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Abstract—Elasticity is one of key features of cloud computing. 

Elasticity allows Software as a Service (SaaS) applications’ 

provider to reduce cost of running applications. In large SaaS 

applications that are developed using service-oriented 

architecture model, each service is deployed in a separated 

virtual machine and may use one or more services to complete its 

task. Although, scaling service independently from its required 

services propagates scaling problem to other services, most of 

current elasticity approaches do not consider functional 

dependencies between services, which increases the probability of 

violating service level agreement. In this paper, architecture of 

SaaS application is modeled as multi-class M/M/m processor 

sharing queuing model with deadline to take into account 

functional dependencies between services during estimating 

required scaling resources. Experimental results show 

effectiveness of the proposed model in estimating required 

resources during scaling virtual resources. 
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I. INTRODUCTION 

In the last few years, Software as a Service (SaaS) has 
rapidly spread in many areas. SaaS is a software delivery 
model in which software is delivered to customers as a service 
[1]. Instead of delivering individual application instance for 
each tenant, one application instance serves thousands of 
tenants [2]. Nowadays, several SaaS companies, such as 
Salesfore.com, NetSuite, and Success Factors, utilize elasticity 
feature of cloud computing to ensure lowest cost of service 
delivery. However, developing multi-tenant SaaS application 
to serve thousands of tenants with thousands of users for each 
tenant is a very hard and expensive task due to large number 
of factors that have to be considered during development 
phases, such as customizability, security, scalability, and 
pricing. 

Most of current SaaS applications have been developed 
using service-oriented architecture (SOA) model [1]. In SOA 
model, each application is a collection of services that are 
organized in several layers. Each service uses services in the 
lower layer to complete its tasks. In large SaaS applications, 
each service is deployed in a separated virtual machine. 
Although, one of primitive assumptions is that scaling any 

service has to be reflected in all required services, most of 
current researches do not consider functional dependencies 
between services and scale them separately. As consequence, 
scaling problems are shifted from layer to next layer. 
Unfortunately, the problem is not only specifying functional 
dependencies between services but also specifying number of 
virtual machines that have to be added or removed. 

For example, suppose we have three services X, Y, and Z. 
Service X uses services Y and Z to complete its tasks. Service 
X receives three types of requests A, B, and C. Service X uses 
service Y to complete requests of type A, uses service Z to 
complete requests of type B, and uses service Y and service Z 
to complete request of type C. If service X is detected as 
overloaded, scaling service X independently from Y and Z 
moves overloading problem to Y, Z, or both of them. 
However, which service has to be scaled and what is the 
optimal number of VMs instances that have to be added to or 
removed from each service? This depends on types of arriving 
requests. If overloading is occurred due to high number of 
requests of type A, then adding more VMs to service Z will 
waste resources and reduce revenue. Collecting such 
information without modeling functional dependencies is a 
very hard task. 

Thus, this paper models SaaS applications as multi-class 
M/M/m processor sharing queuing model with deadline to 
consider functional dependencies and requests’ types during 
estimating required scaling resources. The proposed model 
reflects scaling actions on many metrics such as CPU 
utilization, response time, and throughput, which are 
commonly used by most of current auto-scaling techniques to 
trigger auto-scaling actions. Therefore, SaaS application 
providers can apply the proposed model with any auto-scaling 
technique to put into account functional dependencies between 
services. 

Queuing network models have been extensively applied in 
many areas and have proven their efficiency in representing 
and analyzing resource-sharing systems such as computer 
systems [3]. According to Kendall's Notation, the first M in 
M/M/m queuing model represents arrival process, which is 
Markov arrival process. It has been theoretically proved that if 
large number of customers makes independent decisions of 
when to request service, the resulting arrival process will be 
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Markov arrival process [4]. The second M in M/M/m queuing 
model represents service process, which is Markov service 
process. Third m represents number of parallel servers that 
provide one service. Servers receive requests from different 
classes and serve them according to processor sharing 
discipline. 

Effectiveness of the proposed model has been evaluated by 
comparing performance of auto-scaling algorithms with and 
without the proposed model. Simulation results show that the 
proposed model reduces violation of Service Level Agreement 
and increases revenue. 

The rest of this paper is organized as follows. Section 2 
describes the related work. Section 3 briefly describes the 
proposed model. Section 4 experimentally demonstrates the 
effectiveness of the proposed model. Finally, Section 6 
concludes. 

