the fieldbuses, and
which is also developed as an independent module (as a
library). This memory cache is necessary to achieve a rapid
response to the requests received from the upper level. The
cache memory is a resource shared by several threads and has
all the access control mechanisms implemented to ensure data
consistency. Furthermore, this module stores a list of data on
which clients are subscribed to ensure continuous updating of
the cache (data update is provided only for that list of data).
The data received from clients, which must be submitted to the
devices connected on fieldbuses, are stored in the cache and are
forwarded to the appropriate network driver. This level is part
of the middleware level. Between this level and the upper level
(the server itself), there is a well-defined interface which
allows the adaptation of the FCM to any desired type of server,
including TAO server (API 2 from Fig. 2).

On the top level, we have the server which provides
support to access the cache with both read and in writing
operations, in other words, the access to field devices
connected to networks. Furthermore, the server integrates the
TAO middleware which provides services for the
transmission/reception of data to/from the HMI-PCM clients.
To ensure these services, a CORBA IDL interface was defined,
one which has been integrated into the server and the client
modules. The interface is based on the OPC DA 2.05 classical
specification. So, four interfaces were defined, namely:
DataServer, an interface with a Register (server connection)
and DeRegister (disconnected from server) methods; IServer
interface with Addgroup, RemoveGroup, and SetState methods
(edits the properties of the group); IGroup interface with
AddItems and RemoveItems methods; IUpdate interface with
OnDataChange (updates data to the client group) and
Disconnect (server being offline) methods; IBrowse interface
with BrowseAddressSpace (accesses the server address space),
ChangeBrowsePosition (browses the address space server),

35 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

GetItemID (takes over the address space identifier of server),
QueryAvailableProperties (reads the properties of an Item),
SyncRead (synchronously reads the value and quality of a list
of items, from the cache or device), and SyncWrite methods
(synchronously writes the value and quality of a list of item,
from the cache or device). We detail the implementation based
on TAO because it is a less used a solution in industrial
environments compared with servers based on OPC
specifications.

C. HMI-PCM – Human Machine Interface -Process Control
and Monitoring
The client application (HMI-PCM) is an environment that

can instantiate many objects (controls). There are three types of
objects: graphical objects, middleware objects and expression
objects. They expose data members in the HMI-PCM
environment. The data members can be interconnected in order
to transfer data between objects, or can be used in different
math expressions to which other objects can connect
(subscribe) by using a standard interface (API 3 from Fig. 3).
Middleware objects connect to data providers (servers) based
on different middleware packages (OPC.NET objects to
transport data from/to OPC.NET data servers, OPC DA objects
to transport data from/to OPC DA servers; OPC UA objects to
transport data from/to OPC UA servers; TAO objects to
transport data from/to CORBA servers). The architecture of the
HMI-PCM module is presented in Fig. 3.

OpenDDS is an open source implementation of the DDS
specification based on TAO. The DDS objects from HMI-PCM
environment ensure the interoperability between different
HMI-PCM applications running anywhere (on the same
computer, the computers interconnected throughout local
network or computers interconnected throughout the Internet).
The objects can expose the HMI-PCM address space, including
middleware objects that partially or fully expose the server
address space (see subsection D).

Fig. 3. The HMI-PCM module architecture

The most important feature of this application is that it
allows the interconnection of objects in the HMI-PCM. Each
object has data members that can be connected to each other or
to the data members of other objects from the HMI-PCM.
Thus, to display the data from the server, a graphical object is

used, one that connects to the TAO objects that are connected
to these servers. With this feature, the HMI-PCM application
can be easily configured according to the user’s requirements
and preferences. Another important feature of the HMI-PCM is
that new objects can be added as dynamic libraries. They must
comply with HMI-PCM standard interface (API 3 from Fig. 3)
that enables communication between the HMI-PCM objects
(objects derived from a basic object). So, it is not necessary to
compile the whole clients (only the object added).

