
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

279 | P a g e

www.ijacsa.thesai.org

Enhancing Elasticity of SaaS Applications using

Queuing Theory

Ashraf A. Shahin
1,2

1
College of Computer and Information Sciences,

Al Imam Mohammad Ibn Saud Islamic University (IMSIU)

Riyadh, Kingdom of Saudi Arabia
2
Department of Computer and Information Sciences, Institute of Statistical Studies & Research,

Cairo University,

Cairo, Egypt

Abstract—Elasticity is one of key features of cloud computing.

Elasticity allows Software as a Service (SaaS) applications’

provider to reduce cost of running applications. In large SaaS

applications that are developed using service-oriented

architecture model, each service is deployed in a separated

virtual machine and may use one or more services to complete its

task. Although, scaling service independently from its required

services propagates scaling problem to other services, most of

current elasticity approaches do not consider functional

dependencies between services, which increases the probability of

violating service level agreement. In this paper, architecture of

SaaS application is modeled as multi-class M/M/m processor

sharing queuing model with deadline to take into account

functional dependencies between services during estimating

required scaling resources. Experimental results show

effectiveness of the proposed model in estimating required

resources during scaling virtual resources.

Keywords—auto-scaling; cloud computing; cloud resource

scaling; queuing theory; resource provisioning; virtualized

resources

I. INTRODUCTION

In the last few years, Software as a Service (SaaS) has
rapidly spread in many areas. SaaS is a software delivery
model in which software is delivered to customers as a service
[1]. Instead of delivering individual application instance for
each tenant, one application instance serves thousands of
tenants [2]. Nowadays, several SaaS companies, such as
Salesfore.com, NetSuite, and Success Factors, utilize elasticity
feature of cloud computing to ensure lowest cost of service
delivery. However, developing multi-tenant SaaS application
to serve thousands of tenants with thousands of users for each
tenant is a very hard and expensive task due to large number
of factors that have to be considered during development
phases, such as customizability, security, scalability, and
pricing.

Most of current SaaS applications have been developed
using service-oriented architecture (SOA) model [1]. In SOA
model, each application is a collection of services that are
organized in several layers. Each service uses services in the
lower layer to complete its tasks. In large SaaS applications,
each service is deployed in a separated virtual machine.
Although, one of primitive assumptions is that scaling any

service has to be reflected in all required services, most of
current researches do not consider functional dependencies
between services and scale them separately. As consequence,
scaling problems are shifted from layer to next layer.
Unfortunately, the problem is not only specifying functional
dependencies between services but also specifying number of
virtual machines that have to be added or removed.

For example, suppose we have three services X, Y, and Z.
Service X uses services Y and Z to complete its tasks. Service
X receives three types of requests A, B, and C. Service X uses
service Y to complete requests of type A, uses service Z to
complete requests of type B, and uses service Y and service Z
to complete request of type C. If service X is detected as
overloaded, scaling service X independently from Y and Z
moves overloading problem to Y, Z, or both of them.
However, which service has to be scaled and what is the
optimal number of VMs instances that have to be added to or
removed from each service? This depends on types of arriving
requests. If overloading is occurred due to high number of
requests of type A, then adding more VMs to service Z will
waste resources and reduce revenue. Collecting such
information without modeling functional dependencies is a
very hard task.

Thus, this paper models SaaS applications as multi-class
M/M/m processor sharing queuing model with deadline to
consider functional dependencies and requests’ types during
estimating required scaling resources. The proposed model
reflects scaling actions on many metrics such as CPU
utilization, response time, and throughput, which are
commonly used by most of current auto-scaling techniques to
trigger auto-scaling actions. Therefore, SaaS application
providers can apply the proposed model with any auto-scaling
technique to put into account functional dependencies between
services.

