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Abstract— Minimum energy combination (MEC) is a widely 

used method for frequency recognition in steady state visual 

evoked potential based BCI systems. Although it can reach 

acceptable performances, this method remains sensitive to noise. 

This paper introduces a new technique for the improvement of 

the MEC method allowing ameliorating its Anti-noise capability. 

The Empirical mode decomposition (EMD) and the moving 

average filter were used to separate noise from relevant signals. 

The results show that the proposed BCI system has a higher 

accuracy than systems based on Canonical Correlation Analysis 

(CCA) or Multivariate Synchronization Index (MSI). In fact, the 

system achieves an average accuracy of about 99% using real 

data measured from five subjects by means of the EPOC 

EMOTIVE headset with three visual stimuli. Also by using four 

commands, the system accuracy reaches 91.78% with an 

information-transfer rate of about 27.18 bits/min. 

Keywords— Brain-Computer Interface; Steady State Visual 

Evoked Potential; Minimum Energy Combination; Empirical Mode 

Decomposition.

I. INTRODUCTION 
Severely paralyzed people with neuromuscular disorders 

lose the majority or the totality of their movement and 
expression abilities. This is the case of people with locked-in 
syndrome, Amyotrophic lateral sclerosis and Spinal cord 
injury. A Brain-Computer Interface (BCI) is a tool for 
mobility, communication and control assistance which can 
provide them with the possibility to interact with their 
surroundings [1]. The principle of a BCI is to detect the brain 
activity from the scalp and convert it into commands to control 
devices such as prosthesis and computers. The control is done 
only by thought without any apparent movement. The 
electroencephalography (EEG) is usually used in BCI field for 
brain activity measurements. This is mainly due to its time 
resolution efficient for real-time applications, its low cost 
compared to other technics and the possibility to wear an EEG 
headset everywhere. 

The P300 evoked potentials, the Event-Related 
Synchronization and Desynchronization (ERS/ERD) and the 
Steady State Visual Evoked Potential (SSVEP) are the most 
promising EEG brain activity patterns. SSVEPs are near-
sinusoidal waveforms from the occipital area reflecting a visual 
stimulation [2]. SSVEP-based BCI systems offer many 

advantages: the small number of required electrodes which 
makes the equipment cheaper, the no need of a tiring training, 
the suitability for almost any person and any environment and 
the better resistance face to noise and artifacts compared with 
other brain responses [3] [4]. Also, the performances reached 
by these systems are very encouraging. For example, F. 
Gembler et al. [5] have made an experiment where SSVEP was 
used to distinguish one among four possible commands. Ten 
subjects from different age ranges participated in the study and 
the data were acquired from 8 channels with a sampling rate of 
128 Hz. The average accuracy was about 93% which makes 
the system functional and useful. 

Several processing methods were presented to distinguish 
the target at which the subject gazes [6]. For instance, the 
Minimum Energy Combination (MEC) method proposed by O. 
Friman et al. [7] estimates the signal to noise ratio (SNR) 
corresponding to the stimuli frequencies then selects the 
frequency that maximizes this quantity. This method was 
exploited by N. Chumerin et al. [8] to create an SSVEP-based 
BCI game. The task was to navigate an avatar through a maze 
using four commands. The average accuracy of six subjects 
was about 82.4% which is considered acceptable. Moreover, Z. 
Lin et al. [8] use a frequency recognition method based on the 
Canonical Correlation Analysis (CCA). The essence of this 
method is to extract the correlation coefficients between the 
EEG signal and the reference signals then to select the 
frequency which maximizes this coefficient. Both MEC and 
CCA methods offer good performances thanks to the multi-
channel and multi-harmonics properties. G. Hakvoort et al. [9] 
emphasize the usefulness of the multi-channel criterion by 
making a comparison between the CCA as a multi-channel 
based method and the power spectral density analyses (PSDA) 
as a mono-channel based one. The average accuracy of seven 
subjects was 47.81% using PSDA and 78.12 using CCA in the 
discrimination among seven different frequencies. This result 
clearly demonstrates the importance of multi-channel 
techniques. On the other hand, despite the solid mathematical 
foundations of the CCA and the MEC methods, a comparison 
between them shows that the CCA appears to have widely 
superior performances. For example, N. Mora et al. [10] make 
an experiment where five subjects are asked to gaze at one of 
four possible LEDs flickering with different stimulation 
frequencies. Data is measured from six different channels then 
processed using different discrimination methods. Results 
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show that CCA method ensures a higher accuracy rate by about 
13% than MEC method. In another study results indicate that 
the high sensitivity to the noise level of MEC method leads to a 
lower accuracy rate [11]. 

