
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

Realtime Application of Constrained Predictive
Control for Mobile Robot Navigation

Ibtissem Malouche and Faouzi Bouani
Universite de Tunis El Manar, Ecole Nationale d’Ingenieurs de Tunis,

Laboratoire Analyse, Conception et Commande des Systemes, LR11ES20 Tunis, Tunisia

Abstract—This work addresses the implementation issue of
constrained Model Predictive Control (MPC) for the autonomous
trajectory-tracking problem. The chosen process to control is a
Wheeled Mobile Robot (WMR) described by a discrete, Multiple
Input Multiple Output (MIMO), state-space and linear parameter
varying kinematic model. The main motivation of the constrained
MPC usage in this case relies on its ability in considering, in a
straightforward way, control and states constraints that naturally
arise in trajectory tracking practical problems. The efficiency of
the presented control scheme is validated through experimental
results on a two wheeled mobile robot using both STM32F429II
and STM32F407ZG microcontrollers. The controller implementa-
tion is facilitated by the usage of the automatic C code generation
and interesting optimization before real-time execution. Based
on the experimental results obtained, the good performance and
robustness of the proposed control scheme are established.

Keywords—Embedded C; STM32; microcontrollers; constrained
model predictive control; otpimization

I. INTRODUCTION

The gap between theory and practice has been discussed
for many years across the spectrum of academia and industry
[1]. One of the reasons that explains this gap is that control
systems for the first time is often found too abstract and
theoretical in nature; that is, too many mathematical equations
as well as block diagrams. Furthermore, the use of control
algorithms simulation only will not provide sufficient illustra-
tion of the real physical application of using control theory
in solving engineering problems. The above shortcomings
can be avoided throughout control system experimentation
which is an important way to go through practical applications
of control theory so as to overcome the above-mentioned
difficulty. Hence real hands-on experiments or design problems
are an alternative way of augmenting the conventional way
of dealing with control theory, as it can be related to real
engineering applications, such as modeling, controller design,
and implementation.

Moreover, although some control algorithms has been
found to be quite a robust type of control in most reported
applications [2], [19], their implementation on low-cost sys-
tem on chip solutions (such as microcontrollers) has been
historically hindered by many restrictions and constraints [11]–
[18]. Among these constraints are mathematical complexities,
which are not a problem in general for the research control
community but represent a drawback for the use in practice.
The time-to-market delays and possible design errors if the
algorithm is manually written in embedded C language on
one side and the high computing and associated memory

demands of the algorithm on the other side are restricting the
implementation of these control algorithms.

In fact, modern applications generally involve many com-
putationally demanding iterations and have strong require-
ments on resource optimization. Therefore, the main drawback
of complex control algorithms such as Model Predictive Con-
trol (MPC), is the need to solve mathematical program on line
to compute the control action [3]. This computation prevents
the application of MPC in several contexts, mainly because the
computer technology needed to solve the optimization problem
within the sampling time which is too expensive or sometime
infeasible [5]. In fact, the resource constraints associated with
embedded systems, combined with non-optimized software
components used for their implementation, introduce non-
determinism in the real-time system. For control systems this
is of particular concern, since timing variations induced by the
implementation degrade the control performance.

To cope with the above mentioned shortcoming and prob-
lems, the goal of this work is the implementation of con-
strained MPC algorithms on a fast system with no manual
embedded C coding effort. The trade-offs between data size
and computation speed, versus numerical precision and ef-
fectiveness of the computed control action is also focused
on. By using MPC it follows that the tuning parameters
are directly related to a cost function which is minimized
in order to obtain an optimal control sequence; constraints
on state, control inputs and control inputs deviation can be
considered in a straightforward way [3]–[5], [7]. This objective
is challenging especially in case of system with fast dynamics
[6], system described with Multiple Input Multiple Output
(MIMO) and parameter varying model. In this direction, the
proposed control system is the nonholonomic two Wheeled
Mobile Robot (WMR). The usage of the WMR as a plant is
motivated by the following reasons: 1) The selected kinematic
model of the WMR belongs to the class of MIMO, non-square,
linear parameter varying which is challenging for control;
2) despite the apparent simplicity of the kinematic model
of a WMR, the existence of nonholonomic constraints turns
the design of stabilizing control laws for those systems in a
considerable challenge [21]; 3) in recent years, autonomous
mobile robots are finding widespread application in many areas
and are at the heart of most modern control systems [22].

