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Abstract—A vehicular ad hoc network (VANET) is an 
emerging technology that has the potential to improve road 
safety and traveler comfort. In VANETs, mobile vehicles 
communicate with each other for the purpose of sharing various 
kinds of information. This information is very useful for 
preventing road accidents and traffic jams. On Contrary, bogus 
and inaccurate information may cause undesirable things, such 
as automobile fatalities and traffic congestion. Therefore, it is 
highly beneficial to consider risk before vehicle takes any 
decision based on the received information from the surrounding 
vehicles. To overcome these issues, we propose a new risk-based 
decision method for vehicular ad hoc networks. It determines a 
risk-based the three key elements: 1) application type and 
sensitivity level, 2) vehicle context and 3) driver’s attitude. This 
paper also provides theoretical analysis and evaluation of the 
proposed method, and it also discusses the applications of the 
proposed model. 
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I. INTRODUCTION 
In vehicular ad hoc networks (VANET), vehicles and 

roadside units (RSUs) communicate with each other by sharing 
various types of information, such as safety-related warning 
messages. This collaborative communication is very helpful in 
avoiding road accidents and traffic congestion. However, 
accuracy and reliability of the received information need to be 
evaluated first before vehicle takes any decision, such as 
change of lane or road, etc. For this purpose, various 
researchers [1-7] recommend the use of trust management 
schemes in VANETs. 

Many trust management methodologies [1-7] exist in the 
literature that mainly focuses on evaluating the trustworthiness 
of the received data in VANETs.  However, less attention is 
given to the decision-making. From VANET’s perspective, 
decision making is very critical, because consequences of any 
wrong decision could be disastrous, such as fatal road 
accidents. In most of the trust management approaches, the 
decision logic is straight forward. For example, a message 
having the maximum trust value is accepted [4], or any 
message that is coming from the vehicle whose reputation is 
good is accepted [5]. Some researchers used simple majority or 
weighted majority voting techniques [6] for the decision 
making. However, most of the existing works do not consider 
risk in the decision making in VANETs. 

A risk can be defined as a level of uncertainty resulting 
from the potential for a negative outcome. In the VANETs, it 
can be viewed from an application sensitivity level. In general, 
VANET applications can broadly be categorized into three 
types: 1) safety applications, 2) traffic efficiency applications, 
and 3) infotainment applications. A message that is generated 
by a safety application may have higher sensitivity level than a 
message which is generated by a traffic efficiency application. 
Similarly, messages that are generated by a traffic efficiency 
application have higher sensitivity level than an infotainment 
application messages. So, the application which has high 
sensitivity level imposes high risk. Furthermore, two or more 
conflicting messages belonging to the same application may 
impose various risks depending upon its consequences. Other 
than the application type, risk can also be evaluated by 
considering other contextual attributes that can affect the 
physical and mental condition of the driver, etc. [8]. 

Consider two messages m1 (“Road X is icy at intersection 
X-Y”) and m2 (“Road X is dry at intersection X-Y”) are received 
by the vehicle from the surrounding vehicles. With the help of 
any existing trust management scheme, assume that the trust 
value of m1 is 0.4 that is higher than the trust value of the 
message m2 (e.g., 0.3). So, m1 is considered more trustworthy 
than m2. However, from the sensitivity level perspective of the 
application, trust value of m1 is less than the acceptable 
threshold value (e.g., 0.5). Now, the problem is:  How much 
risk we are willing to take to accept some relatively trustworthy 
message? Or in other words: “If the trust level of the message 
is low with respect to the sensitivity level of the application, 
should we accept that message?” This is the critical and 
challenging problem, which is commonly overlooked during 
the decision-making process in vehicular networks. 

In this work, we have proposed a new fuzzy risk-based 
decision method for vehicular ad hoc networks. In this method, 
the risk is estimated based on three key factors: 1) application 
type and it’s sensitivity level, 2) vehicle context and 3) driver’s 
attitude. The use of these three dimensions in the risk 
estimation makes our proposal unique. Furthermore, it also 
provides a better degree of completeness. We have provided 
solutions to measure risk in both qualitative and quantitative 
manner, which will increase its applicability in various 
scenarios. Additionally, we have also provided a data set that 
can be used to create benchmarks for the comparison purposes. 