D. Implementation considerations
The server is developed and implemented as an application

in C++. For each fieldbus, there is a library which implements
the function specific to the fieldbus. It was implemented a
library for MODBUS RTU (with a RS485–RS232 interface), a
library for MODBUS TCP/IP and a library for CANOpen
(with a USB-CAN interface). The libraries for EtherCAT and
Ethernet/IP are under development process. Since there are
many Modbus TCP/IP gateways to other fieldbuses, these
systems can be easily integrated into the proposed framework
(should be considered the differences in terms of real time
between fieldbuses and MODBUS TCP / IP because TCP/IP
stack is best effort type and not real time). For the transport
protocol between server and client, the following protocol was
employed: IIOP (default) Internet Inter-ORB Protocol,
SHMIOP - shared memory transport protocol, IIOP over
Secure Sockets Layer (SSL), HTTP Tunnelling Inter-ORB
Protocol, and ZIOP – IIOP with compression).

Due to the modular software architecture of the server (see
Fig. 2), servers based on more middleware types were
developed, while this paper deals with the server based on the
TAO middleware (version 6.2.5). The server will expose data
as a collection of industrial networks, each network having a
collection of devices. Every device connected to an industrial
process can be seen as a collection of objects. For this reason, a
dictionary of objects was developed, managed by the FCM,
exposing all the capabilities of the devices. Each object can
have multiple data members and each data member can be
characterized by properties such as value, data type, access
rights, or other property that can be defined by the user based
on the application. The content of the object dictionary (data
provider) forms the address space of the server. Each
middleware object will expose this address space to the client.
A natural question is how to create this address space? FCM
has on the upper level a defined standard interface for server
connection (API 2 from Fig. 2), and another one at the bottom
for connection to the fieldbus-specific drivers (API 1 from Fig.
2). Any driver that implements this interface is loaded without
recompiling the entire application.

At this point, another question appears: how are the system
devices described? Among the various solutions (EDDL -
Electronic Device Description Language, FDT –Field Device
Tool, FDI-Field Device Integration, EDS - Electronic Data
Sheet), for simplicity reasons, a solution was adopted, based on
the CiA DS 306 D3 v1.3 specification (EDS). This
specification has been extended to support Modbus, M-Bus and
ASCII-DCON protocols in addition to CANOpen. Modbus
TCP/IP gateway connects to other protocol implementing
devices, such as Profibus, Profinet, EtherCAT, EP PowerLink,
Ethernet / IP, LonWork, etc. From a device, one cannot get

36 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

more than the information that is defined in the corresponding
EDS. For example, for the Modbus protocol, a new section
called [Communication] was added. This section of the EDS
file describes the commands required to access objects like:

[IndexObject]: Request: FC: SFC-x: ADR: L-x:E:
ADR:L-x:E: ADR, L-x:/

 Response: FC: SFC-x: ADR: L-x:/

Where: IndexObject – Process Data Object (PDO) or
Service Data Object (SDO) that describes the data. Request:
the format of request commands: FC – function code; SFC –
sub-function code; ADR – address; L-x – length or count, x =
number of bytes of this field; E – The extension of the
commands. Response: the response format that is optional. For
the functions of the MODBUS protocol, the answer can be
built depending on request commands. If the PDO or SDO
objects have a defined separate area for read and write
operation, subsections [read] and [write] may be used. “:” -
fields’ separator (if a field is missing from a MODBUS
command/ response, only a separator, “/” – terminator is used).

In the (automatic or manual) configuration process, a file is
created in order to attach a driver to each fieldbus (a specific
dynamic library) and an ID and an EDS file to each device
from the fieldbus. This file is used by the FCM, which sends
the path to the EDS files of the active devices from the fieldbus
to the driver. There may be several fieldbuses of the same type
and more identical devices in one fieldbus. A configuration file
associated with the server and built on EDS files contains the
entire tree structure of the information that can be accessed and
forms the address space of the server. This address space can
be accessed by the TAO object from the HMI-PCM application
through the IDL interfaces defined at the end of subsection
III.B.

