
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

311 | P a g e

www.ijacsa.thesai.org

FPGA Prototyping and Design Evaluation of a

NoC-Based MPSoC

Ridha SALEM, Yahia SALAH, Imed BENNOUR and Mohamed ATRI

Electronics and Microelectronics Laboratory, Faculty of Sciences

University of Monastir, 5000 – Monastir, Tunisia

Abstract—Chip communication architectures become an

important element that is critical to control when designing a

complex MultiProcessor System-on-Chip (MPSoC). This led to

the emergence of new interconnection architectures, like

Network-on-Chip (NoC). NoCs have been proven to be a

promising solution to the concerns of MPSoCs in terms of data

parallelism. Field-Programmable Gate Arrays (FPGA) has some

perceived challenges. Overcoming those challenges with the right

prototyping solutions is easy and cost-effective leading to much

faster time-to-market. In this paper, we present an FPGA based

on rapid prototyping in hardware/software co-design and design

evaluation of a mixed HW/SW MPSoC using a NoC. A case study

of two-dimensional mesh NoC-based MPSoC architecture is

presented with a validation environment. The synthesis and

implementation results of the NoC-based MPSoC on a Virtex 5

ML 507 enable a reasonable frequency (151.5 MHz) and a

resource usage rate equals to 58% (6,586 out of 11,200 slices

used).

Keywords—MultiProcessor System-on-Chip; Network-on-Chip;

FPGA Field-Programmable Gate Arrays (FPGA) prototyping;

design evaluation

I. INTRODUCTION

Technological advances in recent years on the
programmable components, specifically FPGAs, have
improved their capacity for integration and the connection
between their different logic cells, thus making it possible to
implement a complete MPSoC in a single FPGA device.
These FPGA-based multiprocessors systems, with hard and
soft cores, have become the standard for implementing
heterogeneous embedded architectures [1]. They facilitate
rapid prototyping and allow building scalable and modular
applications. However, massive growth in size and complexity
in recent years and future MPSoCs places on-chip
interconnect at the system performance center. Traditionally
on-chip communication has been conducted via dedicated
point-to-point links or a shared media like a bus. Bus-based
architectures are simple and completely widespread; use of
these approaches do not scale very well when more
intellectual property (IP) cores are integrated in a system and
will not meet the requirements of the future MPSoCs because
of their seriously limited scalability. Also, they quickly
become the bottleneck of a system [2]-[4]. By using the
interconnection network as the communication infrastructure
between cores, Networks-on-Chip (NoCs) are emerging as an
efficient and scalable alternative to existing on-chip
interconnects which allow systems to be designed modularly.
Different NoCs solutions are used in MPSoC platforms and

commercialized by many companies such as SonicsGN [5]
developed by Sonics, FlexNoC [6] by Arteris, Æthereal NoC
[7] by Philips Research Laboratories and Teraflops Research
Chip (also called Polaris) [8, 9] by Intel Corporation's Tera-
Scale Computing Research Program. Other NoC-based multi-
core system architectures are developed by teams from
universities and research institutions such as SoCIN [10],
OCCN [11], FAUST [12] and Ninesilica [13].

Some of the above-mentioned proposals and several many-
core system designs still use simulation and mathematical
analysis for the evaluation of their on-chip interconnects under
various network configurations [14], [15]. However, it is
important that prototyping must be considered to improve the
evaluation accuracy by bringing the design closer to reality.

Unlike conventional hardware prototyping approaches,
FPGA-based prototyping of mixed hardware/software MPSoC
architecture became an extremely challenging task. It requires
specific FPGA expertise hardware/software codesign flow and
environments. Moreover, many competences are required such
as the mastery of prototyping hardware platform (ML507), the
software development flow (tools, drivers, RTOS, etc.) as well
as the hardware development flow (specification, synthesis,
placement, routing etc.). In addition, different interconnection
solutions can be covered between the software and the
hardware blocks. Also, the configuration and integration of IP
blocks and the use of soft and hard processors were included.