Recently, Y. Zhang et al. [12] designed a new recognition 
method based on the multivariate synchronization index (MSI). 
The idea is to calculate the synchronization indexes reflecting 
the similarity between the EEG data and reference signals 
similar to those used in CCA method. Following the same idea, 
the frequency which maximizes the synchronization index is 
chosen. 

The paper presents a novel amelioration of MEC method 
for achieving better resistance to noise. The Empirical mode 
decomposition and the moving average are used to reject 
irrelevant signals. The remaining signals located at the stimuli 
and harmonics frequency band are used to recognize the target. 

The following section describes the origin of the noise in 
the SSVEP signal.  Then the recognition methods are 
presented.  The new amelioration of MEC method is presented 
in section four. To validate the improvement of the modified 
method, a comparison with the three methods is carried out. 
Finally, section 6 concludes the paper. 

II. SSVEP AND NOISE SOURCES

The SSVEP occurs when a subject gazes at a light source 
target flickering with a fixed frequency. It can be detected as a 
signal power increase at the same frequency of the stimulus. In 
addition, a number of harmonic frequencies multiple of the 
principal frequency can be detected [13]. To exploit this 
phenomenon, several targets are presented in front of the 
subject. Each target flickers with a unique frequency. Besides 
one command is assigned to each target. To execute a 
command, the subject has to gaze directly at the appropriate 
target. Due to the effect of cortical magnification, the quality of 
SSVEP increases if the subject gazes directly at a stimulus 
object located in the center of his vision field [14] [15]. 
Likewise, the retinal cones distribution shows that the foveola 
located in the center of the visual field is more sensitive to the 
light. Therefore, as it was proven by A. González-Mendoza et 
al. [16], the amplitude of the SSVEP increases proportionally 
with the area size of the visual stimulus. Consequently, the 
noise level increases if the stimulus does not exist in the center 
of the vision field or if the light intensity is not sufficient. Also, 
the choice of a wrong stimulus color can weaken the power of 
the SSVEP response [17]. Before performing ameliorations on 
the MEC method, the stimulus parameters effect on the 
performances of the processing methods is studied. A 
comparison of MEC method versus other ones for different 
noise levels is investigated. 

III. MATERIALS AND EXPERIMENTS

Five healthy male volunteers participated in the study. 
Their ages are 28, 30, 30, 34, and 58. None of the subjects had 
visual or neurological disorders or a previous experience with 
the BCI systems.  Subjects were asked to sit in a comfortable 
chair in a room with low noise and luminance level and to 
avoid any movement. The Epoc Emotiv headset was used to 
acquire the EEG signal from the scalp. Data is sampled at 128 
Hz within a bandwidth from 0.2 to 45 Hz with a digital notch 