As a result, validating the proposed control framework
in such a challenging systems will expand the number of
addressable real time control applications.

On other hand, a general control system of two-wheeled
robot usually has a complex structure due to plenty of sensors,
which price is generally expensive. A control system with

www.ijacsa.thesai.org 277 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

DC motor driver is proposed instead, using low cost STM32
Discovery kits. These kits allow the controller implemen-
tation on high-performance MCUs with ARM Cortex-M4
core. Experimental results on a real WMR exhibit that the
proposed control scheme yields some interesting results on
autonomous trajectory tracking problem. In fact, compared to
existing works such as [9] and [10], the proposed automatic
C code generation saves time, avoids possible design errors
with no C code manual coding effort. With regards to [3],
the proposed implementation framework yields much more
interesting results in term of execution speed.

The outline of this paper is as follows. In Section II, the
kinematic robot model as well as the proposed MPC algorithm
are presented. Implementation results demonstrating the good
performance and robustness of the proposed controller are
presented in Section III. Section IV concludes the paper.

II. MODEL PREDICTIVE CONTROL ALGORITHM

The basic idea of predictive control consists in calculating,
at each sampling instant, a control sequence on a prediction
horizon aimed at minimizing a quadratic cost function. The
control algorithm is based on the following:

(i) The use of a model to predict, on a future horizon, the
output of the process,

(ii) Computing the control sequence which minimizes a
performance criterion which involves a sequence of the pre-
dicted output.

The following section states the robot model presentation
followed by the proposed MPC algorithm investigation.

A. Robot model presentation

We consider a WMR made up by a rigid body and non-
deforming wheels (Fig. 1). It is assumed that the vehicle moves
without slipping on a plane, i.e., there is a pure rolling contact
between the wheels and the ground [21], [22]. Referring to
[21], we can write the kinematic model of the WMR as in the
following system:  ẋ = v cos(θ),

ẏ = v sin(θ),

θ̇ = w.
(1)

or else, in a more simplified form:

ẋ =f(x,u). (2)

where x describes the configuration (position and orienta-
tion) of the wheels axis’s center, C, with respect to a global
inertial frame {O, X, Y}. u is the control input vector, where
v and w are the linear and the angular velocities, respectively.

Fig. 1. Robot in (OXY) plan.

Now, considering a sampling period Ts, by applying the
Euler’s approximation to (1), one can obtain the following
discrete-time model for the robot motion:

x(k + 1) = x(k) + v(k)cos(θ(k))Ts,
y(k + 1) = y(k) + v(k)sin(θ(k))Ts,
θ(k + 1) = θ(k) + w(k)Ts.

(3)

or, in a compact representation,

x(k + 1) = fd(x(k),u(k), Ts). (4)

On the other hand, the problem of trajectory tracking can
be stated as to find a control law such that:

x(k)− xr(k) = 0. (5)

Where, xr = [xr yr θr]
T is a known, pre-specified

reference trajectory. It is usual in this case to associate to
this reference trajectory a virtual reference robot, which has
the same model than the robot to be controlled. A linearized
discrete time model of the system, described by (6), is obtained
by computing an error model with respect to a reference car.
This is ensured by expanding the right side of (3) in Taylor
series around the point (xr, ur,) and using forward differences.

x̃(k + 1) = A(k)x̃(k) +B(k)ũ(k),
ỹ(k) = C(k)x̃(k).

