
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

268 | P a g e

www.ijacsa.thesai.org

Description Logic Application for UML Class

Diagrams Optimization

Maxim Sergievskiy

National Research Nuclear University MEPhI

Moscow, Russia

Abstract—Most of known technologies of object-oriented

developments are UML-based; particularly widely used class

diagrams that serve to describe the model of a software system,

reflecting the regularities of the domains. CASE tools used for

object-oriented developments, often lack verification and

optimization functions of diagrams. This article will discuss one

of the ways to present class diagram in the form of statements

description logic, and then perform their verification, and

optimization. Optimization process is based on design patterns

and anti-patterns. We will show that some transformations could

be done automatically, while in other cases suboptimal models

need to be adjusted by a designer.

Keywords—UML; domain models; description logic; concept;

role; class diagram; design patterns; anti-patterns

I. INTRODUCTION

UML has recently become the standard, widely applied
method for software design and analysis [1]. Most of the
technologies of object-oriented development (including
DevOps and Agile) use wide toolset of this language. At a
design stage, the most widely applied tools of UML are class
diagrams (CD). The main advantages of UML are high
expressiveness and declarative nature, the richness of the
structures, which are negatively affecting the ability of
automatic verification.

That is, checking whether the CD contains structural
errors, in particular, incompatible components whether
redundancy, how CD optimal from the standpoint of
subsequent implementation difficult.

It is common, that possible mistakes at the design stage
often migrate to the implementation phase leading to the need
for additional debugging. In the worst case, it could even
require an extra iteration and creation of additional prototype
that could slow down the development process. Software
redundancy is particularly relevant while performing an
integration of several autonomous components, e.g. Web
services.

There is an approach based on the use of design patterns
[2], which allows applying certain structural solutions in the
initial phase of software development. In this case, you can
immediately focus on the use of a number of standard
patterns, not to deviate from methodology associated with
them. More often, the developer has to deal with CD, which
require adjustments (these cases often occur due to the lack of
experience). The process can be organized so that changes are
performed manually in a visual format, which is simple and

clear. To avoid errors, it is preferable to perform these actions
automatically with the help of specialized CASE tools that
have built-in validation function. It is important to have a
formal description of the CD and the transformation rules in
accordance with, for example, design patterns. Besides, this
formal description should allow identifying structural errors in
class diagrams.

The rest of this paper is organized as follows: first,
Section II discusses the key targets and tools allowing
formalization of class diagrams. Then the description logic as
a basic tool of formalization CD is offered in Section III.
Section IV shows, how the CD are described using description
logic ALCQI. In Section V, concrete examples of optimization
CD are presented before concluding in Section VI.

II. FORMALIZATION OF CLASS DIAGRAMS

There are several approaches to the formal description of
class diagrams; the most commonly applied are those based on
the use of OCL, Z+ language and description logics (DL). The
real verification and transformation of texts feasible for Z
language (partially) and description logics.

Let us focus on the use of DL, provided it is the most
universal of these mechanisms. DL is widely used to describe
ontologies [3] and has been initially developed primarily for
this purpose. Since CD can be represented in the form of
ontologies, the use of DL is appropriate. From the family of
description logics the one most appropriate to describe class
diagrams should be taken. Large number of studies [4], [5],
[6] propose to use ACLQI logic, expanded capabilities
represent n-ary association relationships.

Formally, a class diagrams do not operate with objects, but
often, for example, to describe relations between classes,
objects are necessary for understanding semantics.

Let us answer the question, what formal description of CD
in the form of DL is required for?

Firstly, for a convenient formal representation of CD.

Secondly, to check consistency of CD. It is known, that the
UML semantics do not allow using certain combinations of
elements. For example, classes do not allow self-inheritance,
directly or indirectly, the class-association should not have the
same attributes as the classes associated with it, etc. Formal
description of those constraints (there are a few of them),
without complicating description logic excessively [7], does
not appear possible. Instead, additional procedures of DL

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

269 | P a g e

www.ijacsa.thesai.org

analysis could be introduced and should help to identify
errors.

Finally, third, to optimize i.e., replacement of some
structures to other, more optimal. For example, it is known
that n-ary association relationships in some cases could be
replaced by binary [8].