This work focuses on the prototyping of a mixed
hardware/software FPGA-based MPSoC using two-
dimensional mesh NoC architecture. The basic performances
of the investigated MPSoC are to be explored in a fast and
efficient hardware-based way. The paper is divided into five
sections. Starting with the presentation of a survey on existing
FPGA prototyping approaches for MPSoC platforms (section
II). Moving to Section III which shows the MPSoC design
flow and describes the EDK Tools and Design Flow
Integration. Then Section IV that gives the details of the NoC
architecture and the Fast Simplex Link (FSL) bus interface as
they are the basic elements of the MPSoC platform. Section V
shows the FPGA prototyping of a NoC-based MPSoC.
Section VI evaluates the hardware simulation and synthesis
results. Last but not least, Section VII concludes the paper and
highlights future work.

II. RELATED WORKS

MPSoC with NoC are strongly emerging as prime
candidates for complex embedded applications. Also, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

312 | P a g e

www.ijacsa.thesai.org

interest in NoC prototyping is continuously growing, as many
recent processing chips are multi-cores. On the one hand,
prototyping such systems is a quite complicated task. In order
to allow fast generation of these platforms in the development
phase, a full design flow is required. On the other hand,
modern FPGAs provide the possibility for fast and low-cost
prototyping in HW/SW co-design, representing an efficient
response to these needs. With the increase of available
reprogrammable logic cells, many works have explored the
possibility to implement an entire NoC-based MPSoC on
FPGA [16], [17]. In [18], Lukovic et al. presented a
framework, based on the Xilinx EDK design flow, for the
generation of MPSoCs based on NoCs. This integrated design
flow takes as an input a textual description of the system and
produces as a final result a configuration bitstream file. In
[19], Lokilo et al. proposed an array-based MPSoC
architecture, matching requirements of applications where the
data can be splitted into several subsets and processed in
parallel, as is the case in numerous video processing
algorithms. They have physically implemented a 2x2 Xtensa
core system in a Virtex II Pro and tested it in a real time
application. Van Langendonck et al. proposed an integrated
framework MPSoCDK for rapid prototyping and validating
NoC-based MPSoC project targeting FPGA devices [20].
Similarly to this design flow, MPSoCDK aims at speeding up
the processes of designing, exploring and prototyping MPSoC
projects. It also simplifies the process of designing complex
projects through a Graphical User Interface (GUI), providing a
hardware and software layer. However, the proposed flow
produces pure synthesizable VHDL and does not create
project files for tools such as Xilinx XPS or Altera SoPC. In
[21], Geng et al. used the FPGA device to prototype the
cluster-based MPSoC with 17 processing cores. Moreover, a
suite of benchmarks, including several parallel applications
with different characteristics of parallelism, workload and
communication pattern, are designed and presented. It has
been reported that a complete design methodology has been
successfully used for the implementation of a NoC-based
MPSoC, the NoCRay graphic accelerator. Noting that this
design methodology tackles at once the aspects of system
level modeling hardware architecture and programming
model, the design which is based on 16 processors has been
laid out in 90-nm technology after prototyping with FPGA.
Post-layout results show very low power, area, and high
frequency [22]. Wächter et al. presented an open source
platform for MPSoC development named HeMPS Station
which derived from the MPSoC HeMPS [23]. In its present
state, it includes the platform (NoC, processors, DMA and
NI), embedded software (microkernel and applications) and a
dedicated Computer-Aided Design (CAD) tool to generate the
required binaries and perform debugging. Experiments show
the execution of a real application running in HeMPS Station.

The solution proposed in this work is based on a concept
similar to [18]. However, its aim is to perform a low cost
hardware realization in FPGA taking into account the
integration in MPSoC environment. We have realized on a
Xilinx Virtex5 FPGA, a system composed of MicroBlazes
running without operating system (OS), shared memory
blocks, and a NoC as an interconnecting medium among them.

III. DESIGN METHODOLOGY AND FPGA-BASED SYSTEM

PROTOTYPING OF MPSOCS

A. MPSoC Design Flow and Verification Approach

The development of complex systems is increasingly
involved with specific software and hardware components.
The co-design provides solutions for this type of development.
It is based on a set of steps that allow as to synthesize a SoC
integrating software and hardware components that respect the
imposed design constraints (e.g. time and surface). A standard
design flow is typically composed by four main steps:
specification, partitioning, synthesis and HW/SW verification
(see Fig. 1). These steps can be summarized as follows:

1) The system modeling allows describing its functional

behavior without taking into account the architecture. At this

level, the interest is to obtain relevant results in terms of

performance and timing.