Once the server address space is defined, the server will
expose this information to the clients, using the interfaces
defined in IDL (see the end of subsection III.B). The main
implementing objectives of the server refer mainly to the
service name, client management, client-associated group
management, group-associated items management, updating
groups, reading and writing items, browsing in the address
space, security information, and QoS.

The HMI-PCM is developed and implemented as an
application in C#. Each object (see Fig. 3) is a library which
exports a class derived from a base object. For the TAO object,
a wrapper was used to marshall data from C++ to C# (TAO is
developed for C++ application). The HMI- PCM application is
developed in C#, as it offers the possibility of rapidly
developing graphical applications and for productivity reasons.
The HMI-PCM application is very interesting, allowing the
communication between servers implemented with different
technologies. Each server has one or more simulation drivers (a
client can write or read to simulating some functionalities
which can read or write by other clients). In addition to their
role of simulation, these drivers allow the implementation of a
relay function (gateway) between different types of servers.
For example, suppose that the HMI-PCM has activated two
middleware objects, one for OPC UA (data profile) and one of
TAO type. A TAO user wishes to expose, to TAO clients, the

nodes of the OPC UA. Firstly, it must create an EDS file for
the simulation driver for the TAO server with the desired
objects that are visible from the OPC UA object (the
compatibility of data types must be ensured). The objects
exposed by the TAO object based on the EDS file will be
found in the FCM dictionary of objects. In the HMI-PCM
client, any item of the OPC UA object (from the ones chosen
and described in the EDS file from TAO) can be connected to a
corresponding item exposed by the TAO server based on the
EDS file for the simulator (read or write - IN or OUT).

All the TAO clients can read or write properly from/in the
items exposed by the simulator. There can be any number of
simulators (depending on the host system resources). This type
of relay can be attained between any of the middleware objects
using a simulation driver and its attached EDS file. Connection
can also be made directly, with the specification that an item
should be output (or bidirectional) and the other input (or
bidirectional), and the data types must be compatible. In
addition, one can connect an intermediate expression object
which can operate on source value using a mathematical
expression.

For low power communication stack, there is the MICRO
PROFILE and COMPACT PROFILE as part of CORBA/e
(and it is implemented in TAO), while reliable communications
and Internet-enabled communications are provided by TAO
through transport protocols and naming service.

E. Security
Security features are presented at different levels of the

proposed framework. In general, at the fieldbus protocols,
security features are not provided, because they introduce an
additional overhead and are non-deterministic components. In
order to use the FCM component, the server must authenticate
throughout a unique identification key. In the absence of
authentication, the exported functions of the FCM module do
not work correctly. The same thing happens with the fieldbus
drivers. The current security level of the application is sent to
the FCM in order to enable/disable the controls from the
windows of the network manager, the connection manager, and
from other configuration windows exposed by FCM and
fieldbus drivers. The server application has an access panel that
requires a user name and a password in order to view and
change configuration parameters of the fieldbuses. Users are
divided into groups, for users, manager, administrators and
guests, each group having restricted access to the
functionalities of the server, except for the administrator group.
The server configuration is stored in an encrypted XML file
(hidden somewhere in the system). The same vision is applied
to the HMI-PCM application.

At the middleware level, in TAO there is the possibility to
comprise messages (using pluggable ZIOP protocols) and to
secure the communication (using SSLIOP pluggable protocol
that is based on SSL). In the original DDS specification, related
to the security, only the following is specified: “the application
could attach security credentials via the USER_DATA policy
that can be used by the remote application to authenticate the
source”. The new DDS security specification [43] (request for
proposal) proposes interesting solutions based on Domains
Secure and Confidential Topics. RTI has a wide range of

37 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

security solutions such as: domain separation, access control
and secure bridging; deep packet inspection; data filtering;
secure operating system; secure transport; improved paradigm
for secure distributed infrastructure [44]. OpenSplice ensure
DDS Secure Networking Service and Access Control [45]. For
OpenDDS, we integrated the SSLIOP (from TAO) through
Extensible Transport Framework, in order to enable
confidentiality and authentication.