Queuing network models have been extensively applied in
many areas and have proven their efficiency in representing
and analyzing resource-sharing systems such as computer
systems [3]. According to Kendall's Notation, the first M in
M/M/m queuing model represents arrival process, which is
Markov arrival process. It has been theoretically proved that if
large number of customers makes independent decisions of
when to request service, the resulting arrival process will be

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

280 | P a g e

www.ijacsa.thesai.org

Markov arrival process [4]. The second M in M/M/m queuing
model represents service process, which is Markov service
process. Third m represents number of parallel servers that
provide one service. Servers receive requests from different
classes and serve them according to processor sharing
discipline.

Effectiveness of the proposed model has been evaluated by
comparing performance of auto-scaling algorithms with and
without the proposed model. Simulation results show that the
proposed model reduces violation of Service Level Agreement
and increases revenue.

The rest of this paper is organized as follows. Section 2
describes the related work. Section 3 briefly describes the
proposed model. Section 4 experimentally demonstrates the
effectiveness of the proposed model. Finally, Section 6
concludes.

II. RELATED WORK

Although, several auto-scaling approaches have been
proposed in the last few years [6, 7, 8, 9, 10], most of current
auto-scaling approaches do not consider functional
dependencies between application’s services. Current auto-
scaling approaches can be categorized into two main
categories: reactive and proactive approaches. Reactive auto-
scaling approaches scale computational resources based on
some rules and according to some metrics such as memory
utilization, CPU utilization, throughput, and response time [15,
16, 17, 18]. However, relations between metrics of related
services are not modeled. Therefore, impact of scaling service
is unknown until its occurrence.

In another hand, proactive auto-scaling approaches trigger
auto-scaling operations based on predicted workload.
Different time series techniques such as Support Vector
Machine, Exponential Smoothing, and Neural Networks have
been used in predicting future workload [13, 14, 17, 19, 20].
Although, functional dependencies between application’s
services are very effective factors in predicting future
workload, most of current proactive techniques do not
consider it. This section overviews some of current
approaches.

Biswas, et al. [5, 21] have proposed framework to provide
virtual private cloud for a single client enterprise. Proactive
auto-scaling technique has been proposed to provision and
release resources from public cloud according to predicted
system load. Support vector machine and linear regression
have been employed to predict future load. In [6] Biswas, et al.
have proposed a reactive auto-scaling algorithm to serve
incoming requests with considering their service level
agreements. The proposed algorithm scales resources based on
profit that is gained from serving incoming requests and based
on cost benefit to the user.

Sellami et al. [7, 8] have proposed threshold based auto-
scaling approach to offer dynamic service instances for multi-
tenant business processes. The proposed approach considers
functional dependencies between each multi-tenant process
and its services during deciding scaling action. The proposed
approach has been encapsulated into middleware layer

between software and platform layers.

Xiao et at. [9] have modeled automatic scaling problem as
Class Constrained Bin Packing problem where each server is a
bin and each class represents an application. To scale
provisioned resources, semi-online color set algorithm has
been proposed. However, they have encapsulated each
application instance inside a virtual machine (VM), which is
not applicable in large applications.

Ahn et al. [10] have proposed auto-scaling method to
support execution deadline. The proposed method can handle
Bag-of-Tasks jobs and workflow jobs. Jobs in Bag-of-Tasks
can be scheduled separately from each other while jobs in
workflow have to be scheduled in order of its dependency.
The proposed method has been evaluated by using Cloudsim,
which shows that the proposed auto-scaling method increases
resources utilization.

Chaloemwat et al. [11] have tried to enhance performance
of threshold-based auto-scaling techniques by using Skewness
algorithm and VMs migration. The effectiveness of the
proposed enhancement has been proven by comparing
performance of threshold-based auto-scaling techniques with
and without the proposed enhancement.

Srirama et al. [12] has proposed resource provisioning
policy that takes into account lifetime, periodic cost and
configuration cost of each instance type to find most optimal
combination of possible instance types. The auto-scaling
problem is represented as a linear programming model.
Solution of this linear programming model will provides
optimal number of VMs instances from each instances type
that must be added or removed to achieve workload with
minimum cost. Unfortunately, linear programming model can
provide solutions for small number of VMs and cannot deal
with large systems.