(6)

with A(k) =

[
1 0 −vr sin(θr(k))Ts
0 1 vr cos(θr(k))Ts
0 0 1

]
,

B(k) =

[
cos(θr(k))Ts 0
sin(θr(k))Ts 0

0 Ts

]
,

C(k) = I3, I3 is the (3×3) identity matrix. x̃ = x − xr
represents the error with respect to the reference car, ũ = u−ur
is its associated error control input with ur = [vr wr]

T and
ỹ = y−yr denotes the system output. It is easy to see that when
the robot is not moving (i.e., vr = 0), the linearization around
a stationary operating point is not controllable. However, this
linearization becomes controllable as long as the control input
u is not zero [21].

www.ijacsa.thesai.org 278 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

B. MPC Direct Output Method

In this paper we consider the Model Predictive Control
algorithm, where the objective function is rewritten as standard
quadratic form. At that point, we target to solve the Quadratic
Problem (QP) in using interior-point method, widely used in
applications, to solve problems iteratively such that all iterates
satisfy the inequality constraints strictly. By extending the
output direct method equations provided in [20] to MIMO
model process and if we consider (6) for the discrete state
space model, the following output at time (k+ j) is obtained:

y(k + j|k) = yr(k + j|k) + CAjx(k)− CAjxr(k)

+
∑j−1
i=0 CA

j−1−iBu(k + i)−
∑j−1
i=0 CA

j−1−iBur(k + i).
(7)

The MPC based on a state space model aims to minimize
the quadratic criterion given by:

J =
m∑
s=1

Hc∑
j=1

λ1

s

[us(k + j − 1)]
2

+
n∑
s=1

Hp∑
j=1

λ2s[ys(k + j|k)− ωs(k + j)]
2
.

(8)

Here, Hp is the prediction horizon, Hc is the control
horizon, λ1 = [λ1s]s=1:2 = [λ11 00 λ12] is the input
weighting matrix with (m×m) dimension.

The output error weighting matrix with (n×n) dimension
is given by:

λ2 = [λ2s]s=1:n =

[
λ21 0 0
0 λ22 0
0 0 λ23

]
, ω = [ωs]

T
s=1:n

is the set-point and ωs (k + j) denotes the set-point at time
(k + j), u = [us]

T
s=1:m and y = [ys]

T
s=1:n denote the inputs

and outputs, respectively.

It is assumed that there is no control action after time
(k+Hc-1), i.e. u(k+i) = 0 for i > (Hc−1).

Since the MPC is a receding horizon approach, only the
first computed control input u is implemented.

In matrix presentation, the objective function can be ex-
pressed as:

J = UTΛ1U + (Y −W)TΛ2(Y −W), (9)

in which W = [ω (k + 1) , . . . , ω (k +Hp)]
T is the set point

matrix, Λ1 is a weighting matrix with (mHc× mHc) dimension
and Λ2 is (nHp× nHp) matrix.

As in [20], the output sequence on Hp can be written as
follows:

Ỹ = LŨ + MAx̃ (k) , (10)

where:

Ỹ =

 y (k + 1)− yr (k + 1)
...

y (k +Hp)− yr (k +Hp)

 ,

and Ũ =

 u(k)− ur(k)
...

u(k +Hc − 1)− ur(k +Hc − 1)

.

The L matrix with the (nHp×mHc) dimension and M which
is an (nHp×n) dimensional matrix are given by:

L =


CB 0 · · ·
CAB CB · · ·

...
... · · ·

CAHp−1B CAHp−2B · · · · · ·

0
0
0

CAHp−HcB

 ,

M =


C
CA
...

CAHp−1

.
(11)

One can rewrite the objective function in a standard
quadratic form:

J (U) =
1

2
UTGU + gTU + c0, (12)

where:

G = 2(LTΛ2L+ Λ1),
g = LTΛ2(Mx̃−W),
c0 = (MAx̃−W)T (MAx̃−W),
Λ1 = diag(λ1...λ1),
Λ2 = diag(λ2...λ2).

In this way, the constrained MPC problem is formulated
as a compact Quadratic Problem (QP) described by (12):

min
U∈RmHc

J (U) = 1
2U

TGU + gTU + c0,

s.t.
FTU ≤ b.

(13)

G is (mHc × mHc) matrix, g is (mHc × 1) vector, F is
(q × q) matrix where q is the number of inequality constraints,
q is equal to (6mHc) in our case, and b is a (6mHc × 1) vector.