OPC DA security for the communication is based on
DCOM security, OPC. NET has different binding modes and
types of authentication security modes depending on the type
of binding (Named piped, TCP, HTTP Basic and HTTP WS)
more types of authentication are being offered. OPC UA
contains the philosophy related to the security in the
specification, namely OPC UA part 2 - Security Model [46].
OPC UA is Secure-by-default, encryption enabled, and uses
advanced certificate handling.

IV. EXPERIMENTAL RESULTS
This section presents the tests performed for the proposed

solution based on TAO (with 3 transport protocols: IIOP,
SSLIOP, ZIOP) when it is used in a local network. First, the
bandwidth used by the server based on TAO was compared
with the one used by the server based on OPC DA, OPC UA
and OPC.NET. Tests were performed in a network composed
of eight computers, identical in terms of hardware and
software, and a switch with 100Mbps Ethernet ports. Each
computer had an AMD Athlon (tm) 64 X2 Dual Core
Processor 4200+ 2.21GHz, 1GB of RAM and a Windows
operating system. On one computer (which will be referred to
as the server), are executed in turn the data server based on
OPC DA, OPC UA, OPC.NET, and the server based on TAO.
All these servers use the same data provider (a simulator that
generates random values for items and stores them in the cache
memory of the server). For the experimental test, we used
version 6.2.5 for TAO and the IIOP, SSLIOP, and ZIOP
protocols. On the other computers, the HMI-PCM application
is executed in turn with TAO, OPC.NET HTTP, OPC.NET
TCP, OPC UA BIN (data profile), OPC.DA objects connected
to TAO, OPC.NET HTTP, OPC.NET TCP, OPC UA BIN
(data profile), and respectively, OPC DA servers. For the TAO
objects, the IIOP, SSLIOP and ZIOP were used, as transport
protocols. Clients will make a group/subscription/list (the
names are specific to the used middleware) that contains 16
items/nodes whose data type is BYTE.

With Colasoft Capsa software package, the traffic speed on
the server computer was measured. It should be noted that
there is no network traffic generated by other applications (the
LAN is not connected to the Internet). The software
architecture of the tests performed is shown in Fig. 4.

The first test consisted in determining the transfer rate
when data is updated at a rate of 100ms. The test results are
shown in Fig. 5. In this figure, we can see that the bandwidth
occupied when using TAO with IIOP and SSLIOP is higher
than when using the OPC DA, OPC UA BIN and OPC.NET
TCP, and smaller than when using the OPC.NET HTTP, but is
lowest when ZIOP is used as transport protocol.

Fig. 4. The software architecture of the tests performed

The second test consisted in determining the transfer rate
when data is updated at a rate of 500ms. The test results are
shown in Fig. 5. From this figure, we can see that the occupied
bandwidth when TAO is used is higher than when OPC DA
and OPC.NET TCP are used, and lower than when OPC.NET
HTTP or OPC UA BIN is used. Unlike the previous test, the
bandwidth occupied by TAO is much closer to the bandwidth
occupied by OPC.NET TCP and OPC DA.

The third test consisted in determining the transfer rate
when data is updated at a rate of 1000ms. The test results are
shown in Fig. 5. As in the previous tests, the same
approximation trend of the band occupied by TAO with the
band occupied by OPC DA and OPC.NET TCP can be noticed.

Fig. 5. Bandwidth occupied for a refresh rate of 100ms

Fig. 6 presents a synthesis of the 3 cases presented so far.
An approximation trend of the bandwidth occupied by TAO
with the bandwidth occupied by OPC.DA and OPC .NET TCP
can be easily noticed. It should be noted that the tests were
done in a local network, a framework widely used in the
operation of industrial SCADA applications.

38 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

Fig. 6. Comparison for the bandwidth occupied

The proposed framework is designed to provide access to
data via the Internet, where the response time cannot be
guaranteed. It is unlikely to apply a refresh rate of 100ms for a
client to connect to a server through the Internet, and very
likely to use refresh rates of around 1000ms (in the Internet,
this refresh rate cannot be guaranteed because the
communication protocols are best-effort type depending on the
network load).