Hirashima et al. [13] have proposed threshold based auto-
scaling mechanism that proactively adjusts resource to fulfill
incoming workload based on predicted workload.
Autoregressive Integrated Moving Average model has been
exploited to forecast future workload. Moreover, the proposed
mechanism reactively adapts virtual resources if unpredictable
workload arrives. However, performance of the proposed
mechanism has not been evaluated with unpredictable
workload.

Khatua et al. [14] have proposed threshold based auto-
scaling algorithm that adopts virtual resources proactively
according to predicted workload. The proposed algorithm
predicts workload by using Auto-regressive Integrated
Moving Average (ARIMA) model.

Nikravesh et al. [22] have proposed auto-scaling system,
which predict workload using two time-series prediction
algorithms: Support Vector Machine (SVM) and Neural
Networks (NN). The proposed system automatically switches
between SVM and NN based in patterns of workload. SVM is
used with periodic workload patterns while NN is used with
unpredicted workload pattern. Although, functional
dependency is an important factor in predicting workload,
functional dependency has not been considered during
predicting future workload.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

281 | P a g e

www.ijacsa.thesai.org

Liao et al. [23] have proposed dynamic threshold based
auto-scaling strategy for Amazon web services. The proposed
strategy adapts thresholds according to demand for resources.
Upper threshold is set in the range 50%–75% and lower
threshold is set to the range 5%–30%. Upper and lower
thresholds are adapted proportionally with expansion process
of VMs.

Tang et al. [24] have proposed reinforcement learning
based auto-scaling algorithm. Workload is categorized into
normal workload (daily busy-and-idle workload) and burst
workload. Auto-scaling problem is model as Markov Decision
Process (MDP) model and Reinforcement Learning is applied
to decide time to scale up or down and to decide number of
VM instances to be added or removed.

Chen et al. [25] have proposed hybrid auto-scaling
mechanism. The proposed mechanism predicts next CPU
usage rate based on historical data by applying several time
series techniques such as Autoregressive–Moving-Average
model, Autoregressive model, Exponential Smoothing model,
Moving Average model, and Naïve model. The proposed
mechanism reactively scales resources to minimize effects of
wrong workload prediction.

III. SAAS APPLICATION MODEL

This paper deals with SaaS applications that cannot be
encapsulated in one VM and are developed using Service-
Oriented Architecture model. Each service is deployed in a
separated VM instance and can be scaled up or down by
adding or removing VM instances. Each VM has a fixed
processing capacity, which is divided into equal parts among
all tasks (Processor Sharing (PS)). Thus, each task’s service
time depends on the total number of tasks that exist at the
same time. No task can run simultaneously on more than one
VM. Therefore, if number of tasks is less than number of VMs
for a specific service, each task is processed by a single VM
and the remaining VMs are idle. If number of tasks is greater
than number of VMs, tasks are processed according to
processor sharing discipline. In this paper, the term “web
service” will be used to refer to service component in SaaS
application.

Each web service receives requests from one or more
upper web services and it can complete tasks by itself or by
sending requests to lower web services. After receiving
responses from lower web services, request will be completed
and sent to upper web services as a response to its request.
Web services receive requests from different types. Each type
has its arrival rate, process rate, routing, and deadline.
Requests from the same type are collected in a chain. A chain
contains a set of classes to represent different processing
phases for a specific type. Classes are distributed among
different web services, and each request moves between these
classes during it life.

For example, suppose we have a web service (node)
with upper web services (nodes) and lower
web services (nodes) (see Fig.
1). According to processor sharing, if there are requests in
node at time , service time for these requests will be

decreased by ⁄ per unit of time. Total number of requests

that are served in node at time is calculated as:

 ∑

where is the number of requests of class that are
served in node , .

Node receives classes of requests from upper web
services and sends requests to lower web services
synchronously or asynchronously. In Fig. 2, node sends
asynchronous requests to nodes and . Chain 1
describes routing behavior of type 1 requests. Request visits
node M+1 in class a, node M+2 in class b, node M+1 in class
c, node M+3 in class d, and node M+1 in class e.