filter at 50 Hz and 60 Hz. The choice of this equipment is due 
to its short preparation time and low price which are important 
factors to bring BCI systems into daily life. Furthermore, Epoc 
Emotiv headset had shown good performances in SSVEP 
based BCI as in Y. Liu et al. [18] study where the accuracy rate 
reached 95.83±3.59 % with online application. To cover the 
maximum zone of the occipital area, data were obtained from 
electrodes T7, T8, P7, P8, O1, and O2 according to the 10/20 
international system. In the present study, the chosen 
application is the wheelchair navigation command. In the first 
experiment, 3 commands are used: one to move forward, one 
to turn left, and one to turn right. Thus, the stimulation system 
is composed of three LEDs positioned on the left, top, and right 
sides of a computer screen. The LEDs are flickering with fixed 
frequencies: 8, 9, and 10 Hz respectively and the subject sits 
0.6 m far from them. In the second experiment, in order to 
improve the information-transfer rate of the system, another 
command is added to the system allowing to move backward. 
Its appropriate target which flickers at 11 Hz is positioned at 
the bottom side of the screen. To ensure the control of the 
stimulation frequencies with precision, an electronically device 
based on the STM8 microcontroller was used. Subjects were 
asked to follow the scenario of the figure 1. 

Fig. 1. Experimental Scenarios. 

The experiment consists of 18 trials. Each one lasts 
between 3 and 8 seconds. The first period is an idle one where 
EEG signals are not used. At 1tt    a beep sound indicates the
beginning of the trial accompanied by an arrow pointing the 
LED to gaze at. At 2tt   data start to be sent to the 
processing bloc. At 3tt   another beep sound triggers 
indicating the end of the trial. The feedback is shown on the 
screen as an increment in the value of true or false trials 
counters. 

IV. METHODS

The recognition techniques in SSVEP-based BCIs are 
based on the estimation of a coefficient that reflects the power 
of a stimulus frequency in the EEG signal. The frequency that 
maximizes this coefficient is considered as the frequency of the 
selected target. 

394 | P a g e
www.ijacsa.thesai.org 

(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 7, No. 9, 2016 



A. MEC method in the SSVEP-based BCI 
MEC based method uses the SNR as a clue of the 

stimulation frequency. The diagram of figure 2 shows the 
different steps of the method. 

Fig. 2. Block diagram of the MEC method. 

The EEG signal )(tyi  is represented by a linear model 
following the equation (1). 
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Where i  is the unique electrode identifier, hN  is the 
number of harmonics, and f  is the stimulation frequency. 

The model is decomposed into the sum of three quantities. 
The first one defines the frequencies of interest where kia ,  and

ki ,  are respectively the specific amplitudes and phases, the 

second is a nuisance signals )(tz j  such as the artifacts where 

jib ,  is the weight factor, and the third quantity represents the
noise. 

The aim of the two first steps of the block diagram is to 
reduce the noise level and to increase the interesting 
frequencies level. First of all, the frequencies of interest are 
eliminated by projecting the matrix Y  of the EEG signal onto 
the orthogonal complement of the matrix X  containing a pair 
of )2sin( kft  and )2cos( kft  in its columns. 

Ÿ = Y − X(XTX)−1XTY 
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Ÿ is the matrix of uninteresting signals, 

X =

[

sin (2π
1

Fs
f1)     cos (2π

1

Fs
f1) … sin (2π

1

Fs
Nhfn)     cos (2π

1

Fs
Nhfn)

⋮ ⋮ ⋮

sin (2π
Nt

Fs
f1)     cos (2π

Nt

Fs
f1) … sin (2π

Nt

Fs
Nhfn)     cos (2π

Nt

Fs
Nhfn)]

 



sF  is the sampling frequency, tN  is the number of 
samples, and nff ...1  are the stimulation frequencies. 

In the second step, the principal component analysis (PCA) 
is utilized to find a linear combination minimizing the variance 
of the matrix Ÿ. The application of this linear combination on 
the original matrix Y  allows the creation of the matrix S  with 
a reduced noise level.  

In the following steps, the SNR values, as described in 
equation 3, are measured then the stimulus frequency that 
maximizes the SNR is considered as the frequency of interest. 

)(/)()( ffPfSNR 




Where )( fP  is the signal power function and )( f  is 
an estimation of the noise power. 