The performances of the application based on TAO IIOP
are very close to the performances of the applications based on
OPC DA and OPC.NET TCP at an update rate of around
1000ms, but OPC DA is based on DCOM technology that
works in a LAN network and OPC.NET TCP is dependent on
.NET platform, based on Windows Communication
Foundation. Furthermore, to use OPC.NET and to get the
source code, you must be a member of the OPC Foundation.
One advantage of using the TAO middleware is that it is an
open source.

TAO with ZIOP transport protocol is the best because the
messages are archived, but it does not provide any security
mechanism. The use of security and encryption of the
messages with SSLIOP transport protocol (based on SSL)
introduces an additional overhead of the messages related to
the IIOP transport protocol, which can be seen in the graphs,
due to certificate exchanges and the increasing of the message
size. The same difference can be seen for OPC.UA binary and
OPC.UA binary with security and encryption of the messages.
The use of the HTTP protocol leads to a significant increase of
the messages that can be seen for OPC.NET HTTP and
OPC.UA HTTP. In the case of the OPC.UA middleware, an
important traffic generated by the keep alive mechanism
(observed with Wireshark tool) can be observed. This traffic is
much lower in the TAO implementation. From Wireshark tool,
it can be seen that if the encryption or archiving mechanisms
are not used, the data can easily be identified in the messages.

Table 1 presents the number of bytes of Ethernet frames
and TAO for the three transport protocols (IIOP, ZIOP, and
SSLIOP) sent by the server in order to update a group
consisting of 1, 2, 4, 8, and 16 items. This information was
obtained with Wireshark tool. As expected, the smallest frames
are obtained by activating the ZIOP transport protocol. If the

messages are small, and the size of the archived message (plus
archived message header) is higher than the size of the original
message (with IIOP), then the message is no longer archived
and it is sent using the IIOP transport protocol.

TABLE I. THE MESSAGE FOR TAO TRANSPORT PROTOCOLS

 TAO-IIOP TAO-ZIOP TAO-SSLIOP
1 items 296B/1 frame 314B/1 frame 351B/1 frame
2 items 402B/1 frame 324B/1 frame 475B/1 frame
4 items 674B/1 frame 335B/1 frame 810B/2 frames
8 items 1174B/1 frame 357B/1 frame 1310/2 frames

16 items 2236/2 frames 397B/1 frame 2401/3 frames

From the point of view of the memory footprint, the
working set for the server with TAO is about 11MB for IIOP,
increased to about 36MB for ZIOP and reaches about 38MB
for SSLIOP, while the processor load depends on the refresh
rate of the items, reaching 8% for a refresh rate of 100ms. On
the other hand, OPC UA has a working set that varies from
48MB (without encryption and security) and reaches about
174MB with encryption and security. The processor load at a
refresh rate of 100ms is about 50%. This may be due to the
development mode of the server, which is developed in C# and
the code is interpreted, while TAO is implemented in C++.

V. CONCLUSION
In the rather poor landscape of IIoT architectures, the

proposed framework can be a starting point, especially since
efforts are being made to implement and to perform a practical
demonstration of the proposed functionalities.

This model was referred as framework and not as
architecture because it is concerned with the IIoT device
platform that transport the specific messages (little data) and
which, through the DDS objects, can connect to the IoT
services and applications (big data).

The framework enjoys several powerful points. First, it is
based on mature and very mature standards and it can say that
it is highly standardised. At device level, a unified method to
describe the devices based on the EDS specification from CiA
was defined. It was extended, among others, for the MODBUS
protocol. Currently, there are many MODBUS TCP/IP - other
protocol gateways which have their own mechanism of
describing the devices; it can be depicted by the EDS modified
for MODBUS. This solution resolved the challenge related on
the large number of fieldbuses. The standardised interface from
the lower level of FCM is scalable, allowing the integration of
drivers specific for other fieldbus protocols without
recompiling the FCM module and the server. The presence of
the objects' dictionary, which creates the server address space,
is the reason for the decoupling (virtualisation) between server
and the complexity of fieldbuses, and a unified way of
describing them. The configuration interfaces of the fieldbuses
have a semi-automatic behaviour (drivers identify the field
devices and the display on the server objects which can be
exposed, and the server automatically restores the last saved
configuration).