The QP problem is subject to linear inequality con-
straints on the system inputs, system inputs deviation
(∆u = u(k)-u(k-1)) and system outputs as follows:

Umin ≤ U ≤ Umax,
∆Umin ≤ ∆U ≤ ∆Umax,
Ymin ≤ Y ≤ Ymax,

(14)

www.ijacsa.thesai.org 279 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

in which:

∆umin =

(
∆vmin

∆wmin

)
,∆Umin =

 ∆umin

...
∆umin

 ∈ RmHc ,

∆umax=

(
∆vmax

∆wmax

)
, ∆Umax =

 ∆umax

...
∆umax

 ∈ RmHc ,

umin =

(
vmin

wmin

)
, Umin =

 umin

...
umin

 ∈ RmHc ,

umax =

(
vmax

wmax

)
, Umax =

 umax

...
umax

 ∈ RmHc ,

ymin =

(
xmin

ymin

θmin

)
, Ymin =

 ymin

...
ymin

 ∈ RnHp,

ymax =

(
xmax

ymax

θmax

)
, Ymax =

 ymax

...
ymax

 ∈ RnHp.

Replacing Y in (14) by its value in equation (10), and by
considering ∆U value at each iteration (k), we obtain:

Ymin ≤ LŨ +MAx̃ (k) −Yref ≤ Ymax ,
∆Umin ≤ u(k)− u(k − 1) ≤ ∆Umax.

(15)

As a consequence, the following inequalities will be easily
obtained:

U ≤ (L)+(LUr + Ymax + Yref − MAx̃ (k)). (16)

−U ≤ −(L)+(LUr+Ymin + Yref − MAx̃ (k)). (17)

U ≤ ∆Umax + U(k− 1). (18)

−U ≤ −∆Umin− U(k− 1). (19)

The operator (+) denotes the Moore-Penrose pseudo-
inverse operator. Hence, we obtain:

FT =


−Ic
Ic
−Ic
Ic
−Ic
Ic

 ,

b =


−Umax

Umin

−∆Umax − U(k − 1)
∆Umin + U(k − 1)

−(L)+(LUr + Ymax + Yref −MAx̃)
(L)+(LUr + Ymin + Yref −MAx̃)

 ,
(20)

with Ic ∈ RmHc×mHc is the identity matrix.

C. Quadratic Problem: Interior Point Method

To set up the equations enabling the interior-point method
design, we use the general theory on constrained optimization
by defining a Lagrangian function and setting up Karush Kuhn-
Tucker (KKT) conditions for the QP’s that we wish to solve.
The KKT-conditions (21) are conditions that must be satisfied
for a vector U to be a solution of a given QP.

GU + g − Fλl = 0,
s − FTU + b = 0,
siλli ≥ 0,

(21)

with λli is Langrange multiplier of the ith inequality
constraints, si is the ith element of the slack vector s satisfying:

s = FTU - b, s ≥ 0. (22)

The full algorithm is stated in Fig. 2.

The algorithm requires a starting point (x0, λl0, s0) which
does not need to be in the feasible region. In fact, this is
accomplished by requiring that (λl0, s0) > 0 and having the
right hand side of (23) containing the residual vectors rd, rp
and rsλ instead of zeros to prevent infeasibility [23].

Fundamental concepts related to this method such as cen-
tral path, the stopping criteria, the predictor complementary
measure for the computed Newton step µaff , the search
direction (∆x,∆λl,∆s), the complementary measure µ and
the centering parameter σ are detailed in [23]. In the algorithm,
the matrix S = diag(S1,S2,..Sm) in which Siare the slack
vectors, Λl = diag(λl1, λl2, ..., λlm) is a diagonal matrix with
the elements of the Lagrange multiplier on the diagonal, µ
denotes the complementary measure, (∆xaff ,∆λaff ,∆saff)
is the affine scaling direction, λaff is the step length and
e = (1, 1, ...1)T is a (m× 1) vector containing ones.

For implementation, vr is measured 0.2 m/s. Since we are
dealing with nonhomolonic WMR, the saturation of the input
control u should be considered. The maximum allowed values
are vmax = 0.4 m/s and wmax = 5 rad/s while the minimum
ones are vmin = 0 and wmin = −5 rad/s.

www.ijacsa.thesai.org 280 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

Off line treatment
Input (x0, λl0, s0) and G, F, g, b
Compute residuals and complementarity measure
rd = Gx0 + g − FΛl0
rp = s0 − FTx0 + b
rsΛl

= S0Λl0e

µ =
sT0 λl0

m
Online treatment
While loop : terminate if stopping criteria (*) are satisfied
Predictor step:
Solve (23) to obtain an affine scaling direction (∆xaff , ∆λaff ,
∆saff) for setting up the right hand side for the corrector step
and to obtain a good value of the centering parameter σ: G F 0

FT 0 I
0 S Λl

 [
∆xaff
∆λaff
∆saff

]
= −

[
rd
rp
rsλ

]
. (23)

Compute αaff

λl + αaff∆λaff ≥ 0
s + αaff∆saff ≥ 0

Compute µaff
µaff =

(s + αaff∆saff)T (λl + αaff∆λaff)
m .