The rest of the paper is organized as follows. Section 2 
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discusses the related work. Section 3 describes the proposed 
fuzzy risk-based decision method. Section 4 contains analysis 
and evaluation of the proposed method. Section 5 depicts the 
applications of the proposed method. Finally, section 6 
concludes the paper and outline future work directions. 

II. RELATED WORK 
Decision making is usually described as a mental process 

of selecting the best one from judging multiple options or 
alternatives [9]. The decision-making process commonly 
involves the following five activities [9][10][11]: 

• decision problem identification; 

• relevant information collection and verification; 

• identification of the decision substitutes; 

• foresee the consequences of decisions; 

• decision making; 

In this work, we are mainly focusing on the decision-
making process of trust models that are primarily used for 
making reliable decisions. However, existing trust models do 
not consider the consequence of a wrong decision, which we 
are referring here to a risk. Description about the decision-
making process of existing state-of-the-art trust models is given 
below. 

Shaikh and Alzahrani [1] have proposed a trust 
management scheme for VANETs. The unique thing about 
their method is that it evaluates trust in an environment where 
identities of nodes are not known. It works in three phases. 
Firstly, each receiver node will measure a confidence value for 
each received message that is based on four parameters: 1) 
Time closeness, 2) Location closeness, 3) Time verification 
and 4) Location verification. Secondly, it calculates the trust 
value for each unique message. Finally, it takes the decision. 
The decision process is comprised of two steps:  First, it selects 
the message which has the highest trust value. Second, if the 
selected message’s trust value is exceeding the least acceptable 
threshold value, then the message will be accepted. Otherwise, 
it will be discarded. 

Cohen’s et al. [2] proposed trust method first measured the 
confidence value for each received report that is based on 
various factors, such as, history, time, location and role. After 
that, the method will take the decision. For this purpose, they 
adopted majority-based trust model. If the majority confidence 
is greater than the acceptable threshold and the number of 
reports is greater than the pre-defined variable ‘n,’ then the 
method will follow the advice in the report. Else, it will follow 
the advice of the report with the highest confidence value. 

Mármol and Pérez [5] have proposed a trust and reputation 
method for vehicular networks. In their model, whenever a 
node receives a message, it first assesses the reputation of the 
sender. It is measured based on three factors: 1) history, 2) 
recommendation from the neighbor vehicle, and 3) 
recommendation from the central authority via roadside units 
(RSUs). Based on the reputation score, a sender is classified 
into one of the three trust levels: 1) untrusted, 2) +/- trust, and 
3) trusted. These levels are represented as fuzzy sets. After 

that, receiver node takes the decision. If the sender node 
belongs to first set (not trusted), then the message is rejected.  
If it belongs to a second set (+/- trust), then the message is 
considered reliable with tunable probability. However, it will 
not be broadcasted or forwarded to any other node. If the node 
belongs to a third set (trusted), then the message is accepted. 

Wei and Chen [7] have proposed an adaptive decision-
making method for improving the efficiency of the trust 
management system of VANETs.  The objective of their work 
is to make the quick accurate decision. The decision-making 
process will trigger in two cases: 1) when the number of 
messages received is more than the specific threshold (Mmax

rsu ), 
or 2) when the time delay is exceeding the specific threshold 
(twaitrsu ). Once the decision-making process triggered, it will take 
the decision by looking at the overall trust value of the event. If 
the trust value is greater than the given threshold value (Tthld), 
then the positive decision will be taken. Else, the method will 
consider that message as untrustworthy one. 

U. F. Minhas et al. [12] have proposed a multi-faceted trust 
modeling framework for VANETs. In that framework, authors 
have incorporated the concepts of role-based trust, experience 
based trust, and majority-based trust. Among these three 
aspects, first two are used to select the advisors. Based on the 
recommendation of the selected advisors, the system takes the 
decision by adopting majority voting technique. 