Let us elaborate a bit more on software systems described
by CD. Identifying an optimal CD is not a straightforward
question. For example, the use of many standard design
patterns (these include Facade, Abstract factory, Adapter)
increases complexity of CD, but improves its quality in terms
of a further generation of the code and modifiability. The
concept of complexity of a given CD could be helpful in
principal [9], but there is no consensus view on this topic. For
example, the use of interfaces often improves universality and
reuse of future program code, however it reduces usability in
the same time.

III. DESCRIPTION LOGIC

Let us describe the basic description logic ALC
(Attributive Language with Complement), which is often used
as a base to build many other logic [3].

Assume that there are a non-empty finite sets of atomic
concepts A and atomic roles R. Then the composite concepts
of the logic are defined following inductive way:

 every atomic concept A is a concept;

 the expressions T and ⊥ are concepts;

 if C is a concept, then its complement
–
C is a concept

as well;

 if C and D are concepts, then its intersection C ∩ D and
union C U D are concepts as well;

 if C is a concept and R is a role, then expressions ∀
R.C and ∃ R.C are concepts.

The axiom of inclusion of a concepts is described by the
following expression: C ⊑ D . While the axiom of an
equivalence of concepts is an expression C ≡ D, where C and
D are arbitrary concepts.

Similarly, the axiom of inclusion of a roles is described by
the following expression: R ⊑ S. While the axiom of an
equivalence of roles is an expression R ≡ S, where R and S are
any given roles.

Terminology or a set of terminological axioms (TBox) is a
finite set of axioms of the above types. Sometimes axioms for
particular roles are allocated in separate sets called role
hierarchy or RBox.

The semantics of a DL is defined by interpretation of its
atomic concepts as sets of objects chosen from a fixed set
(domain), and atomic roles as sets of pairs, i.e. binary relations
on the domain.

Formally, an interpretation I consists of a nonempty set
(domain) ∆

I
 and interpretation function, which assigns to each

atomic concept A a subset A
I ⊑ ∆

I
, and each atomic role - a

subset R
I ⊑ ∆

I
x ∆

I
. If the pair of individuals belongs to the

interpretation of a specific role R, that is

(e, d) ϵ R
I
, we say that the individual d is an R-successor

of the individual e.

An interpretation function extends to compound concepts
of logic according to the rules described in the study [3]:

For descriptions of class diagrams it is preferable to use
the logic ALCQI. Extension ALCQI relative to the ALC views
are:

Q - constraints of cardinality of roles: concepts of the form
<n R. C meaning: there is no more than n R-successors in C.

I - inverse roles: if R is a role, then R
–
 is also a role,

meaning the inverse of binary relation.

Note that ALC logic (and many of its extensions, including
ALCQI) can be considered as fragments of predicate logic
with two variables, which is solvable [10]. This allows to
transfer results of solvability, computational complexity and
decision algorithms from the field of logic predicates into the
area of description logics.

For CD we will only deal with TBox, and will be
addressing the following three problems:

1) are not axioms that describe CD in terms of DL,

conflicting, i.e., if there is a possibility for at least one formula

to be inference simultaneously with its denial.

2) is it possible to identify sets of statements (axioms),

showing the ineffectiveness of a given CD;

3) is it possible to optimize a model by modifying original

axioms (refactoring of a software model existing in the form

of DL).

IV. PRESENTATION OF CLASS DIAGRAMS IN DESCRIPTION

LOGIC

Let us describe a method of representing, or rather coding
CD in the form of DL axioms [4]. It this case class will be
matching concept, while association - role.

Each attribute A of type K of class C is represented as
follows:

 C ⊑ ∀A.К
Every operation f () : P (a result belong to P) of class C is

represented role P, for which the following is valid:

 C ⊑ ∀ Рf.Р ∩ (≤ 1 Рf. ⊥)
The generalization relation between classes C1 and C2,

obviously, is represented as follows:

 C2 ⊑ C1,
where C1 is the ancestor.

For coding parameters for relations binary association and
aggregation (aggregation degree higher than two is pointless)
we use the following [4]:

 ∃А.С2 ⊑ C1

 ∃А
–
.С1 ⊑ C2

 C1 ⊑ (≥ m1 А.С2) ∩ (≤ m2 А.С2)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

270 | P a g e

www.ijacsa.thesai.org

 C2 ⊑ (≥ n1 А
–
.С1) ∩ (≤ n2 А

–
.С1),

where C1, C2 are concepts corresponding to different
classes; A is role corresponding to a binary association; A is a
inverse role (relative to A); n1, n2, m1, m2 are numerical
values, corresponding to the multiplicities.

