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Abstract—The use of mobile sensed location data for realistic
human track generation is privacy sensitive. People are unlikely
to share their private mobile phone data if their tracks were
to be simulated. However, the ability to realistically generate
human mobility in computer simulations is critical for advances
in many domains, including urban planning, emergency handling,
and epidemiology studies. In this paper, we present a data-
driven mobility model to generate human spatial and temporal
movement patterns on a real map applied to an agent based
setting. We address the privacy aspect by considering collective
participant transitions between semantic locations, defined in a
privacy preserving way. Our modeling approach considers three
cases which decreasingly use real data to assess the value in
generating realistic mobility, considering data of 89 participants
over 6079 days. First, we consider a dynamic case which uses
data on a half-hourly basis. Second, we consider a data-driven
case without time of day dynamics. Finally, we consider a
homogeneous case where the transitions between locations are
uniform, random, and not data-driven. Overall, we find the
dynamic data-driven case best generates the semantic transitions
of previously unseen participant data.

Keywords—mobile sensing; data-driven mobility model; agent
based models

I. INTRODUCTION

Large-scale mobile phone data for human behavior un-
derstanding has gained much popularity. Reality mining data
has shown to be a useful tool in many scientific domains,
including healthcare, and the social sciences. Here we consider
the use of mobile data in the context of agent based models.
One fundamental building block of any agent based system is
mobility; what is the best way to generate agent mobility on a
real physical space in a realistic manner. This achievement is
critical for the successful use of agent based models in many
interdisciplinary domains. Many current mobility models for
agents are based on simple, homogeneous random processes.
In this paper, we propose to use real human mobility data
obtained by mobile phones to address this issue. A data-
driven approach, particularly based on mobile sensing, has
the advantage of offering realistic human tracks and time-
varying dynamics, over many spectrums of the population,
with differing possible timescales and sensors. A mobile data-
driven approach is easily extendable to any geographical
location as people ubiquitously carry their mobile phones
everywhere. A collective approach, whereby the collective
dataset is used for modeling, has the advantage of protecting
individual participant privacy.

There has been few previous effort to develop mobility
models from real traces; most previous works have focused on
different data sources, such as wireless network data, survey
data, and social interaction data for mobility modeling. An
overview of simulation of traffic and pedestrians is presented
in [1]. More realted to this work, a survey of data-driven
perdestrians mobility models is given in [2]. A large portion
of research in mobility is done in wireless networks [3],
[4]. In [5], a hybrid mobility model is developed based on
count data collected over a given campus map (number of
people passing through various hallways on campus) and is
not easily generalizable. In [6], real user traces are obtained by
participant survey data, where 268 students are asked to keep
a diary of their movements on campus. The participants record
their locations, given five pre-defined types (classroom, library,
cafeteria, off-campus, other), over one month. A Weighted Way
Point (WWP) mobility model is proposed, and the focus of
the model is towards destination selection. In [7], an ad hoc
mobility model is defined and is founded on social relation-
ship modeling, focusing on pairwise interactions as opposed
to locations. In [8], mobile phone interaction patterns have
been characterized based on relationships between participants.
While all of these previous works consider the modeling of
mobility, none of them are focused on mobile phone cell tower
connection data, nor has the focus been on mobility modeling
for synthetic mobility generation, for example in an agent
based setting.

Previous work in the agent based community has addressed
the issue of mobility from two differing points of view, density
and crowding [9], [10], and movement between origin to des-
tination [11], [12], [13]. Our work falls in the latter category,
which is applicable to larger areas and more general scenarios.
However, to the best of our knowledge, this is the first mobile
phone location-driven approach for agent mobility simulation.
In [11] an outdoor pedestrian mobility model is defined, where
mathematical emulations to more realistic movements have
been made. The model is not data-driven, and is not applicable
to large-scale mobile sensed data.