Tajeddine et al. [13] have proposed a framework which 
focuses on trust, reputation, and privacy-preserving trust 
system. In their paper, authors have shown that group decision 
and trust calculation of the received message are useful to 
increase the security in the VANET. Through this framework, 
the privacy of the users is respected using group decision 
organized by group management. Also, it provides security 
through trust and reputation. From this model, many attributes 
of security affecting trust calculation can be established using 
the group decision. 

Huang et al. [14] have shown that simple voting for 
decision-making, leads to oversampling and gives wrong 
results using their proposed research. From this, they claimed 
that decision making based on trust management in mobile ad 
hoc networks is not suitable to VANET. 

According to [15], authors have mentioned that intelligent 
transport system is maintainable through the appropriate signal 
quality which improves the decision-making ability in the 
VANET. Through the appropriate channel, decision-making, 
and solutions based on signal interference, strength and quality 
can be improved. The TrafficInfo algorithm is used to 
minimize the risk based on collisions and adjusts the number of 
dissemination reports included in the transmission. Risks are 
reduced through the adaptive control of transmission size [16]. 
The quality of the route which influences with VANET 
depended on the multi-metric routing decisions is proposed in 
[17]. 

Yang et al. [18] have proposed a dynamic three-layer 
reputation evidence decision and management mechanism, 
which combine with Dempster-Shafer evidence integration 
mechanism to distinguish selfish nodes and the risks which are 
suspect collusion vehicle nodes. A hierarchical Reputation 
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Evidence Decision System (REDS) based on the Dempster-
Shafer evidence theory is defined to establish the reputation 
management which increases the reputation accuracy in the 
VANET. Through this theory, the degree of trust can be 
calculated. 

Fernandes et al. [19] have proposed a decentralized 
reputation system for vehicular networks (RS4VANET). The 
objective of this system is to guarantee the proper operation of 
a data dissemination application in the presence of malicious 
nodes. The proposed system follows an optimistic approach 
and uses various techniques to assess the trustworthiness of 
vehicles. For the decision-making, authors have adopted the 
concept of voting schemes. 

III. PROPOSED SOLUTION 
As discussed earlier, risk can be derived from the 

application sensitivity level. Other than the application, 
different other factors could also be used in risk estimation as 
shown in Fig. 1. Our proposed risk assessment framework is 
composed of three factors: 1) Application type, 2) Vehicle 
context and 3) Driver’s attitude. 

 
Fig. 1. Risk Estimation factors for VANET 

The USA National Institute of Standards and Technology 
(NIST) [20] has defined risk as follows: 

Risk =  Threat likelihood × Impact (1) 

At a high-level, we adopt the same definition. In our 
context, we determine the threat likelihood based on the 
vehicle context as well as driver’s attitude and the impact based 
on the application sensitivity level. 

A. Impact 
The impact can be derived from a sensitivity value of the 

application. The higher the sensitivity value of the application, 
the higher the impact will be. There are two possible cases in 
which the impact can be derived: when the sensitivity value of 
an application is available or when it is unavailable. 

Case 1:  when the sensitivity value of an application is 
known 

Let us assume that the sensitivity value [0, 10] is assigned 
to each application by the vendor. Assigning sensitivity value 
(Sv ) from a specific range to an application is a subjective 

matter. Therefore, we decided to use fuzzy logic to derive an 
impact level. This process is composed of two steps. In the first 
step, we determine the level of impact based on the sensitivity 
value, and in the second step, we determine the impact value in 
a quantitative manner by applying a mapping function. 

Let us assume that there are three levels of impact: Low, 
Medium, and High, which can be considered as three sets. As 
compared to the classical set theory, the operations on fuzzy 
sets are based on the membership functions, which are 
typically linear and often take the shape of a triangle, trapezoid, 
or L [21]. The objective of the membership function is to 
determine the degree of truth that the element (i.e. sensitivity 
value) belongs to the particular set (i.e. low, medium or high). 

In this work, we used Trapezoidal-shaped membership 
function. The reason for using this function is that it increases 
the flexibility, and it also allows an ‘interval of values’ that 
maximized the individual membership functions [22]. For 
example, Fig. 2 shows the trapezoid shape for low, medium 
and high fuzzy sets for sensitivity values. Mathematically, the 
membership functions that are shown in this figure are 
specified as below. 

fLow  (Sv) = max(min(Sv + 1, 1 ,3 − Sv), 0) (2) 

fMedium (Sv) = max(min(Sv − 2, 1, 7 − Sv), 0) (3) 

fHigh (Sv) = max(min(Sv − 6, 1, 11 − Sv), 0) (4) 

Note that the key feature of the fuzzy set is that there is no 
hard rule how boundaries of membership functions are defined. 
These can be set by taking input from the experts. 