At the middleware level, several technologies were selected
and implemented (OPC, TAO, and DDS) which enable a
proper adaptation to the specific application. The PCM-HMI

39 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

application allows easy exchange of information between
servers and, by implementing the DDS objects; it allows the
publisher / subscriber a type of communication between PCM-
HMI applications on the same computer, in the local networks
or on the Internet. This solution resolved the challenge related
on middleware choice and separation of the industrial activity.

Sensing the weaknesses of the framework, the authors
intend: to clearly define the vertical planes such as security,
timing and management; to improve support for automatic
configuration of fieldbuses; to directly connect the DDS object
to the FCM in order to retrieve data from fieldbuses through
the objects' dictionary (there is a risk of creating a security
breach, because the same object has direct access to process
data and may publish the data acquired from the sensors and
transducers on the Internet and can take commands from the
Internet for the actuators); to be embedded, even partially,
based on a new profile, in TAO and DDS, the address space
concept and the information model from OPC UA; to develop
tools for the easy configuration of DDS objects; to develop
OPC UA security concepts in OpenDDS.

ACKNOWLEDGMENT
This work was partially supported from the project

“Integrated Centre for research, development and innovation in
Advanced Materials, Nanotechnologies, and Distributed
Systems for fabrication and control”, Contract No.
671/09.04.2015, Sectoral Operational Program for Increase of
the Economic Competitiveness co-funded from the European
Regional Development Fund.

REFERENCES
[1] K. Ashton, “Internet of Things,” RFID Journal, June 22 2009.
[2] Qazi Mamoon Ashraf, Mohamed Hadi Habaebi, „Autonomic schemes

for threat mitigation in Internet of Things,” Journal of Network and
Computer Applications, Volume 49, March 2015, Pages 112-127, ISSN
1084-8045, http://dx.doi.org/10.1016/j.jnca.2014.11.011.

[3] R. van Kranenburg, The Internet of Things: A Critique of Ambient
Technology and the All-Seeing Network of RFID. Institute of Network
Cultures, 2008

[4] Jordán Pascual Espada, Ronald R. Yager, Bin Guo, Internet of things:
Smart things network and communication, Journal of Network and
Computer Applications, Volume 42, June 2014, Pages 118-119, ISSN
1084-8045, http://dx.doi.org/10.1016/j.jnca.2014.03.003.

[5] Scott MacDonald, Whitney Rockley, McRock CAPITAL, The Industrial
Internet of THINGS – IIoT Report, 2014.

[6] Roselli, L.; Mariotti, C.; Mezzanotte, P.; Alimenti, F.; Orecchini, G.;
Virili, M.; Carvalho, N.B., "Review of the present technologies
concurrently contributing to the implementation of the Internet of
Things (IoT) paradigm: RFID, Green Electronics, WPT and Energy
Harvesting," Wireless Sensors and Sensor Networks (WiSNet), 2015
IEEE Topical Conference on , vol., no., pp.1,3, 25-28 Jan. 2015.

[7] Bolic, M.; Rostamian, M.; Djuric, P.M., "Proximity Detection with
RFID: A Step Toward the Internet of Things," Pervasive Computing,
IEEE , vol.14, no.2, pp.70,76, Apr.-June 2015.

[8] Eugster, P.; Sundaram, V.; Xiangyu Zhang, "Debugging the Internet of
Things: The Case of Wireless Sensor Networks," Software, IEEE,
vol.32, no.1, pp.38,49, Jan.-Feb. 2015.

[9] Senouci, Mustapha Reda, et al. "WSNs deployment framework based on
the theory of belief functions." Computer Networks 88 (2015): 12-26..