In some cases, node needs to use two or more
nodes synchronously to complete specific request. In this case,
several sub-requests are generated, processed in parallel,
combined to one request, and sent back to node . In Fig.
3, node sends synchronous requests to nodes
and . Fork node represents decomposition of request to
two or more sub-requests, which will be processed in parallel
by and nodes. Synchronizing node represents
buffer that holds completed sub-requests until it can be
recomposed with sub-requests from other sibling nodes. Join
node represents recombination of completed sub-requests to
one request again.

Fig. 1. Web service M+1 with its upper and lower web services

Fig. 2. Example of asynchronous requests from web service M+1 to M+2

and M+3

Fig. 3. Example of synchronous requests from web service M+1 to M+2 and

M+3

Service with s servers

Lower services Upper services

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

282 | P a g e

www.ijacsa.thesai.org

In multiclass M/M/m processor sharing queuing systems,
requests of class arrive to node according to Poisson
process with rate and require service time with
exponential service process. Each class of requests has a
deadline . Arrival rates and service times are all assumed to
be mutually independent. Deadline of each request class is
specified according to required Service Level Agreement.

Request that is completed at node will be sent to node
from upper nodes (nodes 1, 2, .., M), if it is completely
finished. All nodes will receive responses from other services
for their requests. Request will be sent to node from lower
nodes (nodes), if it still requires
more processing. Request will be sent from node to node
itself, if there is new program path. If deadline of any request
expires, this request will exit the system, so that

 ∑

where is the probability of sending requests from

node of class to node of class .

In root service, arrival rate of each request class is
observable and can be measured easily. Probability can

be specified by SaaS application providers based on business
process workflow of their applications.

According to Burke's Theorem [26], the departure process
from a queue is Poisson, splitting a Poisson
process randomly gives Poisson processes, and sum of
Poisson processes is a Poisson process. Therefore, is
Poisson.

In steady-state, total required service time from node at
time is calculated as

 ∑

Service time: while arrival time and departure time of each
request class are observable and can be measured easily,
service time of each request class is not observable and cannot
be measured easily (due to processor sharing). Therefore,
service time of requests of class that arrive to node can
be calculated as following (with assuming homogeneity of
servers)

 ∑

where is observed arrival time of request of class to
node , is observed departure time of request of class
from node , is number of running servers in node at
time , and is total number of requests that are served in
node at time .

Number of required servers: processing sharing does not
consider deadlines of request classes and gives the same
amount of processing to all requests. Therefore, number of
required servers at node to achieve incoming requests
without violating Service Level Agreement is calculated as

∑

where is the number of servers in node ,
 is

the minimum deadline of all request classes.

Service rate: with servers, node delivers service to
requests of class at a rate of

where is total number of requests that are served in node
 at time . is number of requests of class in node .

Utilization: utilization of node at time , which is the
fraction of time the servers in the node are busy, can be
approximated to

∑

Throughput:

Throughput
 of node from class at time is

calculated as in [27]

∑

 ∑

Total throughput of node is calculated as

 ∑

Service size: if the system is in steady-state (∑

), the probability of existing requests of
classes can be calculated as in [27]

 (∑

)

 ∏

and is the number of requests of class that are exist
in the system at time .

Service capacity: service capacity is number of

requests that can be accepted by node , which already

contains requests of classes .

 requests of classes if

 ∑

 ∑

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

283 | P a g e

www.ijacsa.thesai.org

Response time: for request with remaining service time ,
the probability of departure after exactly time is
represented as , which depends on number of

requests of classes that exist in the
system and depends on the remaining service time .

where is the probability of responding after

exactly for request with remaining service time from
node , which contains requests. The probability

can be calculated by applying Random Quantum Allocation
approximation model proposed by Braband in [28]. Request
will leave the system immediately if its service time is
finished. Therefore,

 {

If remaining service time is greater than zero, the
probability of responding after is calculated as
following:

(

∑

 (

) ∑

)

 (

)

where is average arrival rate. is time slice length,
which is equal to time unit in this model. is number of
requests that can be accepted by node, which already contains

 requests.
 is probability requests leave node that

contains requests. is average service time.