II. RELATED WORK 

Although, several auto-scaling approaches have been 
proposed in the last few years [6, 7, 8, 9, 10], most of current 
auto-scaling approaches do not consider functional 
dependencies between application’s services. Current auto-
scaling approaches can be categorized into two main 
categories: reactive and proactive approaches. Reactive auto-
scaling approaches scale computational resources based on 
some rules and according to some metrics such as memory 
utilization, CPU utilization, throughput, and response time [15, 
16, 17, 18]. However, relations between metrics of related 
services are not modeled. Therefore, impact of scaling service 
is unknown until its occurrence. 

In another hand, proactive auto-scaling approaches trigger 
auto-scaling operations based on predicted workload. 
Different time series techniques such as Support Vector 
Machine, Exponential Smoothing, and Neural Networks have 
been used in predicting future workload [13, 14, 17, 19, 20]. 
Although, functional dependencies between application’s 
services are very effective factors in predicting future 
workload, most of current proactive techniques do not 
consider it. This section overviews some of current 
approaches. 

Biswas, et al. [5, 21] have proposed framework to provide 
virtual private cloud for a single client enterprise. Proactive 
auto-scaling technique has been proposed to provision and 
release resources from public cloud according to predicted 
system load. Support vector machine and linear regression 
have been employed to predict future load. In [6] Biswas, et al. 
have proposed a reactive auto-scaling algorithm to serve 
incoming requests with considering their service level 
agreements. The proposed algorithm scales resources based on 
profit that is gained from serving incoming requests and based 
on cost benefit to the user. 

Sellami et al. [7, 8] have proposed threshold based auto-
scaling approach to offer dynamic service instances for multi-
tenant business processes. The proposed approach considers 
functional dependencies between each multi-tenant process 
and its services during deciding scaling action. The proposed 
approach has been encapsulated into middleware layer 

between software and platform layers. 

Xiao et at. [9] have modeled automatic scaling problem as 
Class Constrained Bin Packing problem where each server is a 
bin and each class represents an application. To scale 
provisioned resources, semi-online color set algorithm has 
been proposed. However, they have encapsulated each 
application instance inside a virtual machine (VM), which is 
not applicable in large applications. 

Ahn et al. [10] have proposed auto-scaling method to 
support execution deadline. The proposed method can handle 
Bag-of-Tasks jobs and workflow jobs. Jobs in Bag-of-Tasks 
can be scheduled separately from each other while jobs in 
workflow have to be scheduled in order of its dependency. 
The proposed method has been evaluated by using Cloudsim, 
which shows that the proposed auto-scaling method increases 
resources utilization. 

Chaloemwat et al. [11] have tried to enhance performance 
of threshold-based auto-scaling techniques by using Skewness 
algorithm and VMs migration. The effectiveness of the 
proposed enhancement has been proven by comparing 
performance of threshold-based auto-scaling techniques with 
and without the proposed enhancement. 

Srirama et al. [12] has proposed resource provisioning 
policy that takes into account lifetime, periodic cost and 
configuration cost of each instance type to find most optimal 
combination of possible instance types. The auto-scaling 
problem is represented as a linear programming model. 
Solution of this linear programming model will provides 
optimal number of VMs instances from each instances type 
that must be added or removed to achieve workload with 
minimum cost. Unfortunately, linear programming model can 
provide solutions for small number of VMs and cannot deal 
with large systems. 

Hirashima et al. [13] have proposed threshold based auto-
scaling mechanism that proactively adjusts resource to fulfill 
incoming workload based on predicted workload. 
Autoregressive Integrated Moving Average model has been 
exploited to forecast future workload. Moreover, the proposed 
mechanism reactively adapts virtual resources if unpredictable 
workload arrives. However, performance of the proposed 
mechanism has not been evaluated with unpredictable 
workload. 

Khatua et al. [14] have proposed threshold based auto-
scaling algorithm that adopts virtual resources proactively 
according to predicted workload. The proposed algorithm 
predicts workload by using Auto-regressive Integrated 
Moving Average (ARIMA) model. 