Compute centering parameter σ

σ =
(
µaff

µ

)3

Corrector and centering step:

Solve (24) to obtain search direction G F 0
FT 0 I
0 S Λl


[

∆x
∆λl
∆s

]
= −

[
rd
rp

rsλ + ∆Saff∆Λaffe− σµe

]
(24)

Compute α
λl + α∆λl ≥ 0
s + α∆s ≥ 0

Update (x, λl, s)
Update residuals and complementarity measure
rd = GU + g − Fλl

rp = s− FTx+ b

rsλ = SΛle

µ = sTλl

q

End while loop

Fig. 2. Interior point algorithm.

(*) Stopping criteria are:
- Reach Z which is the maximum number of iterations to
ensure that the algorithm stops. Z belongs to [50,200],
- ||rd|| ≤ ε and ||rp|| ≤ ε, with ε = 10−16.

III. IMPLEMENTATION RESULTS

In order to demonstrate the effectiveness of the proposed
controller scheme, the following section presents the MPC
controller implementation steps on two wheeled mobile robot.

A. Implementation Software and Hardware Environment

The considered hardware environment is composed by:

* Two wheeled mobile robot with 80 RPM as no-load
rotating speed at 6 V , wheel diameter is equal to 65 mm and
with width and weight respectively equal to 10.2 mm and
305 g.

Fig. 3 provides an overview of the used robot.

Fig. 3. WMR robot used for the implementation.

* STM32F407 and STM32F429 32-bit are high perfor-
mance MicroController Units (MCUs). they include ARM
Cortex-M4 core, floating point unit and built-in single-cycle
multiply-accumulate (MAC) instructions. The Adaptive Real-
Time Accelerator combined with STMicroelectronics 90 nm
technology provides linear performance up to 172 MHz. These
MCUs includes 1 MB of on-chip Flash memory and 192 KB
of SRAM. These features expand the number of addressable
real time control applications.

* STM32F4DISCOVERY and STM32F429DISCO are low
cost kits based on STM32F407 and STM32F429 MCUs re-
spectively and designed to help design engineers developing
their applications easily. STM32F429DISCO integrates the
gyroscope L3GD20 which is a low-power three-axis angular
rate sensor includes a sensing element capable of providing
the measured angular velocity w =[wx,wy ,wz] to the external
world through a digital interface Serial Peripheral Interface
(SPI) in our cases. For efficient control, the angular velocity
is generally coupled with the linear velocity for the WMR
position calculation. That’s why, the STM32F4DISCOVERY,
embedding an ST MEMS accelerometer, is also considered.

* Arduino Motor Shield based on the L298, is used to drive
the two DC motors with control of the speed and direction of
each one independently.

The software environment consists of:

* MDK-ARM is a software development and debugging
environment for ARM-based microcontroller devices. It is
specially designed for microcontroller applications. Its C com-
piler is the only compilation tool co-developed with the ARM
processors, and specially designed to optimally support the
ARM architectures.

www.ijacsa.thesai.org 281 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

* Embedded MATLAB Coder works with Real-Time
Workshop to convert code from a dynamically typed language
(MATLAB) to a statically typed language (C).

B. Implementation Framework

Based on the measured angular velocity, the robot angular
position output θ is calculated based on the following formula:

θ(k) = θ0 + Ts

k∑
i=0

w(i), (25)

with θ0 is WMR angular position at k =0.