And finally, n-ary associations (see Fig. 1) both with a
class association, and without it, can be expressed by using the
procedure of reification [3], i.e. a transformation of n-ary
association into binary.

 A⊑ ∃R1.С1 ∩…∩∃Rn.Сn ∩ (≤ 1 R1) ∩… ∩ (≤ 1 Rn)

 С1⊑ (≥m1 R1
–
.A) ∩ (≤l1 R1

–
.A)

 . . .

 Сn⊑ (≥mn Rn
–
.A) ∩ (≤ln Rn

–
.A)

Another important relation in class diagrams is a
dependency relation. For completeness and consistency of the
model, described using UML class diagrams, this relation is
not affected. To encode the dependency relation let us
introduce the following designation:

 C1 —> C2

Fig. 1. N-ary association

This relation means that the class C2 depends on the class
C1. Will consider it as an informal extension of the
description logic.

Despite a somewhat arbitrary interpretation of the
definition of concept of inclusion concepts, study [4] proves
consistency of this coding method. Thus the first problem (1)
can be considered solved.

Problem (2) associated with the search for suboptimal
from the point of view of CD fragments of DL assertions. In
other words, a formal description CD, presented in the form of
DL, is analyzed for search notoriously inefficient parts. For
example, searched for fragments of the diagram, for which is a
more efficient model descriptions in accordance with design
templates. To solve this problem can be applied an interesting
approach based on the notion of anti-patterns design [11]. If
an anti-pattern - a suboptimal fragment of CD - is found, than
the designer is invited to change the CD.

The problem (3) – automatic conversion of assertions,
describing a given class diagram, with the aim to optimize the
model - could be solved only in certain cases, for example
using the approach, proposed in the study [8], [11].

V. EXAMPLES OF OPTIMIZATION

As examples of the applicability of the proposed
technology, we use a number of standard patterns and patterns
introduced in the study [8].

A. The pattern "the chain of responsibilities"

Investigate one of the simplest cases of this pattern (see
Fig. 2), when the request HandlerM() can be processed by the
object of one of the two classes. In this case, an abstract class
or interface could be introduced, that redirects the request to a
particular class. Then the class diagram will look as follows
(see Fig. 3).

Having a description in the form of description logic
assertions:

C 1 ⊑ ∀ Рf .Р ∩ (≤ 1 Рf . ⊥)

C2 ⊑ ∀ Рf .Р ∩ (≤ 1 Рf . ⊥)
and next informal extensions:

C —> C1

C —> C2,

where C, C1 и C2 are the classes Client, Handler1 and
Handler2, respectively, f is the operation HandlerM, we can
make a conclusion of applicability "the chain of
responsibility" pattern.

Fig. 2. Example of using of pattern "the chain of responsibilities"

Fig. 3. Result of using of pattern "the chain of responsibilities"

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

271 | P a g e

www.ijacsa.thesai.org

B. The pattern that allows a transition from ternary

association to binary

Assume that in the ternary association there is a class with
multiplicity (1). Then ternary association could be replaced
with a combination of binary association and class-
association. Class diagrams, illustrating this situation, are
shown in Fig. 4 and 5.

Fig. 4. The ternary association

Assume we have a description in the form of the following
statements of description logic:

A ⊑ ∃R1.С1 ∩ ∃R2.С2 ∩ ∃R3.С3 ∩ (≤ 1 R1) ∩

 ∩ (≤ 1 R2) ∩ (≤ 1 R3)

С1 ⊑ (≥1 R1
–
.A)

С2 ⊑ (≥1 R2
–
.A)

С3 ⊑ (≥1 R3
–
.A) ∩ (≤1 R3

–
.A),

where A is the ternary association Teaching; С1, С2, С3

are the classes Student, Subject и Lecturer, respectively;
R1, R2, R3, R1

–
, R2

–
 , R3

–
are direct and inverse roles of

classes Student, Subject и Lecturer in association
Teaching.

Then ternary association could be seamlessly replaced by a
combination of binary association and class association.

Fig. 5. Replacing ternary association on binary and class-association

C. Anti-pattern "the loop of the associations"

The idea of this anti-pattern (Fig. 6) is the following: if
semantically related associations form a loop, it is possible
that one of them is redundant and should be removed. The
removal can be done only by the designer, hence the

information about the detected anti-pattern "the loop of the
associations" should be submitted to the designer.