B. CCA method in the SSVEP-based BCI 
The CCA allows to compare two groups of variables in 

order to know if they describe the same phenomenon. In the 
SSVEP-based BCI, the CCA is used for a comparison between 
the multi-channel EEG signals and a reference signal 

if
R

including the stimulus frequencies and the harmonics. 
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Figure 3 depicts the different steps of the CCA based 
method. The value of the frequency of interest is the same as 
the reference frequency that maximizes the correlation 
coefficient.  

395 | P a g e
www.ijacsa.thesai.org 

(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 7, No. 9, 2016 



Fig. 3. Block diagram of the CCA method.

C. MSI method in the SSVEP-based BCI 
The MSI method estimates the synchronization index 

between the EEG signal Y  and the reference signals 
if

R . 

The correlation matrix between two sets of data Y  and R
is given by the equation (5): 
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and M  is the number of samples. 

To reduce the effect of the autocorrelation, the following 
linear transformation is applied to the matrix C  producing the 
matrix C̈. 

C̈ = UCUT 

Where: 
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A normalization of the eigenvalues i  of the matrix C̈ is 
given by: 
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Where:  P  is the number of eigenvalues. 

Finally, the synchronization index S  is defined by the 
equation (8).  
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The S  quantity tends towards 0 when Y  and R  are 
increasingly uncorrelated and towards 1 when Y  and R  are 
increasingly correlated. Consequently, the frequency of the 
reference which has the maximum synchronization index is 
considered as the frequency of interest. 

D. MEC method amelioration 
The EEG signals have a poor signal to noise ratio [19] 

which makes the brain activity patterns difficult to be detected. 
Nevertheless, it is not always possible to discriminate between 
the different mental tasks.  

The goal of this improvement is to reduce the noise 
sensitivity of the MEC method. Considering that interesting 
signals are composed of stimulation frequencies and 
harmonics, and the rest is noise. The noise sensitivity effect can 
be caused by the fact that a part of the noise is considered as 
relevant or a part of the interesting signal is considered as 
irrelevant. In both cases, the problem is in the separation 
between the noise and the interesting signal. Thus, this problem 
can be localized in the first step of the MEC method. 

The idea of the improvement is to use the empirical mode 
decomposition (EMD) to divide the EEG signal into useful and 
noise signals instead of using the matrix projection. 

The EMD was firstly proposed by Huang et al. [20] as an 
efficient method to evaluate the frequency and amplitude of 
time-series with excellent time resolution. It divides the 
original signal into some Intrinsic Mode Functions (IMF), 
which are different scales of oscillation components, and a 
residue. The sifting process described as follows leads to 
extract each IMF and the residue. 

Initially, the first residue and the first difference take the 
value of the initial EEG data. 

 Step1: Locate the local maxima and minima of the
difference.

 Step2: Calculate the lower and the upper envelop using
these extrema.

 Step3: Calculate the mean by averaging the upper and
the lower envelop.
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(a) 

(b) 

 Step4: Calculate the new difference by subtracting the
mean from the previous difference.

 Step5: If the stopping criteria are satisfactory, then the
last calculated difference is an IMF, otherwise go to
step1 and continue the process step by step.

 Step6: Calculate the new residue by subtracting the last
IMF from the previous residue.

 Step7: If the new residue is not isometric then repeat the
process from step1. Otherwise, the sifting process is
ended, and the last found residue is considered as the
final residue of the process.

The stopping criteria are a compound of two conditions. 
First, the number of extrema and the number of zero crossing 
must be either equal or differ by one at most. Second, the 
standard deviation (SD) is smaller than a predetermined value. 
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Where:  ih  are the vectors of differences;  k  is the 
differences counter and T  is the period of considered samples. 

Figure 4 illustrates the result of the sifting process for a 
SSVEP signal during the period of 2s. 

Fig. 4. Decomposition of the original signal in IMFs and a residue. 