In order to measure x abscissa and y ordinate, the gyroscope
sensor is combined with an accelerometer MEMS sensor in
the STM32F407 Discovery kit aiming to provide the robot
acceleration a(k). The integration of the acceleration provides
the linear velocity v(k).

v(k) = v0 + Ts

k∑
i=0

a(i). (26)

in which v0 is WMR linear velocity at k =0. Robot
positions (x and y) are then calculated based on the following
equations with x0 and y0 are respectively WMR abscissa and
ordinate at k =0.

x(k) = x0 + v(k)Ts

k∑
i=0

cos(θ(i)). (27)

y(k) = y0 + v(k)Ts

k∑
i=0

sin(θ(i)). (28)

These equations allow the robot positions estimation from
the real measurements obtained from sensors. However, it’s
known that accelerometers have an unwanted phenomenon
called drift caused by a small DC bias in the acceleration
signal. The presence of drift can lead to large integration
errors. If the acceleration signal from a real accelerometer was
integrated without any filtering performed, the output could
become unbounded over time. That’s why to solve the problem
of drift, a pass-band filter is used to remove the DC component
of the acceleration signal. The frequency response of the
filter must have a very low and very high cutoff frequencies
compared to the bandwidth of the signal. By filtering before
integrating, drift errors are eliminated. The block diagram of
the closed loop system is illustrated by Fig. 4.

Fig. 4. WMR closed loop implementation diagram.

Fig. 5 and 6 summarize needed steps for the proposed
controller implementation.

Steps executed during Systick interrupt handler should not
exceed the sampling time Ts=0.01052 s.

Hint: knowing that wmax and vmax parameters are subject
of change according to battery depletion over time, terrain
type,... we propose in this paper a real-time measurement of
wmax parameter before trajectory tracking. This is done by
turning the robot around (OZ) axis with maximum allowed
speed and measuring the angular velocity which corresponds
to wmax. vmax is then deduced given that a linear velocity is
the product of the WMR radius r and angular velocity.

Gyroscope calibration

Reference trajectory plot on LCD

Wmax and Vmax deduction

Systick interrupt enable every Ts

Real Time plot of robot position on (OXY) plan

Fig. 5. Systick handler treatment.

Angular velocity measurement using the gyroscope

θ calculation using (25)

x and y calculation using the state estimator (27) and
(28)

MPC treatment for WMR input control generation

v and w translation to two PWM signals, one for each
wheel

Fig. 6. Main program.

C. Automatic Code Generation for the Implementation

For code generation, Embedded Simulink Coder embeds
many configuration options and advanced optimization for
fine-grain control of the generated code’ functions based on the
processor architecture. These options allow control function
boundaries, preserve expressions and apply optimization on
multiple blocks to further reduce code size. The MDK-ARM
tool integrates an ARM C compiler including a number of
compiler optimization allowing code generation based on
chosen microcontroller device and application area. The max-
imum level of performance optimization is chosen. Steps for
automatic C code generation are detailed in [24].

D. Implementation Footprint and Execution Speed Optimiza-
tion

Control algorithms implementation on system on chip
solutions has been historically hindered by the high computing

www.ijacsa.thesai.org 282 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

and associated memory demands constraints. To overcome
this problem, we propose some optimization hints detailed
on [24] which results in a faster and more efficient system-
development work-flow. MDK-ARM toolchain is used as
development and debugging environment, Among these op-
timization hints, the usage of the simple precision floating
type is particularly relevant. In fact, considering the hardware
Floating Point Unit (FPU) of the STM32F429 device rather
than the software double precision types (generated by de-
fault by MATLAB Embedded Coder) is an optimization hint
for performance increase. In fact a simple addition of two
variables, declared as double, requires 82 CPU cycles due to
double software library call whereas in simple precision case,
it requires only 2 CPU cycles to be executed thanks to the
hardware FPU usage. To avoid the unnecessary type conversion
or confusion, the letter “f” is assigned following the numeric
value.

Results provided in Table 1 focus on execution speed
results found after applying code optimization techniques on
inputs constraints only and in the case of constraints on inputs
and outputs.

TABLE I. OPTIMIZATION RESULTS

Constraints Execution time
per sample (ms)

Inputs constraints 2.66
Inputs and inputs deviation constraints 3.89
Inputs, inputs deviation and outputs constraints 4.80

From Table 1, it is deduced that generated code is subject to
very interesting execution time optimization. In fact, applying
inputs, inputs deviation and outputs constrains does not exceed
the half of the sampling period (10 ms) which reflects the
effectiveness of the proposed control scheme.