2) The SW/HW partitioning is the step following the

system modeling. At this level, the architectural details of

communication are integrated with the scheduling of all

operations.
This step appears to split the system into three major parts:

 A hardware part implemented as a hardware circuits
and generally used for performance. This part can be
considered as an IP obtained from a library or a
hardware accelerator that is made especially for a
specific task.

 A software part implemented as an executable program
on processor and generally used for features and
flexibility. This processor can be a General Purpose
Processor (GPP) or a reconfigurable processor
(configured according of the application needs).

 A communication interface between these two parts.

Fig. 1. MPSoC design flow [24].

In fact, these obtained parts must be verified and validated
before the synthesis and implementation phases. If the
partitions obtained are not satisfied, a feedback is needed to
return to the partitioning stage in order to refine the weights
that are associated with constraints for each part differently.
Then, several simulations will be made to choose the best
distribution between the software and the hardware parts.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

313 | P a g e

www.ijacsa.thesai.org

3) The synthesis step also called implementation. In this

step, the Register Transfer Level (RTL) description for the

hardware part and the source code for the software part of the

system are obtained. Obviously, verification and validation of

the functionality of the generated model should be done. At

this stage of design, the analysis is concerned with the

performance of the architecture at the cycle level and at the bit

level through co-simulations.

4) The last step of the design flow consists first of the

logical synthesis of the RTL part of the system. Then the

logical functions that have been synthesized which will be

placed and routed on the chip. This process is accomplished

by the use of commercial synthesis tools such as: Simplify

[25], Xilinx Synthesis Technology (XST) [26], Leonardo

Spectrum [27], etc. The software part of the system will be

compiled to generate a hexadecimal image. Finally after

obtaining the performance such as area and energy

consumption in the logical synthesis, the co-simulation will be

established. Once the architecture is validated, various real

tests through the FPGA prototyping platform [28] are to be

made.
During each step in the design flow of an MPSoC, the

verification should be performed by designers. Consequently,
it is ensured that the new components or the new
implementation details providing a proper functionality.
Verification can take up to 70% of the device design time
[29], [30]. This step has a major cost in terms of time as well
as financial. There are several techniques of verification:
formal verification, simulation, co-simulation, emulation, co-
emulation and prototyping. In this work the focus is mainly on
the prototyping stage.

Prototyping is a solution that reduces the time of design,
development, verification and validation of SoCs [31].
Although, FPGA has some perceived challenges, overcoming
those challenges with the right prototyping solutions is easy
and cost-effective leading to the fastest time-to-market.

The software components made by programs executed
through one or more processors. However, the hardware
components of the application are made with FPGA
programmable blocks. It uses configurable components to
implement physical blocks and connections. To achieve this
type of prototyping, it is sufficient to just have a description of
RTL or gate of all components and reconfigurable prototyping
platform.

Several tools and companies have adopted this rapid
prototyping in HW/SW co-design approach regarding their
simplicity of synthesis and integration of new components.
Among these development tools is EDK proposed by Xilinx
[32].

B. EDK Tools and Design Flow Integration

Xilinx provides various software which enable to create
embedded SoCs, among these softs the ISE and EDK. The ISE
tool is used especially to produce hardware IP projects from a
Hardware Development Language code (HDL) [33].

However, the EDK tool allows us to establish a direct link
between the hardware and the software parts of a system. It
includes a system generator for processor and Xilinx Platform
Studio (XPS) [34]. Thus, all design flows are grouped in XPS
environment [31].

The standard design flow of Xilinx consists of two main
steps (Fig. 2): the first one consists of the conception and the
synthesis of the design. The second step consists of the design
implementation and verification. Moreover, the design of an
embedded system typically includes four phases (creation and
verification of the hardware and the same for the software
platform).

For the EDK tool, the hardware platform is defined by the
MHS (Microprocessor Hardware Specification) file. The
verification platform allows the user to define the simulation
model for each system component (processor and peripherals).
If the software application is executable, then it can be used to
initialize the memories. The software platform is defined by
the MSS (Microprocessor Software Specification) file. The
creation and verification of a software application involves
several steps: To start with the writing of the code in C, C ++
or assembler language that will be executed through the
software and the hardware platforms. After that this code is
compiled and linked using the GNU tool (other tools can also
be used) to generate the executable file in ELF (Executable
and Link Format) format. Then, Xilinx Microprocessor
Debugger (XMD) and the GNU debugger (GDB) are used to
debug the application for the target processor [26].