 
Fig. 2. Impact determination example using fuzzy set 

After determining the impact level, we applied the 
following function to derive an impact value in a quantitative 
manner. 

Impact  (Sv) =

⎩
⎪
⎨

⎪
⎧0 fLow (Sv) == 1 //low impact

1 fMedium (Sv) == 1 //medium impact
2 fHigh (Sv) == 1 //high impact
2 else //default value

 (5) 

In this function, we mapped the low, medium and high 
‘impact levels’ with ‘impact values’ zero, one, and two 
respectively. However, other values could also be used by 
keeping the following condition intact. 
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v(Low) < 𝑣(Medium) <  𝑣(𝐻𝑖𝑔ℎ) (6) 

Where v represent the value. Note that in this function (Eq. 
5), the default value is same as the highest value. The reason 
for adopting this pessimistic approach is to avoid any 
undesirable things that may occur in the vehicular networks. 

Case 2:  when the sensitivity value of an application is 
unknown 

In the absence of sensitivity value, the impact can be 
derived from the application type. As discussed earlier, there 
are three types of applications: infotainment applications, 
traffic efficiency applications, and safety applications. Based 
on the application type, we can determine the sensitivity level, 
and that will be used to determine impact. 

The sensitivity level of infotainment applications, traffic 
efficiency applications, and safety applications can be assigned 
as low, medium and high respectively as shown in Fig. 3. 

 
Fig. 3. Sensitivity level of VANET's applications 

To estimate impact in a quantitative manner, we first assign 
numbers to the sensitivity levels of the application in the 
following manner. 

 Sl = {Low = 0, Medium = 1, High = 2} (7) 

Note that different labels and numbers could also be used. 
Formally, we can define the relationship between the impact 
and Sl in the following manner. 

Impact ∝ Sl (8) 

The above relationship shows that the impact is directly 
proportional to the sensitivity level of the application (Sl). 

B. Threat Likelihood 
Threat Likelihood can be measured based on the vehicle 

context (Vcontext) and driver’s attitude (Dattitude). 

Threat likelihood = β1Vcontext + β2Dattitude ; 

  β1 + β2 = 1  
(9) 

Where β1 and β2  represent the weight values for Vcontext 
and Dattitude parameters respectively. 

1) Vehicle context 
Vehicle context can be determined based on the following 

factors: 
a) Lane (𝐿𝑒), e.g., straight, curve, winding, Uphill, 

Downhill, Intersection, Corner. 
b) Road(𝑅𝑑), e.g., dry, wet, icy. 
c) Traffic(𝑇𝑐), e.g., a car in front, car on left, car on 

right, a car in rear. 
d) Weather (𝑊𝑟),  e.g., clear, raining, snowing, foggy, 

windy. 

e) Speed(𝑆𝑑), e.g., accelerating, decelerating. 
f) Time(𝑇𝑒), e.g., day, night, dusk, dawn. 

Table 1 shows the fuzzy risk levels for the values of the 
above-mentioned factors. 

TABLE I. VEHICLE CONTEXT PARAMETERS 

Lane 
 (𝑳𝒆) 

Weather  
(𝑾𝒓) 

Time  
(𝑻𝒆) 

Traffic  
(𝑻𝒄) 

Road 
 (𝑹𝒅) 

Speed 
 (𝑺𝒅) 

Straight  
(L) 

Clear 
(L) 

Day 
(L) 

Car in front 
(H) 

Dry 
(L) 

Accelerating 
(H) 

Curve  
(H) 

Raining 
(L) 

Night 
(H) 

Car on left 
(M) 

Wet 
(M) 

Decelerating 
(L) 

Winding  
(M) 

Snowing 
(H) 

Dusk 
(M) 

Car on right 
(M) 

Icy 
(H) 

 

Uphill  
(M) 

Foggy 
(H) 

Dawn 
(M) 

Car in rear 
(H) 

  

Downhill  
(M) 

Windy 
(M) 

    

Intersectio
n  

(H) 

   L = Low Risk 
M= Medium Risk 

H = High Risk 
Corner  

(H) 
   

Based on these factors of vehicle context, we can determine 
the risk in the following manner: 
Vcontext = max(w1Le , w2Rd , w3Tc , w4Wr , w5Sd , w6Te) ;  

 ∑ wi = 16
i=1   

(10) 

Where wi  represents the weight value for the specific 
parameter. 