Each IMF has a higher frequency than the next extracted 
one. The residual which is the lowest frequency component 
represents the trend of the signal. 

The spectral analysis of the IMFs allows to separate them 
into three groups. The first contains the IMFs located in a 

lower frequency band than the stimulus frequency. This 
frequency and its neighbors constitute the frequency band of 
the second group. The last one contains the IMFs characterized 
by several scattered frequencies higher than the stimulation 
frequency. 

Figures 5 (A)-(B) illustrate the Normalized Amplitude 
Spectrum (NAS) of different IMFs, defined in equation (10). 
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Where:  x  is an IMF time series,  )(xFFT  is the fast 
Fourier transform of x , and M  is the number of FFT points. 

Fig. 5. Spectral analysis of the IMFs: (A) separation between the three 
groups, (B) spectrum of the stimulation frequency group.

The IMFs located in the first group are considered as noise 
containing neither stimulation frequencies nor harmonics. To 
discriminate between the first and the second group, a 
decision-making criterion is required. R. Sharma et al. [21] 
have used the sample entropy (SampEn) as a complexity 
measure of IMFs extracted from EEG signal. This experiment 
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shows that the SampEn decreases from one IMF to the next. 
Therefore, SampEn can be a good criterion to separate the 
IMFs of the first group from the IMFs of the second. Likewise, 
IMFs which have a SampEn inferior to a predetermined 
threshold are considered as noise components. 

After subtracting the IMFs of the first group from the 
original signal, the remainder can be considered as interesting 
or a mixture between the noise and the interesting signal 
according to the level of noise. The central frequency of the 
second IMF is in the stimulus frequencies band. Its NAS 
indicates the noise level. If the NAS is superior to a 
predetermined threshold, the signal to noise ratio is high 
enough and the first step of the MEC method is ended. 
However, in the second case, a filtering is needed to exclude 
the rest of noise while keeping the sharpest EEG signal 
response. The moving average filter is optimal for this kind of 
issue. In spite of its simplicity, it ensures a low curve shape 
change to keep valid the previous decompositions. To produce 
each point, some input points are averaging according to the 
equation (11). 
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Where ix  is an input point, iy  is an output point, and M
is the number of points in the average. 

When M increases the noise decreases but the acute curve 
angles become obtuse. The best choice of M  is about eleven 
[22]. 

V. RESULTS AND DISCUSSION 
For the comparison purpose, the previously presented 

methods were implemented as well as the MEC proposed 
amelioration. The experiment results allow to validate the 
amelioration. 

A. Separation between noise and interesting signal 
The SampEn calculates the probability that epochs of 

window length m that are similar within a tolerance r remain 
similar at the next point [23]. A study of the different possible 
combinations shows that the best values of m and r are 6 and 
0.2 respectively. Also, the best choices of the thresholds are 0.1 
for the SampEn and 0.08 for the NAS. 

Figure 6 reports an example of the extracted noise and 
interesting signal from the EEG recording. In the interesting 
signal, the stimulus frequency dominates the harmonics 
frequencies as it has a higher amplitude response than them [8]. 
Moreover, it follows the shape of the EEG signal i.e. the 
original features are maintained. The Nuisance signal 
frequency seems to be higher than the interesting signal as it 
includes the artifacts. 

Fig. 6. Extracted noise and interesting signal using the proposed 
improvement. 

B. Stimuli color effect on different recognition methods 
Overlapping over several recording intervals can lead to 

improve the precision of the system. In this experiment, five 
intervals of a length of 3s each and with a gap of 0.25s were 
used. The idle period is fixed to 4s. The experiment consists of 
changing the colors of the three used LEDs. The colors are 
white, green, red, blue, and yellow. Table 1 illustrates the 
impact of the colors on the system accuracy rates using the 
processing methods mentioned before. The results show that 
the responses of white and yellow colors evoked an accuracy 
exceeding the 80%. However, the precisions with red, green, or 
blue stimuli are lowest. 