Nikravesh et al. [22] have proposed auto-scaling system, 
which predict workload using two time-series prediction 
algorithms: Support Vector Machine (SVM) and Neural 
Networks (NN). The proposed system automatically switches 
between SVM and NN based in patterns of workload. SVM is 
used with periodic workload patterns while NN is used with 
unpredicted workload pattern. Although, functional 
dependency is an important factor in predicting workload, 
functional dependency has not been considered during 
predicting future workload. 
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Liao et al. [23] have proposed dynamic threshold based 
auto-scaling strategy for Amazon web services. The proposed 
strategy adapts thresholds according to demand for resources. 
Upper threshold is set in the range 50%–75% and lower 
threshold is set to the range 5%–30%. Upper and lower 
thresholds are adapted proportionally with expansion process 
of VMs. 

Tang et al. [24] have proposed reinforcement learning 
based auto-scaling algorithm. Workload is categorized into 
normal workload (daily busy-and-idle workload) and burst 
workload. Auto-scaling problem is model as Markov Decision 
Process (MDP) model and Reinforcement Learning is applied 
to decide time to scale up or down and to decide number of 
VM instances to be added or removed. 

Chen et al. [25] have proposed hybrid auto-scaling 
mechanism. The proposed mechanism predicts next CPU 
usage rate based on historical data by applying several time 
series techniques such as Autoregressive–Moving-Average 
model, Autoregressive model, Exponential Smoothing model, 
Moving Average model, and Naïve model. The proposed 
mechanism reactively scales resources to minimize effects of 
wrong workload prediction. 

III. SAAS APPLICATION MODEL 

This paper deals with SaaS applications that cannot be 
encapsulated in one VM and are developed using Service-
Oriented Architecture model. Each service is deployed in a 
separated VM instance and can be scaled up or down by 
adding or removing VM instances. Each VM has a fixed 
processing capacity, which is divided into equal parts among 
all tasks (Processor Sharing (PS)). Thus, each task’s service 
time depends on the total number of tasks that exist at the 
same time. No task can run simultaneously on more than one 
VM. Therefore, if number of tasks is less than number of VMs 
for a specific service, each task is processed by a single VM 
and the remaining VMs are idle. If number of tasks is greater 
than number of VMs, tasks are processed according to 
processor sharing discipline. In this paper, the term “web 
service” will be used to refer to service component in SaaS 
application. 

Each web service receives requests from one or more 
upper web services and it can complete tasks by itself or by 
sending requests to lower web services. After receiving 
responses from lower web services, request will be completed 
and sent to upper web services as a response to its request. 
Web services receive requests from different types. Each type 
has its arrival rate, process rate, routing, and deadline. 
Requests from the same type are collected in a chain. A chain 
contains a set of classes to represent different processing 
phases for a specific type. Classes are distributed among 
different web services, and each request moves between these 
classes during it life. 

For example, suppose we have a web service (node    ) 
with   upper web services (nodes         ) and   lower 
web services (nodes                ) (see Fig. 
1). According to processor sharing, if there are   requests in 
node     at time  , service time for these requests will be 

decreased by   ⁄  per unit of time. Total number of requests 

that are served in node     at time   is calculated as: 

  ∑  

 

   

                                      

where     is the number of requests of class   that are 
served in node     ,           . 

Node     receives   classes of requests from upper web 
services and sends requests to lower web services 
synchronously or asynchronously. In Fig. 2, node     sends 
asynchronous requests to nodes     and    . Chain 1 
describes routing behavior of type 1 requests. Request visits 
node M+1 in class a, node M+2 in class b, node M+1 in class 
c, node M+3 in class d, and node M+1 in class e. 

In some cases, node     needs to use two or more 
nodes synchronously to complete specific request. In this case, 
several sub-requests are generated, processed in parallel, 
combined to one request, and sent back to node    . In Fig. 
3, node     sends synchronous requests to nodes     
and    . Fork node represents decomposition of request to 
two or more sub-requests, which will be processed in parallel 
by     and     nodes. Synchronizing node represents 
buffer that holds completed sub-requests until it can be 
recomposed with sub-requests from other sibling nodes. Join 
node represents recombination of completed sub-requests to 
one request again. 

 

Fig. 1. Web service M+1 with its upper and lower web services 

 

Fig. 2. Example of asynchronous requests from web service M+1 to M+2 

and M+3 

 

Fig. 3. Example of synchronous requests from web service M+1 to M+2 and 

M+3 

 

Service with s servers 

Lower services Upper services 
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In multiclass M/M/m processor sharing queuing systems, 
requests of class   arrive to node   according to Poisson 
process with rate      and require service time     with 
exponential service process. Each class   of requests has a 
deadline   . Arrival rates and service times are all assumed to 
be mutually independent. Deadline of each request class is 
specified according to required Service Level Agreement. 