2) Driver’s attitude 
To derive driver’s attitude, we use two factors in our 

model: 1) Age (A) and 3) Experience (E). 

Dattitude = max(α1A,α2E) (11) 

Age and experience play a vital role in the driving 
performance. Younger drivers and old drivers are mostly 
involved in an accident more than middle age drivers. There is 
no consensus regarding higher threshold age for young drivers 
and lower threshold age for old drivers. As stated in [23], 65 is 
a most commonly accepted age for defining the older driver 
and it is an age where accident rate begins to increase. Upper 
limit defined for the younger drivers is 25 [24]. We can 
determine the risk based on the age factor in the following 
way. 

A = �
Low if   35 < Age ≤ 75              

Medium if   25 < Age ≤ 35              
High if   Age ≤ 25 OR Age ≥ 75

 (12) 

We can determine the risk based on the experience factor in 
the following way. 

• Low, when the driver has experience of more than 30 
years. 

• Medium, when the driver has experience of more than 
ten years and less than 30 years. 

• High, when the driver has experience of fewer than ten 
years. 
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Formally, we can define these rules in the following way. 

E = �
Low if   𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 ≥ 30             

Medium if   10 < 𝐸𝑥𝑝𝑒𝑟𝑖𝑒nce < 30  
High if   𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 ≤ 10             

 (13) 

C. Qualitative Risk estimation 
As mentioned in Equation 1, the risk is the product of threat 

likelihood and impact. This formulation gives us the 
quantitative value of the risk. In some scenarios, we may want 
to determine risk in a qualitative manner. In such situations, we 
need some mapping function that can be used to convert 
quantitative values in a qualitative manner. 

Let us assume that the maximum value of a risk is n and the 
number of risk levels is k. Then we can use the following 
mapping function. 

Risk level

=

⎩
⎪
⎨

⎪
⎧level − k (k − 1)n

k� < 𝑅𝑖𝑠𝑘 ≤  𝑛

⋮
level − 2

⋮
n

k� < 𝑅𝑖𝑠𝑘 ≤  2n
k�

level − 1 0 ≤ Risk ≤  n
k�  

 
(14) 

Example: Assume that the maximum risk value is two, and 
there are three risk levels (low, medium and high). In this 
scenario, the above-mentioned mapping function will be 
simplified in the following way. 

Risk level =

⎩
⎨

⎧ High 2 × 2
3� < 𝑅𝑖𝑠𝑘 ≤  2

Medium 2
3� < 𝑅𝑖𝑠𝑘 ≤  2 × 2

3�

Low 0 ≤ Risk ≤  2
3�

 (15) 

IV. THEORETICAL ANALYSIS AND EVALUATION 
As mentioned earlier, we have determined risk based on the 

product of impact and threat likelihood. We derived the impact 
based on the sensitivity level of the application and threat 
likelihood based derived from vehicle context and driver’s 
attitude. To find out the impact of various parameters on the 
cumulative risk, we developed a small program which 
generates 100 different scenarios as shown in Table 2 (See 
Appendix). 

For each scenario, first, we derived the impact from the 
sensitivity level [1-10] by implementing Equations 2 to 5. The 
Fig. 4 shows the impact for each scenario. One can see that the 
impact value fluctuates between 0 and 2, where 0 means low 
and 2 means high impact. 

 
Fig. 4. Impact Analysis 

To derive the threat likelihood, first, we calculate the 
vehicle context by implementing Equation 10 and driver’s 
attitude by implementing Equation 11. Vehicle context is 
shown in the form of area chart (as shown in Fig. 5) which 
illustrate cumulative totals using number over each scenario. 
Note that, in this analysis; as indicated in the caption of Fig. 5, 
the weight value assign to each parameter are not same. 