The white and the yellow color are the brightest which 
explains this result. In fact, D. G. Albrecht et al. [25] examined 
the effect of the contrast intensity of the visual stimulation on 
neurons from the Visual area one V1 or the striate cortex. 
These neurons are sensitive to the object features at which the 
subject gazes as the color and the direction. The results show 
that the response of a striate cell increases as the contrast 
intensifies. The Accuracy rate using a white color is most 
stable and high. This consequence justifies the choice of the 
white color for the next experiments. 

TABLE I. SSVEP RESPONSES TO STIMULI OF DIFFERENT COLORS  

Method 

MEC MSI CCA 

Color Yellow 44% 89% 72% 
Blue 50% 55% 55% 

Green 67% 78% 78% 
Red 50% 67% 67% 

White 72% 83% 83% 

C. Noise level effects on different recognition methods 
As explained before, the nature of the light source has a 

great effect on the noise level. In the next experiment, two 
kinds of white light LEDs are used in order to verify the noise 
sensitivity of each method. The first is the universal LEDs with 
3mm and the second is the chips on board (COB) LEDs. COB 
LEDs embedded ten LEDs in a circular surface with a diameter 
of 35mm. Therefore they can produce a sufficient light 
intensity without causing fatigue or losing the subject 
concentration. The subjects were asked to follow the scenario 
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of the previous experiment. Figure 7 presents the accuracy 
rates of MEC, CCA, and MSI methods for the five subjects 
with the 3mm LEDs. It is clear that the high level of noise 
leads to decrease the performances of all processing methods.  

Fig. 7. SSVEP responses to 3mm LEDs stimuli with different processing 
methods. 

Table 2 illustrates the percentage of correct recognitions for 
each method using 3mm LEDs. 

TABLE II. AVERAGE ACCURACY OF EACH METHOD WITH 3MM LEDS 

Method MEC MSI CCA 

Accuracy 

rate 

75.55% 77.77% 81.1% 

The MEC responses remain the lowest even if the accuracy 
values are close. 

In the next section, The COB LEDs replace the universal 
ones. Figure 8 illustrates the results of different methods. 

Fig. 8. The accuracy values with COB LEDs stimuli. 

The experimental results show that all methods performed 
better using COB LEDs than using 3mm LEDs. Thus, the level 
of noise decreases using COB LEDs. 

Table 3 illustrates the percentage of correct recognitions for 
each method using COB LEDs stimuli.  

TABLE III. AVERAGE ACCURACY OF EACH METHOD WITH COB LEDS 

Method MEC MSI CCA 

Accuracy rate 

(COB LED) 

86% 95.55% 95.55% 

Amelioration value 

(%) 

10.28% 22.85% 17.8% 

Although the three methods are noise sensitive, MEC 
remains largely poorer. This method is influenced even with 
little noise levels. 

D. Application of the proposed improvement 
The goal of this experiment is to validate the proposed 

improvement procedure of MEC method for the SSVEP 
features recognition. The COB LEDs are the light sources. The 
study of the average accuracy rates of MEC, CCA, and MSI 
methods allows to compare their noise sensitivities as well as 
the improved MEC for the five subjects. Three data intervals of 
2s with a gap of 0.25s were used to identify the target. 

Table 4 summarizes the performances of the different 
methods. 

TABLE IV. RECOGNITION METHODS PERFORMANCE 

Method CCA MSI MEC Improved 

MEC 

Accuracy 

rate 

96.66% 96.66% 83.33% 98.88% 

The proposed improvement produces more precise results 
in selecting the stimulation frequency.  It ameliorates the 
accuracy of the MEC method by about 13%. Thus, MEC 
becomes efficiently resistant to the noise. This method 
becomes even more performant than other methods and 
reaches 99% with a total recording interval of 2.5s. This 
investigation confirms the hypothesis that is using the EMD 
and the moving average filter allows to separate noise and 
artifact from the interesting signal. EMD decomposes a 
nonlinear and nonstationary signal into a sum of IMFs without 
the need of prior knowledge. In fact, it is an adaptive technique 
depending on the local characteristic of the signal which 
explains its compliance with the moving average filter. The 
results confirm the validity of the improvement. 