E. Implementation Results: Inputs Constraints

The robot trajectory is displayed using both LCD screen
of the STM32 Discovery Kit and the STMStudio tool. This
software tool is non-intrusive to the application code and used
to monitor STM32 applications while they are running by
reading and displaying their variables in real-time.

The maximum allowed linear velocity vmax is identified
as 0.4 m/s and its minimal value vmin = 0 m/s. The
angular velocities wmin and wmax are ±5 rad/s. The linear
input deviation ∆vmax and ∆vmin are measured and fixed to
±0.25 m/s. Similarly, ∆wmax and ∆wmin are branded to
±1 rad/s.

Fig. 7 shows that the robot tracks successfully the reference
path. This is confirmed by the robot abscissa, ordinate and
orientation errors with regards to the reference path presented
in Fig. 8, 9 and 10.

(a) Using STMSTUDIO tool.

(b) Using LCD screen.

Fig. 7. WMR trajectory plot.

Fig. 8. WMR trajectory errors.

Fig. 9. Control inputs.

www.ijacsa.thesai.org 283 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

Fig. 10. Control inputs deviation.

F. Implementation Results: Inputs and Output Constraints

In addition to inputs constraints already defined in the
previous paragraph, output constraints are also considered in
this section. The output constraints are defined as ymin = ω -
[0.01 0.01 0.25] and ymax= ω + [0.01 0.01 0.25].

Fig. 11 and 12 present the plot of the robot trajectory as
well as the reference path. It is concluded from Fig. 11 and 12
that the output constraints are satisfied with errors very close
to zero along the path.

From Fig. 11, 12, 13 and 14, it is established that inputs
control and inputs control deviations constraints are satisfied
and the proposed control method controls successfully the
process with a very good set-point tracking.

(a) Using STMSTUDIO tool.
(b) Using LCD screen.

Fig. 11. WMR trajectory plot.

Fig. 12. WMR trajectory errors.

Fig. 13. Control inputs.

Fig. 14. Control inputs deviation.

www.ijacsa.thesai.org 284 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

IV. CONCLUSION

In this manuscript, Model Predictive Control implemen-
tation was focused on taking into account control inputs,
inputs deviation and outputs constraints. The proposed control
scheme exhibited suitable global performance when applied to
wheeled mobile robots (WMR) for trajectory tracking problem.

Implementation results highlight the efficiency of the pro-
posed design method. A framework for embedding MPC
controller on a high performed STM32F429 microcontroller
has been used. Optimization techniques have been applied
to the generated code. Hence, an efficient implementation
of the proposed control method yields a low computational
burden with a high execution speed. Indeed, based on the
experimental results, we noticed that the proposed method
control successfully the process with a good set-point tracking.

In forthcoming article, we will focus on performance
analysis comparison between the constrained MPC method
proposed in this paper and a MIMO adaptive Proportional In-
tegral Derivative (PID) regulator [8] for the trajectory tracking
problem.

REFERENCES

[1] Z. Gao and R. R. Rhinehart, Theory vs. practice: The challenges from
industry, American Control conference, Boston: Massachusetts, June 30
- July 2, 2004.

[2] E. Camacho and C. Bordons, Model Predictive Control, Springer, Lon-
don, 2004.

[3] W. F. Lages and J. A. V Alves, Real-time control of a mobile robot using
linearized model predictive control, IFAC Proceedings Volumes, vol. 39
no. 16, pp. 968-973, 2006.

[4] R. Sharma, F. Dusek and D. Honc, Comparitive Study of Predictive
Controllers for Trajectory Tracking of Non-holonomic Mobile Robot,
21st International Conference on Process Control (PC) June 69, Strbske
Pleso, Slovakia, 2017.

[5] H. N. Huynh, O. Verlinden and A. V. Wouwer, Comparative Application
of Model Predictive Control Strategies to a Wheeled Mobile Robot, J
Intell Robot Syst, vol. 87 no. 1, pp 8195, July 2017.

[6] D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, Con-
strained model predictive control: Stability and optiMality, Automatica
(Elsevier), vol. 36, pp. 789-814, 2000.