Request that is completed at node   will be sent to node 
from upper nodes (nodes 1, 2, .., M), if it is completely 
finished. All nodes will receive responses from other services 
for their requests. Request will be sent to node from lower 
nodes (nodes                ), if it still requires 
more processing. Request will be sent from node   to node   
itself, if there is new program path. If deadline of any request 
expires, this request will exit the system, so that 

    ∑            

   

                            

where          is the probability of sending requests from 

node   of class   to node   of class  . 

In root service, arrival rate of each request class is 
observable and can be measured easily. Probability          can 

be specified by SaaS application providers based on business 
process workflow of their applications. 

According to Burke's Theorem [26], the departure process 
from a         queue is Poisson, splitting a Poisson 
process randomly gives Poisson processes, and sum of 
Poisson processes is a Poisson process. Therefore,     is 
Poisson. 

In steady-state, total required service time from node   at 
time   is calculated as 

                                               ∑         

 

   

                                    

Service time: while arrival time and departure time of each 
request class are observable and can be measured easily, 
service time of each request class is not observable and cannot 
be measured easily (due to processor sharing). Therefore, 
service time     of requests of class   that arrive to node   can 
be calculated as following (with assuming homogeneity of 
servers) 

                                        ∑
     

     

  

    

                               

where    is observed arrival time of request of class   to 
node  ,    is observed departure time of request of class   
from node  ,       is number of running servers in node   at 
time  , and       is total number of requests that are served in 
node   at time  . 

Number of required servers: processing sharing does not 
consider deadlines of request classes and gives the same 
amount of processing to all requests. Therefore, number of 
required servers at node   to achieve incoming requests 
without violating Service Level Agreement is calculated as 

   
∑          

 
   

      
   

                                    

where    is the number of servers in node  ,       
    is 

the minimum deadline of all request classes. 

Service rate: with    servers, node   delivers service to 
requests of class   at a rate of  

  
  

         

 
                                         

where   is total number of requests that are served in node 
  at time  .     is number of requests of class   in node  . 

Utilization: utilization of node   at time  , which is the 
fraction of time the servers in the node   are busy, can be 
approximated to 

      
∑           

 
   

  
                           

Throughput: 

Throughput    
  of node   from class   at time  is 

calculated as in [27] 

  
       

        

  
     

         

 
  
∑           

 
   

  
 

                      
     

        ∑           
 
   

 
                      

Total throughput     of node   is calculated as 

                            ∑  
    

 

   

                                              

Service size: if the system is in steady-state ( ∑        
 
   

         ), the probability of existing            requests of 
classes          can be calculated as in [27] 

               
   

                                   

   (     ∑     

             

 )        

  ∏
  

  

   

 

   

                   

and       is the number of requests of class   that are exist 
in the system at time  . 

Service capacity: service capacity                is number of 

requests that can be accepted by node  , which already 

contains            requests of classes         .                
   

       
   requests of classes          if 

               ∑  
       

 

   

          
     ∑  
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Response time: for request with remaining service time  , 
the probability of departure after exactly     time is 
represented as               , which depends on number of 

requests            of classes          that exist in the 
system and depends on the remaining service time  . 

                                                                 

where         is the probability of responding after 

exactly     for request with remaining service time   from 
node  , which contains   requests. The probability         

can be calculated by applying Random Quantum Allocation 
approximation model proposed by Braband in [28]. Request 
will leave the system immediately if its service time is 
finished. Therefore, 

                     {
           
           

                                      

If remaining service time   is greater than zero, the 
probability of responding after     is calculated as 
following: 

                        

       

(

 
 
 
 

    

   
∑   

      

      

   

             

 (  
    

   
) ∑   

    

    

   

             
)

 
 
 
 

  

           

                            
   (

 

 
)                                       

                    

where   is average arrival rate.   is time slice length, 
which is equal to time unit in this model.    is number of 
requests that can be accepted by node, which already contains 

  requests.   
  is probability   requests leave node that 

contains   requests.   is average service time. 