Fig. 2. Detailed design flow XPS/ISE for Xilinx FPGAs [24], [32].

Synthesis and simulation are the two main steps in the
Xilinx design flow. The design tasks allow switching from one
description to another to arrive at the bitstream configuration
file. Indeed, a logical synthesis makes it possible to pass from
an RTL description of the architecture to a description at the
logical gate level (Netlist). The description of logical elements
is optimized according to the speed, area or consumption
constraints imposed by the designer. The XST synthesis tool

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

314 | P a g e

www.ijacsa.thesai.org

replaces the generic logical elements with the FPGA.
Placement and routing convert the hardware description into a
configuration file. It generates a file, which is used to
configure the interconnection matrices of the FPGA circuit. At
each stage of the design, the CAD enables us to perform
simulations in order to validate each step of the
implementation: Functional simulation at the RTL level, Post-
synthesis simulation at the logic gate level and Post-layout
simulation at the physical level.

IV. NOC-BASED MPSOC PLATFORM

The multi-processor platform template is shown in Fig. 3.
The architecture platform consists of multiple tiles connected
with each other by a NoC. Each tile contains a local memory
(M), and a network interface (NI), that is accessed both by the
local IP core inside the tile and by the NoC. The IPs are
responsible for the computation of the desired functions and
may be hardwired or programmable processors. The NoC
connects all tiles together via its routers (R) and links (L).

Two different types of tiles are distinguished based on the
functionality of the IP inside the tile and the size of the
memory (M). The first type, called processing tile, contains an
IP as a processor which executes the code of the applications
running on the platform. The application code and some of the
data structures needed when executing it are stored in the local
memory of the tile. The second type called memory tiles
contains a part of the memory sub-system that can be accessed
from the processing tiles. From the memory’s perspective,
only the NI and IP processor try to access this memory. In this
work, we are interested in the processing tile.

Router
(R)

Tile

Network Interface (NI)

FS

L

(0,0) (n,0)

(n,m)

flits

FSL

IP core
Local

Memory
(M)

fl
it
s

fli
ts

FS

L

Fig. 3. NoC-based MPSoC architecture overview.

A. NoC Architecture

The on-chip communication structure between the tiles in
the platform template should offer unidirectional point-to-
point connections between pairs of NIs. The connections must
preserve the ordering of the communicated data. To evaluate
the MPSoC design, a system interconnection model is needed.
The NoC model of Yang et al. [35] has been used.

The architecture platform consists of a set of routers which
are connected to each other in an arbitrary topology. Regular
topology is a popular NoC architecture due to its predictability
and ease of design. The used NoC has a 2D-Mesh topology,
where each router is connected with its neighbor and its own
NI by bidirectional communication channels [36]. The size of
a physical channel is 8 bits. A router has a routing unit, a
control block and a number of generic input-output ports. This
number depends on the used topology. In this case, there are
five communication ports which are indexed as follows: East

(index 0), West (index 1), North (index 2), South (index 3)
and Local (index 4). The Local port provides communication
between the router and its NI component. The other ports are
connected to neighboring routers. In order to avoid deadlock,
the XY routing algorithm is used where message or packet
will always be routed firstly in X (horizontal) direction, and
then into Y (vertical) direction. The serialization and the
deserialization steps must be done at the NI interface in order
to transfer the data to the heart of IP to the router.

 Send1
Data

Distrubitor

 Send2
Data

Distrubitor

 Send3
Data

Distrubitor

 32-bit to
1-bit

serializers
7

 32 bit to 1
bit

serializers
7

.

.

.

7

0

.

.

.

32

32

32

Fig. 4. Block diagram of the NI component.

Fig. 4 shows the NI architecture proposed by the work of
[36]. On the one hand, it is connected to the router via eight
wires. On the other hand, it is connected to the IP via three
communication channels with 32-bit data width for each one.
The NI architecture consists of a serializers number from 32-
bit to 1-bit. This number depends on the number of wire per
port connected to the router (eight wires in this case).

The architecture also consists of three data distributors
where each one is connected with an output message queues
via a communication channel of 32 bits data width. It is
responsible for transmitting data received through this channel
to the appropriate serializer. The serializer inputs consist of
two OR gates. The first one allows all distributors to forward
their data to each serializer. The second and the 1-bit output
are handshaking signals between the data distributor and the
serializer. The network can operate in normal mode or control
mode. The last mode is used to program the routers. The data
are used to program the NoC will be transmitted to the control
network through the node (0, 0).