Fig. 6. Example of anti-pattern "the loop of the associations"

In the language of the DL it would look like this:

 ∃А1.С1 ⊑ C2

 ∃А2.С2 ⊑ C3

 ∃А3.С3 ⊑ C1,
where А1 – Effecting of payment, А2 – Order goods, А3 –

Payment order, С1 – Customer, С2 - Order, С3 – Payment.

Then the designer will be asked to remove one of the three
axioms. In this case, it would be logical to remove from the
class diagram the axiom

 ∃А3.С3 ⊑ C1
and the corresponding association relationship. This choice

is determined by the semantics of the domain area.

VI. CONCLUSION

This study describes the new approach to optimizing
software systems at the design stage. This approach consists of
the transformation of class diagrams into description logic
assertions and automated search for suboptimal fragments. For
these purposes both design patterns and anti-patterns could be
applied. Information about all detected suboptimal fragments
is transmitted to the designer, who decides on potential
modifications of the model. In addition, the system may
suggest to apply certain transformations, and further to
perform a series of transformations automatically.

The relevance of this approach is evidenced by the fact
that verification and optimization of a model could be
executed already at the design phase, which allows to
minimize the processes of error correction and refactoring.
Here are the key ideas proposed in this study:

1) A formal description of the model in the form of

description logic assertions

2) Automatic model analysis to identify suboptimal

fragments, using design patterns and anti-patterns

3) Automatic optimization of a model (for a number of

design patterns) at the description logic level

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

272 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] J. Rumbaugh, I. Jacobson, G. Booch, ―The Unified Modeling Language,
Reference Manual‖, Addison-Wesley, Reading, MA, 1998.

[2] E.Gamma, R.Johnson, Helm R., J.Vlissides, ‖Design Patterns. Elements
of Reusable Object-Oriented Software‖, Addison-Wesley, 2001

[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.F. Patel-Schneider
(Eds.), The Description Logic Handbook: Theory, Implementation and
Applications, Cambridge University Press, Cambridge, 2003.

[4] D. Berardi , D, Calvanese, and G. D. Giacomo, "Reasoning on UML
Class Diagram," Artificial Intelligence, vol. 168, pp. 70-118, 2005.

[5] A. Cali, D. Clavanese, G. D. Giacomo, and M. Lcnzerini, "A Formal
Framework for Reasoning on UML Class Diagram," in Proc. of the 13th
Int. Sym. on Methodologies for Intelligent Systems (IS-MIS 2002),
2002.

[6] A. Queralt, A. Artale, D. Calvanese, E. Teniente, ―OCL-Lite: Finite
reasoning on UML/OCL conceptual schemas‖, Data & Knowledge
Engineering 73, pp. 1–22, 2012

[7] A.Grigoriev, A.Kropotin, E. Ovsyannikova, ―The Problem of Detecting
Consistencies on UML Class Diagrams‖, in Proc. of International
scientific-practical conference ―Modern problems and ways of their
solution in science, transport, production and education‗ 2012‖,
http://www.sworld.com.ua/konfer29/721.pdf, 2013

[8] M. Sergievskiy, ―N-ary Relations of Association in Class Diagrams:
Design Patterns‖, International Journal of Advanced Computer Science
and Applications, Vol. 7. № 2. pp. 265-268, 2016.

[9] E. Niculchev, O. Deryugina, ―Model and Criteria for the Automated
Refactoring of the UML Class Diagrams‖,. International Journal of
Advanced Computer Science and Applications, Vol. 7. № 12. pp. 76-79,
2016.

[10] A. Cali, D. Clavanese, G. D. Giacomo, and M. Lcnzerini, "A Formal
Framework for Reasoning on UML Class Diagram," in Proc. of the 13th
Int. Sym. on Methodologies for Intelligent Systems (IS-MIS 2002),
2002.

[11] W. Brown, R. Malveau, H. McCormick, T. Mowbray, ―AntiPatterns.
Refactoring Software, Architectures, and Projects in Crisis‖, John Wiley
& Sons, Inc., 1998

http://elibrary.ru/item.asp?id=25526873
http://elibrary.ru/item.asp?id=25526873
http://elibrary.ru/contents.asp?issueid=1557295
http://elibrary.ru/contents.asp?issueid=1557295
http://elibrary.ru/contents.asp?issueid=1557295&selid=25526873
http://elibrary.ru/contents.asp?issueid=1557295
http://elibrary.ru/contents.asp?issueid=1557295
http://elibrary.ru/contents.asp?issueid=1557295&selid=25526873