IV. EVALUATION 

To evaluate performance of the proposed model, threshold 
based auto-scaling algorithm (without workload prediction) 
proposed By Shahin in [29] has been implemented with and 
without the proposed model. Several web applications have 
been modeled using Cloudsim simulator with 
NetworkCloudSim. NetworkCloudSim is an extension of 
CloudSim to support modeling of generalized applications 
such as High Performance Computing (HPC), e-commerce, 
social network and web applications. For each application 
model, different chains have been defined and requests to each 
application are generated according to ClarkNet trace [30]. 

Fig. 4 shows model of sample application with 6 services. 
Each service has been deployed to a separated VM. During 
run time, number of running VMs in each service is ranged 
between 1 and 83 VMs. As shown in Table 1, 6 chains have 
been defined with 20 classes. Table 2 shows classes of each 

service. According to Table 1 and Table 2, the following 
probabilities are set to ones: 

 

Fig. 4. Application model with three layers 

TABLE I. CHAINS WITH REQUEST CLASSES 

Chain Request Classes Chain Request Classes 

                                         

                                          

                                                              

TABLE II. APPLICATION SERVICES WITH REQUEST CLASSES 

Service Request Classes Service Request Classes 

                        

                         

          

                                              

                                           

                                                                        

                                                                      

                                                                              

                                                                            

                                                                         

              
               

               
 

Remaining probabilities are set to zeros. 

As shown in Fig. 5 and Table 3, the proposed model 
improves number of completed requests, which reduces 
violation of Service Level Agreement and increases revenue. 
During run time, total number of running VMs is ranged 
between 6 and 415 VMs. By considering functional 
dependencies, VMs are added in advance to achieve incoming 
requests. 
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Fig. 5. Number of completed requests with and without the proposed model 

TABLE III. NUMBER OF COMPLETED REQUESTS WITH AND WITHOUT THE 

PROPOSED MODEL 

Time 

(Hour) 

With the 

proposed 

model 

Without the 

proposed 

model 

Time 

(Hour) 

With the 

proposed 

model 

Without the 

proposed 

model 

1 26000 23790 13 30700 30700 

2 52000 42409 14 24900 24900 

3 48600 46495 15 20000 20000 

4 43100 43100 16 28700 25742 

5 48700 46796 17 26300 26110 

6 40700 40700 18 36200 32769 

7 51300 47696 19 48600 43218 

8 36900 36900 20 56800 52182 

9 35700 35700 21 45700 45700 

10 30800 30800 22 47200 46690 

11 29500 29500 23 51100 49601 

12 31700 30952 24 67900 61678 

Implemented algorithm is a reactive algorithm. 
Consequently, it requires around 10 minutes to add new VM 
instances [30]. For example, if the first node is detected as 
over utilized due to large number of requests from chain1, 
without using the proposed model it will take around 30 
minutes to be ready to response. This is due to adding VMs 
sequentially to nodes 1, 2, and 4. While, it will take around 10 
minutes only if the proposed model is applied because VMs 
will be added to nodes 1, 2, and 4 concurrently. Therefore, the 
proposed model does not effect by number layers in 
applications. On the other hand, scaling without considering 
functional dependencies increases Service Level Agreement 
violation due to long sequence of scaling actions. 

Fig. 6, Fig. 7, and Fig. 8 show number of completed 
requests by applications contain different numbers of layers. 
As shown in these figures, delays of scaling up applications 
that do not apply the proposed model are proportional to 
number of application layers. 

 

Fig. 6. Number of completed requests by application contains four layers 

 

Fig. 7. Number of completed requests by application contains five layers 

 

Fig. 8. Number of completed requests by application contains six layers 

V. CONCLUSION 

Nowadays, several applications have been moved to cloud 
computing to benefit from its features. Cloud computing 
provides a large pool of resources that can be provisioned and 
release on demand. Some applications are small and can be 
encapsulated to a single VM. While large applications (such as 
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social network) are distributed into several VMs. Although, 
functional dependency between services that are deployed to 
separated VMs has to be considered during application 
scaling, most of current scaling techniques do not consider 
functional dependency and scale services individually. This 
paper has modelled SaaS applications as multiclass M/M/m 
processor sharing queuing model with deadline to consider 
functional dependencies and requests’ types during estimating 
required scaling resources. Based on experimental results, this 
paper concludes that modeling functional dependencies as 
multiclass M/M/m processor sharing queuing model improves 
performance of scaling algorithms. 

In the future, the proposed model will be extended to 
include multiclass with different weights to represent different 
priorities that can be provided to customers. 
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