B. FSL Bus Interface

Two types of connections are possible to connect a
MicroBlaze to the NI: the PLB (Processor Local Bus) or FSL
buses [37]. The FSLs are used because they adapt well to the
NoC. Indeed, one FSL bus allows fast access (two clock
cycles) devices to the MicroBlaze and vice versa (8 FSL
connections by MicroBlaze). The FSL bus width is 32 bits and
the C-functions were used to read or write data into the FIFO
of the bus. So, it is quite simple to create an adapter since it is
enough to read or write words in a FIFO with checking their
status. Fig. 5 shows the interface of a FSL bus. The IP master
of the FSL connection is the MicroBlaze and the IP slave is
the NI. Table 1 illustrates an overview of the FSL-related

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

315 | P a g e

www.ijacsa.thesai.org

predefined C-functions available in EDK tools and used in the
software applications (swappx).

Fig. 5. Block diagram of the FSL bus.

TABLE I. SUMMARY DESCRIPTION OF THE C-FUNCTIONS USED IN

SOFTWARE APPLICATIONS

C-Function Name Description

Parameters

Argumen

t
Type

microblaze_bread_d

atafsl

microblaze_bwrite_d
atafsl

Blocking Data Read and

Write to FSL Local Link

DeviceId

Data

Xuint

16

Xuint
32

microblaze_nbread_

datafsl
microblaze_nbwrite_

datafsl

Non-blocking Data Read
and Write to FSL Local

Link

DeviceId

Data

Xuint

16
Xuint

32

microblaze_bread_c

ntlfsl
microblaze_bwrite_c

ntlfsl

Blocking Control Read

and Write to FSL Local

Link

DeviceId
Data

Xuint

16
Xuint

32

microblaze_nbread_
cntlfsl

microblaze_nbwrite_

cntlfsl

Non-blocking Control

Read and Write to FSL
Local Link

DeviceId

Data

Xuint
16

Xuint

32

V. 2D-MESH NOC-BASED MPSOC PROTOTYPING ON

FPGA

The target system is an MPSoC composed of four
MicroBlazes processors interconnected through a NoC mesh
2×2. Fig. 6 shows the system architecture. The four
MicroBlazes processors are connected to the NoC via point-
to-point links. A laptop connected via Universal
Asynchronous Receiver/Transmitter (UART) at MicroBlaze
A0; enables debug data to be sent/received in order to verify
the NoC functioning.

R00

R11

R01

NI10

Tile10

Micro
Blaze

A2
FSL

NI00

Tile00

Micro
Blaze

A0
FSL

Tile01

Micro
Blaze

A1
FSL

Tile11

Micro
Blaze

A3
FSL

Laptop UART

R10

NI01

NI11

88

88

8

88 8

FSL
Fig. 6. System architecture of a 2x2 2D-mesh NoC-based MPSoC.

In this work, the Virtex5 FPGA Xilinx XC5VFX70 device
is targeted to implement the MPSoC system prototype in order
to provide area overhead, power dissipation and operating
frequency. The investigated system (see Fig. 7) is composed

mainly of Xilinx MicroBlaze processors, memory blocks and
a NoC.

 The MicroBlaze is an embedded soft core provided by
Xilinx [38]. Since processing tile was chosen in
Section IV, processing nodes includes data and
instruction memories connected to the MicroBlaze
processor through the dedicated Local Memory Bus
(LMB). We connect MicroBlazes to the rest of the
system through their interface to the FSL

 Shared memory blocks are implemented using part of
the Block RAM (BRAM) available on-chip in Xilinx
boards. Memory cores are synchronous and three write
mode options were supported: Read-Before-Write,
Read-After-Write and No-Read-On-Write. A LMB
BRAM controller is associated to the BRAM
component in the aim to manage data transfer from and
to the adopted bus system.

 NoC is basically composed of two elements: NIs and
routers, as described in the previous section.

Fig. 7 shows the block diagram of the entire design of
MPSoC based on a NoC 2D-Mesh 2x2. The standard
peripherals that are connected to the MicroBlazes through the
PLB bus were also presented. The different IPs that make up
the MPSoC design prototyped in the Xilinx Virtex 5 target
device are summarized in Table 2.