The closest related work to ours is by Kim et al. [14] who
develop a mobility model based on wireless network data.
The goal of the work is to determine the real user tracks
of the participants given their WiFi network traces over time.
This work focuses on determining the accurate tracks taken by
the participants given their access point coordinate sequence
information. While this work falls under the category of data-
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Fig. 1. Map of the physical space used for agent based simulation. The squares are the points of interest, the media lab in orange and the subway stops in
green. The agents are marked as triangle and the arrows indicate the direction of motion. Different colors represent the different transitions, for example red is
out to work, yellow is out to home, green is work to home, black is home to work, and blue is any location to out.

driven mobility modeling, the goal of the mobility model is
very different. In [14], the goal of the model is to determine
accurate user tracks based on network traces, though it is also
used for generating synthetic mobility tracks. However, in this
work, we consider agent mobility on a real map of the area
in which the data is collected, and we consider location data
obtained by mobile phones which provides a more general
means for future mobility modeling and extensions of our
approach.

In this paper, we present a basic framework to incorporate
real mobile phone location data into an agent based simulation
framework. To the best of our knowledge, it is the first
mobile phone data-driven mobility model simulated in an
agent based setting. Considering the cell tower connection data
of 89 participants over a period of 6079 days, we consider
their collective overall movements between three semantic
locations, home, work, and out. Considering a real map of
the Cambridge, Massachusetts area, where the mobile phone
data was collected, we generate synthetic agent tracks which
are then evaluated against mobile phone human location obser-
vations on unseen data. We compare three different settings, a
data-driven approach with half-hourly dynamics, a data-driven
approach without daily time dynamics but considering the
average overall daily location information, and an approach
without real data using a random assignment to location.
Overall, we find using the time-varying transition probabilities
of location results in the generation of agent mobility patterns
which more closely approximates the location occurrences in
the real data (considering a previously unseen test set).

II. DATA-DRIVEN MOBILITY MODEL FRAMEWORK
A. Dataset

We consider the mobile phone cell tower connections
obtained by the publicly available Reality Mining dataset [15].
The mobile phone data of 97 participants over 491 days is
available. However, due to the large amount of noise (missing
data for many days, missing semantic labels for location) we
only consider days which contained a minimum of 20 hours of
semantic location information, resulting in a total of 6079 days
for evaluation. These 6079 days are from 89 of the participants
in the dataset.

B. Space Model

The physical space in which agent movement takes place
is taken from a neighbourhood in Cambridge, Massachusetts
on the MIT campus. Openstreetmap [16] is used to obtain
the shape files used in our space model to simulate the real
physical space of MIT campus, shown in figure 1.

C. Points of Interest

We consider three semantic labels of places a person
commonly visits: home, work, and out. A day is considered
to be constructed of 48 location labels, which are the most
often occurring location for the half-hour interval of the
day. The physical locations of the cell towers are unknown,
however, some participants labeled work and home locations.
The participant labels are used to annotate the mobile phone
data. In order to mark the points of interest geographically
on a map, we consider several known landmarks. The MIT
Media Lab, for which most of the participants are students
and staff, is marked as the work location. We consider one
work location at the moment, but this can be extended for
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future simulations to consider more general regions of interest.
All of the subway stations on the map are marked as home
locations. The reasoning is, no matter where in the city the
participants may live, they are very likely to travel to their
homes by using the subways from campus. While there is
some error in this reasoning, some participants may live on
campus or choose other means to travel home, for the most
part this assumption is true and it is a novel way to consider
participants’ homes without considering their privacy sensitive
precise home information. Out locations are considered to be
anywhere other than home and work.

D. Model Dynamics

We consider three scenarios for simulation, a data-driven
approach with half-hourly dynamics (abbreviated as DD), a
data-driven approach without dynamics (abbreviated as DN ),
and a random approach without data (abbreviated as R). The
DD approach is based on the half-hourly region transition
matrix (defined next in Mobility Model) averaged over the
entire training data for the given time interval and therefore
considers the daily time-evolving dynamics in agent location
transitions. The DN approach uses the overall average daily
region transition matrix obtained on the training data, and
therefore does not consider the daily time dynamics but the
overall daily average. The R approach considers a uniform
random transition matrix, where the transition from regions
are equi-probable.