IV. EVALUATION

To evaluate performance of the proposed model, threshold
based auto-scaling algorithm (without workload prediction)
proposed By Shahin in [29] has been implemented with and
without the proposed model. Several web applications have
been modeled using Cloudsim simulator with
NetworkCloudSim. NetworkCloudSim is an extension of
CloudSim to support modeling of generalized applications
such as High Performance Computing (HPC), e-commerce,
social network and web applications. For each application
model, different chains have been defined and requests to each
application are generated according to ClarkNet trace [30].

Fig. 4 shows model of sample application with 6 services.
Each service has been deployed to a separated VM. During
run time, number of running VMs in each service is ranged
between 1 and 83 VMs. As shown in Table 1, 6 chains have
been defined with 20 classes. Table 2 shows classes of each

service. According to Table 1 and Table 2, the following
probabilities are set to ones:

Fig. 4. Application model with three layers

TABLE I. CHAINS WITH REQUEST CLASSES

Chain Request Classes Chain Request Classes

TABLE II. APPLICATION SERVICES WITH REQUEST CLASSES

Service Request Classes Service Request Classes

Remaining probabilities are set to zeros.

As shown in Fig. 5 and Table 3, the proposed model
improves number of completed requests, which reduces
violation of Service Level Agreement and increases revenue.
During run time, total number of running VMs is ranged
between 6 and 415 VMs. By considering functional
dependencies, VMs are added in advance to achieve incoming
requests.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

284 | P a g e

www.ijacsa.thesai.org

Fig. 5. Number of completed requests with and without the proposed model

TABLE III. NUMBER OF COMPLETED REQUESTS WITH AND WITHOUT THE

PROPOSED MODEL

Time

(Hour)

With the

proposed

model

Without the

proposed

model

Time

(Hour)

With the

proposed

model

Without the

proposed

model

1 26000 23790 13 30700 30700

2 52000 42409 14 24900 24900

3 48600 46495 15 20000 20000

4 43100 43100 16 28700 25742

5 48700 46796 17 26300 26110

6 40700 40700 18 36200 32769

7 51300 47696 19 48600 43218

8 36900 36900 20 56800 52182

9 35700 35700 21 45700 45700

10 30800 30800 22 47200 46690

11 29500 29500 23 51100 49601

12 31700 30952 24 67900 61678

Implemented algorithm is a reactive algorithm.
Consequently, it requires around 10 minutes to add new VM
instances [30]. For example, if the first node is detected as
over utilized due to large number of requests from chain1,
without using the proposed model it will take around 30
minutes to be ready to response. This is due to adding VMs
sequentially to nodes 1, 2, and 4. While, it will take around 10
minutes only if the proposed model is applied because VMs
will be added to nodes 1, 2, and 4 concurrently. Therefore, the
proposed model does not effect by number layers in
applications. On the other hand, scaling without considering
functional dependencies increases Service Level Agreement
violation due to long sequence of scaling actions.

Fig. 6, Fig. 7, and Fig. 8 show number of completed
requests by applications contain different numbers of layers.
As shown in these figures, delays of scaling up applications
that do not apply the proposed model are proportional to
number of application layers.

Fig. 6. Number of completed requests by application contains four layers

Fig. 7. Number of completed requests by application contains five layers

Fig. 8. Number of completed requests by application contains six layers

V. CONCLUSION

Nowadays, several applications have been moved to cloud
computing to benefit from its features. Cloud computing
provides a large pool of resources that can be provisioned and
release on demand. Some applications are small and can be
encapsulated to a single VM. While large applications (such as

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

285 | P a g e

www.ijacsa.thesai.org

social network) are distributed into several VMs. Although,
functional dependency between services that are deployed to
separated VMs has to be considered during application
scaling, most of current scaling techniques do not consider
functional dependency and scale services individually. This
paper has modelled SaaS applications as multiclass M/M/m
processor sharing queuing model with deadline to consider
functional dependencies and requests’ types during estimating
required scaling resources. Based on experimental results, this
paper concludes that modeling functional dependencies as
multiclass M/M/m processor sharing queuing model improves
performance of scaling algorithms.