E. Information-transfer rate 
One of the most used metrics to evaluate the performance 

of BCI systems is the information-transfer rate (ITR). Wolpaw 
et al. [26] have proposed the most popular method for ITR 
calculation as defined in equation (12). 

 )1/()1(log)1(loglog 222  NPPPPNB




Where B is the ITR (bits/symbol), N is the number of 
possible commands and P is the classification accuracy. In 
order to make this quantity easier to understand, another ITR 
definition tB  in bits/min which is derived from B is generally 
used. 

)/60(* TBBt   

Where T is the average time needed to convert a brain 
feature activity into a command. 

A higher ITR leads to a better and more natural use of the 
system. In fact, this criterion reflects the time during which the 
subject has to gaze at the target and the number of commands 
needed to reach the destination. In order to foster this criterion, 
another light source was added to the stimulation system. Also, 
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the idle period and the trial length have gradually been 
reduced. Moreover, in order to reduce the number of needed 
time intervals, a decision is made as soon as the same target is 
identified three times by the system in which the total number 
of intervals is equal or less than five. Otherwise, if five-time 
intervals are processing without recognizing the target, the trial 
is considered as erroneous. Table 5 illustrates a comparison of 
the CCA method and the proposed method where the idle 
period is equal to 0.5s and the interval is equal to 2s. A lower 
interval decreases enormously the accuracy of the system and 
obviously increases the time cost needed to fix the wrong 
choices.  

TABLE V. MEAN ITR AND ACCURACY AS A FUNCTION OF NUMBER OF 
TARGETS FOR CCA AND IMPROVED MEC METHODS 

Method 

Improved MEC CCA 

3 targets 4 targets 3 targets 4 targets 

Average 

accuracy 

rate 

95.5% 91.78% 91.11% 88.14% 

Average 

trial length 

3.108s 3.222s 3.046s 3.133s 

Average 

informatio

n-transfer 

rate 

(bits/min) 

24.617 27.18 20.944 24.64 

The results of this experiment show that the proposed 
method remains better even with the new scenario. The system 
can reach acceptable performances with four commands. 

VI. CONCLUSION

Steady State Visual Evoked Potential is the most effective 
solution for BCIs in everyday use. Its low required training and 
high accuracy rate make its use close to the ordinary one. 
Three LEDs with different frequencies (8, 9 and 10 Hz) were 
used during the first experiments. Later an additional LED 
flickers at 11 Hz was added. Each LED represents a possible 
direction to control the navigation of an electric wheelchair. 
The EPOC EMOTIVE headset was used to acquire data from 
the five volunteers. Only the closest six electrodes to the 
occipital area were used. In this study, a new amelioration to 
improve the robustness against the noise of the Minimum 
Energy Combination method was proposed. Results prove that 
the stimulus characteristics have a great impact on the noise 
level in the SSVEP signal. The use of COB LEDs allows to 
increase the SNR. Also the white color increases the excitation 
of neurons from the visual cortex of the brain and allows to 
reach the best accuracy values. The Canonical Correlation 
Analysis and the Multivariate Synchronization Index based 
methods serve as references for comparing their performances 
with the performances of the proposed improvement. The 
results indicated that the improved MEC method performed 
better than the widely used CCA and MSI. The average 
accuracy rate reaches 99% and increases by about 13% 
compared to the original MEC with a data length of 2.5s using 
three targets. Also using four targets, the system reached an 
average information-transfer rate of about 27.5 bits/min. This 

makes the system more suitable for the wheelchair navigation 
command.  
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