E. Mobility Model

Our agent based model is simulated using NetLogo [17].
An A = N×N×T region transition matrix is generated from
the real data transition information between semantic locations.
In the DD case, N = 3, corresponding to the semantic
locations of home, work and out. T = 48, corresponding to the
number of 30 minute intervals in a day. We do not differentiate
between day types (for example, day of week), however, we
model the dynamic behavior over the day. In the DN case,
T = 1 and the region transition matrix is computed as an
overall daily average. In the R case, T = 1 and the probability
of region transition for every region is simply 1/N .

We consider a set of 100 agents, initially distributed
randomly between the home locations. Agents remember their
home locations and always return to the same homes. Agents
can be either stationary or mobile. At every 30 minute interval,
the agents’ next destination is sampled from A. If there is
no change in state, the agent remains stationary, otherwise
it departs towards the next destination sampled. The agent’s
next destination is chosen based on the probabilities in the
region transition matrix. In the case of out, the agent can
move towards any point on the map, chosen randomly. In the
case of home, the agent moves towards her predefined subway
station. In the case of work, the agent moves towards the MIT
Media Lab. In figure 1, agents are illustrated with directed
triangles, indicating the direction of movement. The different
agent colors correspond to their region transitions, for example,
red is out to work, yellow is out to home, green is work to
home, black is home to work, and blue is any location to out.

F. Speed

Agents can have a maximum possible speed of 10 kph,
however, this measure can be easily adjusted. There is a vari-
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Fig. 2. The overall average region transition matrix A for the DN case,
where the additional label N corresponds to ”no data”. The labels O, H,
W correspond to out, home, work, respectively. The legend indicates the
probability of the transition from on location to another, averaged over all
days. Note, A does not include transitions to and from N , though it is shown
for completeness.

ation in speed across agents, which is determined randomly.
The variation in speed can be up to 20% of the current speed
of an agent.
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Fig. 3. Visualization of all the data over time. The solid lines represent the
data used for training and the dotted lines represent the test data used for
evaluation.

III. SIMULATION RESULTS
A. Data

Every simulation result presented is run over 10 random
simulations of the mobility model. For simulations, we divide
the data into two partitions, a training set and a test set. The
training set contains 50% of the days, randomly selected, and is
used to generate the region transition matrix A. The remaining
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(a) data-driven, dynamic (DD) (b) data-driven, non-dynamic (DN ) (c) random (R)
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Fig. 4. The percentage of error computed over each half hour interval of the day is presented for the three cases, (a) the data-driven dynamic case, (b) the
data-driven, non-dynamic case, and (c) the random case. The overall percentage of error is much higher in the random case (almost double).

50% of the days are used for evaluation. Note, the partitions
are created in order to evaluate the generative ability of the
framework on previously unseen data.

The data used for experiments is plotted in figure 3. For
each half hour interval in a day, we plot the total average
percentage of each location. Note, there are many sources of
noise in the data, and there are often missing location labels,
which is why the sum over the percentage of labels is never
exactly 1. The solid lines show the training set and the dotted
lines show the test set.
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Fig. 5. The overall averaged error for the three cases. It is apparent that for
every location type (home, work, out), the more real data is used (including
dynamics versus no dynamics), the less the error.

B. Discussion

The agent based model is simulated in the 3 scenarios
defined. Each simulation result is generated over the course
of 1 day (averaged over 10 runs), where every 30 minutes
the agents current locations are logged for evaluation. These
results are compared to the test set. The error is the average
total percentage of agents (participants) located at home, work,
out computed as the absolute difference with the test set. The

results in figure 4 are over time of day. In figure 4 (a), there
is an overall least amount of error, particularly for the out
location. The highest error occurs in all cases for the home
location, particularly in the morning. In figure 5, the overall
average error is plot for the three cases. The DN case performs
better than the R case, and the DD case performs better than
the DN case, showing the more data-driven information used,
the better the agent mobility tracks mimic the real data.

IV. CONCLUSION

This work presents a data-driven mobility modeling frame-
work where semantic locations obtained by mobile phone cell
tower connection data are collectively used to formulate a
mobility model. While the mobility model itself is simple,
it is an initial component of our data-driven methodology
for simulating agent mobility. Future work will explore more
advanced techniques to incorporate the real location data into
the framework. Machine learning tools, such as hidden markov
models, will be the natural next step to consider for modeling.
We will also further consider new sources for data-driven
behavior modeling from mobile phone sensors, particularly
GPS and Bluetooth physical proximity data.