[7] A. Bemporad, F. Borrelli, M. Morari, Model Predictive Control Based
on Linear Programming - The Explicit Solution, IEEE Transaction On
Automatic Control vol. 47 no. 12, pp. 1974-1985, 2002.

[8] I. Malouche and F. Bouani, A New Adaptive Partially Decentralized
PID Controller for Non-square Discrete-time Linear Parameter Varying
Systems, in revision in the International Journal of Control, Automation,
and Systems (IJCAS), Springer.

[9] A. A. Kheriji, F. Bouani, M. Ksouri and M. B. Ahmed,A Microcontroller
Implementation of Model Predictive Control, World Academy of Science,
Engineering and Technology International Journal of Electrical and
Information Engineering, vol. 5 no. 5, 2011, pp. 600-606.

[10] A. A. Kheriji, F. Bouani and M. Ksouri, A Microcontroller Implemen-
tation of Constrained Model Predictive Control, International Journal of
Electrical and Electronics Engineering, vol.5 no.3, 2011, pp. 199-206.

[11] J. Currie, A. Prince-Pike and D. I. Wilson, Auto-Code Generation
for Fast Embedded Model Predictive Controllers, 19th International
Conference on Mechatronics and Machine Vision in Practice (M2VIP12),
Auckland, New-Zealand, 28-30th November 2012, pp. 122-128.

[12] D. W. Clarke , C. Mohtadi and P. S. Tuffs, Generalized Predictive
Control Part I. The Basic Algorithm, Automatica, 1987, vol. 23 no. 2,
pp. 137-148.

[13] K. Ling, S. Yue and J. Maciejowski, A FPGA implementation of
model predictive control, American Control Conference, Minneapolis:
Minnesota, USA, June 2006.

[14] A. Vikstrm, A study of automatic translation of MATLAB code to C
code using software from MathWorks, Masters Thesis, Lulea University,
2009.

[15] K. Ling, B. Wu, and J. Maciejowski, Embedded model predictive control
(mpc) using a FPGA, 17th IFAC World Congress, Seoul, Korea, July
2008, pp. 6-11.

[16] A. Kheriji, F. Bouani, and M. Ksouri, Efficient implementation of
constrained robust model predictive control using a state space model,
International Conference on Informatics in Control, Automation and
Robotics (ICINCO), Madeira, Portugal, June, 2010, vol. 3, pp. 116-121.

[17] A. Kheriji, F. Bouani, and M. Ksouri, A Microcontroller Implementa-
tion of Constrained Model Predictive Control, International Journal of
Electrical and Electronics Engineering, 2011, vol. 5 no. 4, pp. 272-279.

[18] L. G. Bleris, J. Garcia, M. V. Kothare, and M. Arnold, Towards
embedded model predictive control for System-on-a-Chip applications,
Journal of Process Control, 2006, vol. 16 no. 3, pp. 255-264.

[19] D. I. Wilson and B. R. Young. The Seduction of Model Predictive
Control, Electrical & Automation Technology, December-January 2006.

[20] K. Watanabet, K. Ikeda, T. Fukuda and S. Tzafestas, Adaptive gen-
eralized predictive control using a state space approach, International
Workshop on Intelligent Robots and Systems IROS, no. 91, Japan: Osaka,
1991, pp. 1609-1614.

[21] F. Khne, W. F Lages, J. M. Gomes. da Silva Jr, Model Predictive Control
of a Mobile Robot Using Linearization, Mechatronics and Robotics,
2004, Aachen, Germany, pp. 525-530.

[22] L. Pacheco and N. Luo, Mobile robot local trajectory tracking with
dynamic predictive control technics, International Journal of innovative
Computing, Information and control, vol. 7, no 6, June 2011.

[23] R. K. Thomas, Interior-point algorithms for quadratic programming,
Master Thesis. Technical University of Denmark, 2008

[24] I. Malouche, A. Kheriji and F. Bouani, Automatic Model Predictive
Control Implementation in a High-performance Microcontroller, Interna-
tional Conference on Systems, Analysis and Automatic Control (SAC),
Mahdia, Tunisia, 2015.

www.ijacsa.thesai.org 285 | P a g e