TABLE II. DESCRIPTION OF ALL IPS IMPLEMENTED IN THE MPSOC

DESIGN

IPs used in

MPSoC
Version Quantity Description

NoC

Router -- 4
K-way router with XY routing

algorthm

NI -- 4

NI component serialize and the

de-serialize in order to transfer

the data to the heart of IP to the
router

Microblaze 8.00.a 4

for each processor is associated a

frequency of 100 MHz and a
separate software code

BRAM 1.00.a 4

Local memory blocks, one block

for instruction and one for data,

16 KB for each block

LMB 1.00.a 8

Buses on which must be

connected eight local memory

controllers

LMB BRAM

controler
2.10.b 8

Four controllers for instructions

and data

PLB 4.6 1
Bus which connects the four
processors and other IPs

FSL 2.11.c 9
Busses that connect the NoC to

MicroBlazes processors

UART Lite

RS232
1.01.a 1

To connect the Laptop to
MicroBlaze A0, to enable debug

data to be sent/received and to

verify the NoC functioning.

MDM 2.00.a 1
For debugging MicroBlaze

processor A0

Clock

Generator
4.00.a 1

Takes in common clock
requirement and generates

architecture-specific clocking

circuitry.

PSRM 3.00.a 1 Reset Module of the system

JTAG -- 1 To program the FPGA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

316 | P a g e

www.ijacsa.thesai.org

Fig. 7. Blocks Diagram of MPSoC design prototyped in the Xilinx Virtex-5 FPGA.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

317 | P a g e

www.ijacsa.thesai.org

VI. EVALUATION RESULTS

In this section, simulation and synthesis results are
presented to demonstrate the performance of this 2D-NoC-
based MPSoC architecture.

A. Environments and Parameters

The Xilinx ISE environment is used for both design and
implementation. VHDL behavioral simulations are typically
performed with the ModelSim tool. For the MPSoC creation,
several criteria are necessary for the choice of the used tools.
Among these criteria is the type of the used materials (Xilinx
prototyping platform in our case) where each supplier offers
these own tools. Another criterion is about the nature and
constraints of the MPSoC.

In the running case, the aim is to implement a 2D mesh
NoC-based MPSoC at RTL level in a reconfigurable platform
FPGA type. As a result, the use of ISE 12.3 tool for the design
and implementation of Hardware accelerators, ModelSim for
architectural simulation and verification.

Ultimately, EDK is used for the integration of different
hardware accelerators into a complete MicroBlaze processor-
based system. The necessary parameters used in the hardware
accelerators (the 2D-NoC and the NI interface) are shown in
Table 3.

TABLE III. CONFIGURATION SETUPS OF HARDWARE ACCELERATORS

IP s NoC NI

E
x

p
e
r
im

e
n

t
P

a
r
a
m

e
te

r
s

Topology 2x2 2D Mesh Resource

allocation

SDM

Router K-way

Number of

router ports

5 Data width 32 bits

Routing

algorithm

XY

Flow-control

Protocol

Handshaking Front-end

protocol

FSL

Physical link

width

8 bits

Data width 32 bits Back-end

protocol

Handshaking

B. Hardware Simulation Results

A test bench file is employed to replace the original IPs
modules placed in their corresponding NIs and routers for
testing the efficiency of NoC. The test bench module could
generate a set of packets. The NoC and NI hardware
accelerators are modeled in VHDL language, using the RTL
description. Hardware accelerators were simulated with ISE
Simulator. This is a very important step to verify the system
function and to calculate system performance such as latency
and throughput.

Fig. 8 illustrates the packets transmission from the three
masters NI00, NI01 and NI10 (sources) to the same slave
NI11 (destination).

C. Hardware Synthesis Results

In this section, the synthesis results are presented and
disscussed. The MPSoC performance will be evaluated in
terms of area, power consumption and clock frequency.

The synthesis begins when the system is fully integrated.
The make file created in previous phase leads to the execution
of HW/SW synthesis tools of the EDK design flow. Hardware
flow is run first. After Netlist creation of the target system,
Xilinx implementation flow is executed.