In the future, the proposed model will be extended to
include multiclass with different weights to represent different
priorities that can be provided to customers.

REFERENCES

[1] A. A. Shahin, “Variability modeling for customizable SaaS
applications,” International Journal of Computer Science & Information
Technology (IJCSIT), vol. 6, no. 5, pp. 39–49, October 2014.

[2] A. A. Shahin, “Multi-dimensional customization modelling based on
metagraph for SaaS multi-tenant applications,” in the Fourth
International conference on Computer Science and Information
Technology (CCSIT-2014), Venue: PullMan, Sydney, Australia,,
D. C. W. et al. (Eds), Ed. CCSIT, SIPP, AISC, PDCTA, NLP, p. 53–63,
2014.

[3] S. Balsamo, Product Form Queueing Networks. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 377–401, 2000. DOI: 10.1007/3-540-
46506-5_16

[4] W. J. Hopp, Single Server Queueing Models. Boston, MA: Springer US,
2008, pp. 51–79. DOI: 10.1007/978-0-387-73699-0_4

[5] A. Biswas, S. Majumdar, B. Nandy, and A. El-Haraki, “Automatic
resource provisioning: A machine learning based proactive approach,”
in 2014 IEEE 6th International Conference on Cloud Computing
Technology and Science, pp. 168–173, Dec 2014.

[6] A. Biswas, S. Majumdar, B. Nandy, and A. El-Haraki, “An auto-scaling
framework for controlling enterprise resources on clouds,” in 2015 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pp. 971–980, May 2015.

[7] W. Sellami, H. H. Kacem, and A. H. Kacem, “Controlling elasticity
dependencies for multi-tenant business process,” in 2015 IEEE 12th
International Conference on e-Business Engineering, pp. 251–256, Oct
2015.

[8] W. Sellami, H. H. Kacem, and A. H. Kacem, “Elastic multi-tenant
business process based service pattern in cloud computing,” in 2014
IEEE 6th International Conference on Cloud Computing Technology
and Science, pp. 154–161, Dec 2014.

[9] Z. Xiao, Q. Chen, and H. Luo, “Automatic scaling of internet
applications for cloud computing services,” IEEE Transactions on
Computers, vol. 63, no. 5, pp. 1111–1123, May 2014.

[10] Y. Ahn, J. Choi, S. Jeong, and Y. Kim, “Auto-scaling method in hybrid
cloud for scientific applications,” in The 16th Asia-Pacific Network
Operations and Management Symposium, pp. 1–4, Sept 2014.

[11] W. Chaloemwat and S. Kitisin, “Horizontal auto-scaling and process
migration mechanism for cloud services with skewness algorithm,” in
2016 13th International Joint Conference on Computer Science and
Software Engineering (JCSSE), pp. 1–6, July 2016.

[12] S. N. Srirama and A. Ostovar, “Optimal resource provisioning for
scaling enterprise applications on the cloud,” in 2014 IEEE 6th
International Conference on Cloud Computing Technology and Science,
pp. 262–271, Dec 2014.

[13] Y. Hirashima, K. Yamasaki, and M. Nagura, “Proactive-reactive auto-
scaling mechanism for unpredictable load change,” in 2016 5th IIAI
International Congress on Advanced Applied Informatics (IIAI-AAI),
pp. 861–866, July 2016.

[14] S. Khatua, M. M. Manna, and N. Mukherjee, “Prediction-based instant
resource provisioning for cloud applications,” in 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing, pp. 597–602,
Dec 2014.