[10] Palattella, M.R.; Accettura, N.; Vilajosana, X.; Watteyne, T.; Grieco,
L.A.; Boggia, G.; Dohler, M., "Standardized Protocol Stack for the
Internet of (Important) Things," Communications Surveys & Tutorials,
IEEE , vol.15, no.3, pp.1389,1406, Third Quarter 2013, doi:
10.1109/SURV.2012.111412.00158.

[11] Sanchez, Luis, et al. "SmartSantander: IoT experimentation over a smart
city testbed." Computer Networks 61 (2014): 217-238.

[12] Jian An, Xiaolin Gui, Wendong Zhang, Jinhua Jiang, Jianwei Yang,
Research on social relations cognitive model of mobile nodes in Internet
of Things, Journal of Network and Computer Applications, Volume 36,
Issue 2, March 2013, Pages 799-810, ISSN 1084-8045,
http://dx.doi.org/10.1016/j.jnca.2012.12.004.

[13] Zheng Yan, Peng Zhang, Athanasios V. Vasilakos, A survey on trust
management for Internet of Things, Journal of Network and Computer
Applications, Volume 42, June 2014, Pages 120-134, ISSN 1084-8045,
http://dx.doi.org/10.1016/j.jnca.2014.01.014.

[14] Satyanarayanan, M.; Simoens, P.; Yu Xiao; Pillai, P.; Zhuo Chen;
Kiryong Ha; Wenlu Hu; Amos, B., "Edge Analytics in the Internet of
Things," Pervasive Computing, IEEE , vol.14, no.2, pp.24,31, Apr.-June
2015, doi: 10.1109/MPRV.2015.32

[15] Therese Sullivan, The Cutting-Edge of IoT, How does the IoT really
change the future of commercial building operations?, November
2014,AutomatedBuildings.com, November 2014,
http://www.automatedbuildings.com/news/nov14/articles/buildingcontex
t/141030095606bldgcntx.html

[16] Akram Hakiri, Pascal Berthoua, Aniruddha Gokhale, Douglas C.
Schmidt, Gayraud Thierry, Supporting End-to-end Scalability and Real-
time Event Dissemination in the OMG Data Distribution Service over
Wide Area Networks , Elsevier Journal of Systems and Software, 2013.

[17] D. C. Schmidt, A. Corsaro, and H. V. Hag. 2008. Addressing the
challenges of tactical information management in net-centric systems
with DDS. Journal of Defense Software Engineering, 24–29.

[18] OMG. 2007. Data Distribution Service for Real-Time Systems. v1.2.
[19] http://www.omg.org/spec/DDS/1.2/
[20] Li Da Xu, Wu He, Shancang Li, Internet of Things in Industries: A

Survey, DOI 10.1109/TII.2014.2300753, IEEE Transactions on
Industrial Informatics, 2014.

[21] Q. Wei, S. Zhu, C. Du, “Study on key technologies of Internet of
Things perceiving mine,” Procedia Engineering, vol.26, pp.2326-2333,
2011.

[22] Bo Cheng, Xin Cheng, Junliang Chen, Lightweight monitoring and
control system for coal mine safety using REST style, ISA
Transactions, In Press, Corrected Proof, Available online 8 August
2014.

[23] ACATECH – Recommandations for implementing the strategic
initiative INDUSTRIE 4.0. April 2013.
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Webs
ite/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_rep
ort__Industrie_4.0_accessible.pdf

[24] IoT@Work, https://www.iot-at-work.eu/ (Accessed April 2016).
[25] Herman Storey (co - chair ISA 100), Rick Bullota and Daniel Drolet.

The Industrial Internet of Things, http://www.csemag.com/single-
article/the-industrial-internet-of-things/c98837a0efec387df9fc14c2d
e0a3b2f .html (Accessed April 2016).

[26] Ovidiu Vermesan, Peter Friess, Internet of Things: Converging
Technologies for Smart Environments and Integrated Ecosystems,
pp158, ISBN: 978-87-92982-73-5, River Publishers, 2013.

[27] International Telecommunications Union, ITU-T Y.2060, Overview of
the Internet of things, 2012.