 
Fig. 5. Vehicle Context Analysis (𝐰𝟏 = 𝐰𝟒 = 𝐰𝟓 = 𝐰𝟔 = 𝟎.𝟐; 𝐰𝟐 = 𝐰𝟑 =
𝟎.𝟏) 
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The impact of Age and Experience on driver’s attitude is 
shown in Fig. 6 that is derived by applying equations 11 to 13. 

 
Fig. 6. Driver’s attitude Analysis (𝛂𝟏 = 𝟎.𝟔,𝛂𝟐 = 𝟎.𝟒) 

Threat likelihood is derived by implementing Equation 9. 
Fig. 7 shows the impact of vehicle context and driver’s attitude 
on the threat likelihood. For the demonstration purposes, we 
have assigned a higher weight to the vehicle context(β1 = 0.6) 
as compared to the driver’s attribute (β2 = 0.4). 

 
Fig. 7. Threat Likelihood Analysis(𝛃𝟏 = 𝟎.𝟔,𝛃𝟐 = 𝟎.𝟒) 

Risk determination for each scenario based on threat 
likelihood and impact is shown in Fig. 8. 

 
Fig. 8. Risk estimation based on Impact & Threat likelihood 

To determine the risk in a qualitative manner, we applied 
the Equation 15. Results are shown in Fig. 9a. According to the 
results, risk values of 14, 28 and 58 scenarios are classified as 
high, medium and low respectively as indicated in Fig. 9b. 

 
(a) 

 
(b) 

Fig. 9. Qualitative Risk estimation, (a) The risk value for each scenario, (b) 
Scenario classification w.r.t. risk level 

V. APPLICATION OF THE PROPOSED METHOD 
Our proposed method can assist existing trust management 

schemes of VANETS to make reliable decisions. For example, 
most of the trust management schemes [1, 2, 7], first measure 
the trust value based on various factors and then compare it 
with some pre-defined threshold value. If the trust value is 
greater than the threshold value, then the message is accepted. 
Otherwise, it will be discarded. Most of the researchers do not 
define how to calculate this pre-defined threshold value. The 
risk value that we are calculating in this work could be used as 
a threshold value. First order diagram of this concept is shown 
in Fig 10. 
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Fig. 10. Application of the Risk method 

Another interesting application of our proposed model is its 
use in autonomous vehicles. Recently, many organizations like 
Google have developed prototypes of driverless cars. Google 
Inc. said their self-driving car will be ready by 2020 [25]. 
Driverless vehicles need similar techniques as standard 
programs which provide the decision dynamically. In this case, 
vehicle context and application type will be useful for direct 
applications because weather conditions and road situation are 
continuously changing with many parameters considered in our 
model. Although driver’s attitude may not involve directly in 
the driverless vehicles, we can derive threat likelihood directly 
from the vehicle context. In the near future, we will see both 
regular and driverless vehicles on the roads. So, risk-based 
decision method will play a vital role. For example, when 
different drivers are driving their vehicles close to the 
driverless vehicles, this feature may be useful for providing 
safety and comfort to the passengers. 

VI. CONCLUSION AND FUTURE WORK 
Traditional decision methods are not suitable for vehicular 

ad hoc networks. Due to its sensitivity, a risk must be 
considered in the decision-making process. Therefore, in this 
work, we proposed a new fuzzy risk-based decision method for 
vehicular ad hoc networks. In this method, we derived the risk 
based on the three key factors: 1) application type and 
sensitivity level, 2) vehicle context, and 3) driver’s attitude. We 
measured risk both in qualitative and quantitative manner. 
Since benchmarks are not available for this domain, therefore, 
we have provided detailed data set (See Appendix). Based on 
this data set, we have conducted a theoretical analysis and 
evaluation of the proposed method. We hope that this will be 
helpful for the researchers in this field to come up with better 
solutions and make a comparison. In future, we would like to 
extend our model by adding more parameters like gender, 
traffic density, speed limits etc. 
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APPENDIX 