[15] F. D. Muñoz-Escoí and J. M. Bernabéu-Aubán, “A survey on elasticity
management in paas systems,” Computing, pp. 1–40, 2016. DOI: -
10.1007/s00607-016-0507-8

[16] E. F. Coutinho, F. R. de Carvalho Sousa, P. A. L. Rego, D. G. Gomes,
and J. N. de Souza, “Elasticity in cloud computing: a survey,” annals of
telecommunications - annales des télécommunications, vol. 70, no. 7,
pp. 289–309, 2015. DOI: 10.1007/s12243-014-0450-7

[17] S. Singh and I. Chana, “Cloud resource provisioning: survey, status and
future research directions,” Knowledge and Information Systems,
vol. 49, no. 3, pp. 1005–1069, 2016. DOI: 10.1007/s10115-016-0922-3

[18] A. Najjar, X. Serpaggi, C. Gravier, and O. Boissier, “Survey of
Elasticity Management Solutions in Cloud Computing,” London:
Springer London, pp. 235–263, 2014. DOI: 10.1007/978-1-4471-6452-
4_10

[19] G. Galante, L. C. Erpen De Bona, A. R. Mury, B. Schulze, and
R. da Rosa Righi, “An analysis of public clouds elasticity in the
execution of scientific applications: a survey,” Journal of Grid
Computing, vol. 14, no. 2, pp. 193–216, 2016. DOI: 10.1007/s10723-
016-9361-3

[20] A. Naskos, A. Gounaris, and S. Sioutas, “Cloud elasticity: A survey,” in
Revised Selected Papers of the First International Workshop on
Algorithmic Aspects of Cloud Computing - Volume 9511, ser.
ALGOCLOUD 2015. New York, NY, USA: Springer-Verlag New
York, Inc., pp. 151–167, 2016. DOI: 10.1007/978-3-319-29919-8_12

[21] A. Biswas, S. Majumdar, B. Nandy, and A. El-Haraki, “Predictive auto-
scaling techniques for clouds subjected to requests with service level
agreements,” in 2015 IEEE World Congress on Services, pp. 311–318,
June 2015.

[22] A. Y. Nikravesh, S. A. Ajila, and C. H. Lung, “Towards an autonomic
auto-scaling prediction system for cloud resource provisioning,” in 2015
IEEE/ACM 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pp. 35–45, May 2015.

[23] W. H. Liao, S. C. Kuai, and Y. R. Leau, “Auto-scaling strategy for
Amazon web services in cloud computing,” in 2015 IEEE International
Conference on Smart City/SocialCom/SustainCom (SmartCity), pp.
1059–1064, Dec 2015.

[24] P. Tang, F. Li, W. Zhou, W. Hu, and L. Yang, “Efficient auto-scaling
approach in the telco cloud using self-learning algorithm,” in 2015 IEEE
Global Communications Conference (GLOBECOM), pp. 1–6, Dec
2015.

[25] C. C. Chen, S. J. Chen, F. Yin, and W. J. Wang, “Efficient hybriding
auto-scaling for openstack platforms,” in 2015 IEEE International
Conference on Smart City/SocialCom/SustainCom (SmartCity), pp.
1079–1085, Dec 2015.

[26] S. K. Bose, An Introduction to Queueing Systems. Springer US, 2002.

[27] P. Nain, “Basic elements of queueing theory: application to the
modelling of computer systems,” lecture notes resulted from acourse on
Performance Evaluation of Computer Systems which was given at the
University of Massachusetts, Amherst, MA, during the Spring of 1994,
University of Massachusetts, Jan. 1998. [online]
https://www.kth.se/social/upload/53eb1e5af2765411d40ea1bf/Nain.pdf

[28] J. Braband, “Waiting time distributions for processor sharing queues
with state-dependent arrival and service rates,” Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 111–122, 1994. DOI: 10.1007/3-540-
58021-2_6

[29] A. A. Shahin, “Automatic cloud resource scaling algorithm based on
long short-term memory recurrent neural network,” International Journal
of Advanced Computer Science and Applications (IJACSA), vol. 7,
no. 12, 2016.

[30] ClarkNet-HTTP, two week's of HTTP requests to the ClarkNet WWW
server for the Metro Baltimore-Washington DC area. [online]
http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html (Accessed on
October 1, 2016)