Then, the bitstream file is generated and the software flow
takes place. This phase consists of three steps: As a first step,
software applications (swappx) are added for the four
MicroBlazes as cited: swapp0 for MicroBlaze 0, swapp1 for
MicroBlaze 1, swapp2 for MicroBlaze 2 and swapp3 for
MicroBlaze 3. In this swappx, the C-functions (Table 1) is
used in order to send and receive data between the four
MicroBlazes. OS is not needed because this system is not
oriented neither real-time nor multitasking. The second step
consists of the custom libraries generation which is followed
by a compilation and linking of source code as a third step.
Once both hardware and software flows are executed, the
bitstream file is initialized with BRAM data (for initialization
of data instruction memories attached to processing units).
The final result of the automation engine is a configurable
bitstream file which is directly downloaded to the attached
Xilinx ML507 Virtex-5-XC5vfx70 platform using the
prototyping flow.

The synthesis results of the MPSoC system on Xilinx
Virtex 5 target device are summarized in Fig. 9.

The synthesis of the target design enables a moderate
operating frequency around 151.5 MHz. The FPGA resource
usage rate is about 58% (6,586 out of 11,200 slices used).

The synthesis result of NoC (routers + NIs) is given in
Fig. 10. The resource utilization of the NoC is 31% of the
device area and the maximum frequency is 264.6 MHz with a
critical path delay of 3.386 ns.

It is clearly observed that the maximum frequency of the
MPSoC system (152 MHz) is remarkably lower than the IP
NoC (265 MHz). Note that the time is inversely proportional
to the frequency, the time of the shortest path is higher in the
system MPSoC. As a result, the minimal period in this system
is higher than the IP NoC.

The resource utilization of the rest of blocks is given in
Table 4. The IP that takes low slices is the FSL bus. However,
the NI component and MicroBlaze take the higher area cost.

Table 5 illustrates a comparison between this evaluated
NoC-based MPSoC design and the design proposed in [18].
The area of this MPSoC design is greater than the area of
Homogeneous System presented in [18]. This is due to many
reasons. First of all, there is a difference between the
composition of the system composed of four MicroBlazes and
NoC 2×2, and the other one with three MicroBlazes and NoC
2×1. Second, a five-port router was used while a three-port
router was used in [18]. Finally, it is important to note that the
NI is reliable and more efficient. Indeed, it gives many
services such as the number of used serializers and
deserializers. For that, it consumes 863 slices as compared to
the NI reported in [18] that consumes 85 slices. Nevertheless,
this MPSoC system achieves a higher frequency (151.5 MHz)
for an attractive data rate.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

318 | P a g e

www.ijacsa.thesai.org

Fig. 8. Simulation waveform during packet transmission in 2×2 2D-mesh topology.

Fig. 9. Synthesis results of MPSoC system based Virtex5-XC5VFX70.

Fig. 10. Synthesis results of NoC-based Virtex5-XC5VFX70.

TABLE IV. SUMMARY TABLE OF AREA COST BY MPSOC SYSTEM

COMPONENTS

Component Area (slices) Number

Router 78 4

NI 863 4

FSL 22 9

MicroBlaze 1,221 4

MPSoC 6,586

TABLE V. THE COMPARISON BETWEEN THE EVALUATED MPSOC DESIGN

AND OTHER

NoC-

based

MPSoC

FPGA

Composit

-ion of the

system

Performance Analysis

Area Max

Frequenc

y (MHz)

LUT

s

Flip

Flop

Slice

s

Homogen

-eous
System of

[18]

Xilinx

Virtex-

II Pro

3 Micro-

Blazes and

NoC 2×1

5,891 2,510 3,527 --

The

evaluted
MPSoC

design

Xilinx

Virtex
5 XC5-

VFX70

4 Micro-

Blazes and

NoC 2×2

9,627
12,21
6

6,586 151.5

VII. CONCLUSION AND OUTLOOK

In this paper, an FPGA-based rapid prototyping in
HW/SW co-design and design evaluation of a mixed HW/SW
MPSoC using a network-on-chip (NoC) was described. Xilinx
Virtex-5 FPGA installed in ML507 prototyping hardware
platform with Xilinx EDK and ISE software was used to
perform the prototyping of the system. The system consists of
four MicroBlaze processors interconnected through a network-
on-chip mesh 2×2. The design evaluation of a NoC-based

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Used

Available

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Used

Available

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

319 | P a g e

www.ijacsa.thesai.org

MPSoC, that is found, gives a reasonable frequency of about
151.5 MHz and FPGA resource usage rate of 58%
corresponding to 6,586 out of 11,200 slices. The OS
component Xilkernel has not been used and the system ,which
is developed, was not oriented neither real-time nor
multitasking. As a next work, the focus will be on
investigating the prototyping multitasking real-time systems
on multiprocessor architectures with OS using advanced
prototyping platform.