TABLE I.  DATA SET FOR RISK ESTIMATION 

# 

Se
ns

iti
vi

ty
 

le
ve

l 

Vehicle context Driver’s attitude 

Lane Weather Time Traffic Road Speed Age Experience 

1 1 Corner Clear Night Car in rear Icy Decelerating 45 40 
2 7 Corner Foggy Day Car on right Wet Decelerating 14 42 
3 5 Downhill Raining Night Car on left Icy Accelerating 20 47 
4 10 Curve Snowing Night Car in front Icy Accelerating 65 38 
5 5 Intersection Snowing Day Car on right Icy Accelerating 75 50 
6 5 Corner Snowing Day Car in front Wet Decelerating 32 45 
7 8 Curve Clear Day Car on left Dry Decelerating 53 47 
8 5 Straight Windy Night Car on left Dry Decelerating 47 20 
9 2 Corner Foggy Dusk Car in rear Dry Accelerating 24 50 
10 10 Corner Raining Dawn Car on left Dry Accelerating 29 25 
11 10 Straight Windy Dawn Car in front Dry Decelerating 22 47 
12 7 Curve Foggy Dusk Car in rear Wet Decelerating 43 34 
13 7 Intersection Clear Night Car on left Wet Accelerating 56 30 
14 7 Straight Snowing Night Car on right Dry Decelerating 18 3 
15 5 Intersection Foggy Dawn Car in front Icy Accelerating 76 13 
16 9 Straight Clear Dawn Car in rear Dry Accelerating 14 30 
17 10 Uphill Clear Dawn Car on right Icy Accelerating 38 34 
18 8 Curve Foggy Day Car in rear Dry Decelerating 12 28 
19 9 Downhill Clear Dawn Car on left Dry Accelerating 75 17 
20 2 Corner Foggy Dawn Car on right Icy Decelerating 20 39 
21 1 Corner Windy Dusk Car on left Wet Decelerating 37 50 
22 1 Corner Raining Day Car in front Wet Accelerating 50 29 
23 10 Corner Windy Night Car on right Icy Decelerating 67 14 
24 8 Straight Raining Dawn Car in front Icy Decelerating 22 31 
25 9 Intersection Raining Day Car on right Wet Accelerating 36 8 
26 1 Corner Windy Dawn Car on left Dry Accelerating 79 1 
27 5 Intersection Clear Night Car on right Dry Decelerating 20 21 
28 6 Downhill Snowing Dusk Car in front Wet Decelerating 42 6 
29 10 Corner Raining Dawn Car on left Dry Accelerating 24 41 
30 5 Downhill Snowing Dusk Car on left Icy Accelerating 39 6 
31 1 Corner Clear Night Car in front Wet Decelerating 55 50 
32 10 Corner Foggy Day Car on right Icy Accelerating 36 1 
33 6 Corner Windy Dawn Car in rear Icy Decelerating 16 42 
34 7 Curve Foggy Dawn Car in front Dry Decelerating 17 14 
35 5 Winding Raining Night Car on left Icy Decelerating 63 47 
36 10 Curve Clear Dawn Car on left Wet Accelerating 65 39 
37 3 Curve Snowing Dawn Car in rear Wet Decelerating 41 5 
38 7 Straight Foggy Dawn Car on right Dry Decelerating 22 23 
39 9 Corner Clear Dawn Car on left Icy Accelerating 49 5 
40 1 Uphill Windy Dawn Car in rear Wet Decelerating 46 50 
41 8 Curve Snowing Dawn Car on right Wet Decelerating 62 18 
42 6 Downhill Foggy Dawn Car in front Dry Decelerating 50 32 
43 6 Straight Foggy Night Car on right Icy Decelerating 40 12 
44 6 Straight Foggy Dusk Car on right Icy Decelerating 59 48 
45 9 Straight Clear Day Car in rear Icy Decelerating 28 19 
46 6 Uphill Clear Night Car in front Wet Decelerating 68 7 
47 1 Downhill Clear Day Car on left Icy Decelerating 26 41 
48 5 Intersection Foggy Dawn Car on right Icy Accelerating 65 32 
49 7 Uphill Clear Night Car in front Dry Decelerating 58 27 
50 3 Uphill Snowing Dusk Car on right Icy Accelerating 18 36 