REFERENCES

[1] E. Papadimitriou, J.-M. Auberlet, G. Yannis, and S. Lassarre, “Simu-
lation of pedestrians and motorised traffic: existing research and future
challenges,” International Journal of Interdisciplinary Telecommunica-
tions and Networking (IJITN), vol. 6, no. 1, pp. 57–73, 2014.

[2] A. Hess, K. A. Hummel, W. N. Gansterer, and G. Haring, “Data-
driven human mobility modeling: A survey and engineering guidance
for mobile networking,” ACM Computing Surveys (CSUR), vol. 48,
no. 3, p. 38, 2016.

[3] M. Al-Ayyoub, G. Husari, and W. Mardini, “Improving vertical handoffs
using mobility prediction,” International Journal of Advanced Computer
Science & Applications, vol. 1, no. 7, pp. 413–419.

[4] M. B. Yassein, “Flying ad-hoc networks: Routing protocols, mobility
models, issues,” International Journal of Advanced Computer Science
& Applications, vol. 1, no. 7, pp. 162–168, 2016.

[5] D. Bhattacharjee, A. Rao, C. Shah, M. Shah, and A. Helmy, “Empirical
modeling of campus-wide pedestrian mobility observations on the usc
campus,” in Vehicular Technology Conference, 2004. VTC2004-Fall.
2004 IEEE 60th, vol. 4. IEEE, 2004, pp. 2887–2891.

[6] W.-j. Hsu, K. Merchant, H.-w. Shu, C.-h. Hsu, and A. Helmy, “Weighted
waypoint mobility model and its impact on ad hoc networks,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 9,
no. 1, pp. 59–63, 2005.

www.ijacsa.thesai.org 423 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

[7] M. Musolesi, S. Hailes, and C. Mascolo, “An ad hoc mobility model
founded on social network theory,” in Proceedings of the 7th ACM
international symposium on Modeling, analysis and simulation of
wireless and mobile systems. ACM, 2004, pp. 20–24.

[8] K. Farrahi, R. Emonet, and A. Ferscha, “Socio-technical network
analysis from wearable interactions,” in International Symposium on
Wearable Computers (ISWC), June 2012.

[9] D. Helbing, “Traffic and related self-driven many-particle systems,”
Reviews of modern physics, vol. 73, no. 4, p. 1067, 2001.

[10] K. Zia, A. Ferscha, A. Riener, M. Wirz, D. Roggen, K. Kloch, and
P. Lukowicz, “Scenario based modeling for very large scale simula-
tions,” in Distributed Simulation and Real Time Applications (DS-RT),
2010 IEEE/ACM 14th International Symposium on. IEEE, 2010, pp.
103–110.

[11] R. Vogt, I. Nikolaidis, and P. Gburzynski, “A realistic outdoor urban
pedestrian mobility model,” Simulation Modelling Practice and Theory,
vol. 26, pp. 113–134, 2012.

[12] J. Dijkstra, J. Jessurun, and H. J. Timmermans, “A multi-agent cellular
automata model of pedestrian movement,” Pedestrian and evacuation
dynamics, pp. 173–181, 2001.

[13] K. Zia and A. Ferscha, “A simulation study of exit choice based on
effective throughput of an exit area in a multi-exit evacuation situation,”
in Proceedings of the 2009 13th IEEE/ACM International Symposium
on Distributed Simulation and Real Time Applications. IEEE Computer
Society, 2009, pp. 235–238.

[14] M. Kim and D. Kotz, “Extracting a mobility model from real user
traces,” in In Proceedings of IEEE INFOCOM, 2006.

[15] N. Eagle and A. Pentland, “Reality mining: sensing complex social
systems,” Personal and ubiquitous computing, vol. 10, no. 4, pp. 255–
268, 2006.

[16] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”
Pervasive Computing, IEEE, vol. 7, no. 4, pp. 12–18, 2008.

[17] U. Wilensky, “{NetLogo},” 1999.

www.ijacsa.thesai.org 424 | P a g e