[28] OMG, Data Distribution Service (DDS) http://www.omg.org/hot-
topics/dds.htm (Accessed April 2016).

[29] Vasile-Gheorghita Gaitan, Nicoleta-Cristina Gaitan, Ioan Ungurean, A
flexible acquisition cycle for incompletely defined fieldbus protocols,
ISA Transaction journal, Elsevier, Volume 53, Issue 3, pp. 776-786,
May 2014.

[30] Yucel Cetinceviz, Ramazan Bayindir, Design and implementation of an
Internet based effective controlling and monitoring system with wireless
fieldbus communications technologies for process automation—An
experimental study, ISA Transactions journal, Elsevier, Volume 51,
Issue 3Pages 461–470, May 2012.

[31] H. Perez, J.J. Gutierrez, "A survey on Standards for real-time
distribution middleware" Journal ACM Computing Surveys, vol. 46,
issue 4, March 2014, article no.49.

40 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

[32] J. Bard and V. J. Kovarik. 2007. Software Defined Radio: The Software
Communications Architecture. Wiley-Blackwell. ISBN: 0-47086-518-0.

[33] M. Amoretti, S. Caselli, and M. Reggiani. 2006. Designing distributed,
component-based systems for industrial robotic applications. In
Industrial Robotics: Programming, Simulation and Applications, Low
Kin Huat (Ed.). ISBN: 3-86611-286-6, InTech, DOI:10.5772/4892.

[34] OMG. 2012. Corba Core Specification. v3.3.
http://www.omg.org/spec/CORBA/3.3/, or
http://www.omg.org/spec/ZIOP/ (Accessed April 2016).

[35] OMG. 2005. Realtime Corba Specification. v1.2.
http://www.omg.org/spec/RT/1.2/ (Accessed April 2016).

[36] D. C. Schmidt. 2005. TAO Developer’s Guide: Building a Standard in
Performance. Object Computing, Inc.

[37] M. Ryll and S Ratchev. 2008. ”Application of the data distribution
service for flexible manufacturing automation.” International Journal of
Aerospace and Mechanical Engineering 2, 3, 193–200.

[38] M. Gillen, J. Loyall, K. Z. Haigh, R. Walsh, C. Partridge, G. Lauer, and
T. Strayer. 2012. Information dissemination in disadvantaged wireless
communications using a data dissemination service and content data
network. In Proceedings of the SPIE Conference on Defense
Transformation and Net-Centric Systems, Vol. 8405.

[39] OMG. 2009. The Real-Time Publish-Subscribe Wire Protocol. DDS

interoperability wire protocol specification. v2.1.
http://www.omg.org/spec/DDSI/2.1/

[40] OMG. 2012. Extensible and Dynamic Topic Types for DDS. v1.0.
http://www.omg.org/spec/DDS-XTypes/1.0/ (Accessed April 2016).

[41] H. P´erez, J. J. Guti´errez, and M. Harbour. 2012. Adapting the end-to-
end flow model for distributed Ada to the Ravenscar profile. Ada Letters
33, 1, 53–63.

[42] http://www.omg.org/spec/DAIS/1.1/PDF (Accessed April 2016).
[43] http://www.omg.org/cgi-bin/doc?omg/11-08-01.pdf (Accessed April

2016).
[44] https://www.rti.com/docs/RTI_Security_Solutions.pdf (Accessed April

2016).
[45] http://www.prismtech.com/opensplice/resources/documentation,

OpenSplice_SecurityConfiguration_Guide_A131. Pdf (Accessed April
2016).

[46] https://opcfoundation.org/developer-tools/specifications-unified-
architecture/part-2-security-model/ (Accessed April 2016).

41 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work of the Industrial Iot Architecture
	III. The Iot Framework Proposed for Industry
	A. The motivation of the proposed framework
	B. Server module
	C. HMI-PCM – Human Machine Interface -Process Control and Monitoring
	D. Implementation considerations
	E. Security

	IV. Experimental Results
	V. Conclusion
	Acknowledgment
	References