51 10 Downhill Windy Dawn Car on right Dry Decelerating 12 40 
52 1 Winding Foggy Dusk Car on right Dry Accelerating 13 29 
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53 1 Winding Clear Night Car in rear Dry Accelerating 14 8 
54 7 Curve Clear Dawn Car in rear Dry Decelerating 60 15 
55 2 Winding Raining Day Car on right Wet Decelerating 48 44 
56 10 Straight Foggy Dusk Car in front Dry Decelerating 18 19 
57 6 Corner Raining Dawn Car on left Icy Accelerating 40 9 
58 8 Intersection Foggy Dawn Car on right Wet Decelerating 22 30 
59 6 Corner Raining Day Car in rear Dry Accelerating 62 17 
60 9 Uphill Raining Night Car in rear Icy Decelerating 31 18 
61 8 Uphill Windy Day Car in rear Wet Decelerating 21 14 
62 2 Intersection Foggy Dusk Car on right Dry Accelerating 17 33 
63 10 Winding Foggy Night Car in rear Icy Decelerating 28 33 
64 1 Downhill Clear Dawn Car on left Wet Accelerating 36 24 
65 6 Winding Clear Dawn Car in front Icy Decelerating 13 27 
66 1 Winding Raining Dawn Car on left Dry Decelerating 25 23 
67 2 Downhill Raining Dusk Car in rear Icy Accelerating 54 17 
68 2 Downhill Clear Day Car on right Wet Accelerating 25 45 
69 3 Winding Raining Dawn Car on left Dry Accelerating 72 47 
70 10 Winding Snowing Dusk Car in front Wet Accelerating 76 34 
71 2 Intersection Foggy Dusk Car in rear Icy Accelerating 46 34 
72 1 Corner Snowing Night Car in front Icy Decelerating 31 17 
73 7 Curve Clear Day Car on right Dry Accelerating 22 5 
74 5 Intersection Windy Dusk Car in rear Icy Decelerating 70 37 
75 8 Uphill Clear Dusk Car on left Wet Accelerating 54 26 
76 7 Downhill Raining Day Car in front Wet Accelerating 52 7 
77 2 Intersection Raining Dusk Car in rear Icy Decelerating 47 44 
78 2 Downhill Clear Dusk Car on left Dry Decelerating 49 28 
79 7 Uphill Snowing Night Car in front Icy Accelerating 10 40 
80 9 Intersection Raining Day Car on left Icy Accelerating 45 20 
81 1 Corner Raining Day Car on left Icy Accelerating 47 5 
82 8 Winding Snowing Dawn Car in front Dry Decelerating 47 48 
83 4 Intersection Foggy Day Car on right Icy Decelerating 54 27 
84 2 Corner Clear Night Car on right Wet Decelerating 19 46 
85 9 Straight Snowing Dawn Car in front Icy Decelerating 71 42 
86 4 Uphill Snowing Day Car on right Wet Accelerating 25 3 
87 1 Downhill Foggy Dusk Car in front Dry Decelerating 10 27 
88 7 Curve Foggy Dusk Car on left Icy Accelerating 46 21 
89 4 Curve Clear Dawn Car in front Dry Decelerating 46 31 
90 7 Corner Snowing Dusk Car on right Dry Decelerating 10 29 
91 9 Curve Windy Dawn Car on right Dry Accelerating 67 20 
92 5 Downhill Foggy Dawn Car on right Wet Accelerating 29 50 
93 8 Winding Raining Dawn Car on right Wet Accelerating 10 18 
94 9 Curve Clear Dawn Car on right Dry Accelerating 80 11 
95 10 Intersection Clear Night Car on left Icy Decelerating 78 49 
96 4 Straight Snowing Day Car on left Icy Decelerating 53 31 
97 1 Curve Foggy Day Car in rear Wet Accelerating 69 41 
98 5 Straight Snowing Dawn Car in front Wet Decelerating 57 37 
99 7 Winding Windy Dawn Car in front Dry Decelerating 42 44 
100 10 Downhill Raining Day Car in rear Wet Accelerating 67 5 
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