REFERENCES

[1] Dammak B, Baklouti M, Benmansour R, Niar S, and Abid M. Hardware
resource utilization optimization in FPGA-based Heterogeneous MPSoC
architectures. Microprocessor and Microsystems, 2015, 39(8), 1108-
1118.

[2] Bafumba-Lokilo D, Savaria Y, and David J.P. Generic crossbar network
on chip for FPGA MPSoCs. In Proceedings of the Joint IEEE North-
East Workshop on Circuits and Systems and TAISA Conference
(NEWCAS-TAISA ’08), 2008, 269–272.

[3] Hur J.Y, Stefanov T, Wong S and Goossens K. Customisation of on-
chip network interconnects and experiments in field-programmable gate
arrays. IET Comput. Digit. Tech., 2012, 6 (1), 59–68.

[4] Arjomand M, Boroumand A, Sarbazi-Azad H. A generic FPGA
prototype for on-chip systems with network-on-chip communication
infrastructure. Comput. Electr. Eng. 2014, 40(1), 158–67.

[5] http://sonicsinc.com/products/on-chip-networks/sonicsgn

[6] http://www.arteris.com/flexnoc

[7] Steenhof F, Duque H, Nilsson B, Goossens K and Llopis R.P. Networks
on Chips for High-End Consumer-Electronics TV System Architectures.
DATE Designers' Forum 2006, 148-153.

[8] Vangal S, Howard J, Ruhl G, Dighe S, Wilson H, Tschanz J, Finan D,
Singh A, Jacob T, Jain S, Roberts C, Hoskote Y, Borkar N, and Borkar
S. An 80-Tile Sub-100 W TeraFLOPS Processor in 65-nm CMOS. IEEE
Journal of Solid-State Circuits. 2008, 43 (1), 29–41.

[9] http://www.intel.com/pressroom/kits/teraflops/

[10] Zeferino C.A, and Susin A. SoCIN: A Parametric and Scalable
Network-on-Chip. Symposium on Integrated Circuits and Systems
Design, 2003, pp. 121-126.

[11] Coppola M, Curaba S, Grammatikakis M.D, Maruccia G, and Papariello
F. OCCN: a network-on-chip modeling and simulation framework. In
Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition, 2004, 3, 174–179.

[12] Vivet P, Lattard D, Clermidy F, Beigne E, Bernard C, Durand Y, Durupt
J, and Varreau D. FAUST, an Asynchronous Network-on-Chip based
Architecture for Telecom Applications. Proc. 2007 Design, Automation
and Test in Europe (DATE07), 2007.

[13] Airoldi R, Ahonen T, Garzia F, Milojevic D, and Nurmi J.
Implementation of W-CDMA Cell Search on a Highly Parallel and
Scalable MPSoC. Journal of Signal Processing Systems, 2011, 64 (1),
137-148.

[14] Kiasari A.E, Jantsch A, and Lu Z. Mathematical Formalisms for
Performance Evaluation of Networks-on-chip. ACM Comput. Surv.,
2013, 45 (3), pp. 38:1–38:41.

[15] Hamid N, Walters R and Wills G. Simulation and Mathematical
Analysis of Multi-core Cluster Architecture. The 17th UKSIM-AMSS
International Conference on Modelling and Simulation, 2015, pp. 476-
481.

[16] Hecht R, Kubisch S, Herrholtz A, and Timmermann D. Dynamic
Reconfiguration with hardwired Networks-on-Chip on future FPGAs.
International Conference on Field Programmable Logic and
Applications, IEEE, 2005.

[17] Balal A, Erdogan A.T, and Khawam S. Architecture of a dynamically
reconfigurable NoC for adaptive reconfigurable MPSoC. First

NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06).
IEEE, 2006.

[18] Lukovic S, and Fiorin L. An automated design flow for NoC-based
MPSoCs on FPGA. The 19th IEEE/IFIP International Symposium on
Rapid System Prototyping. IEEE, 2008.

[19] Bafumba-Lokilo D, Savaria Y, and David J.P. Generic array-based
MPSoC architecture. Microsystems and Nanoelectronics Research
Conference, IEEE, 2009.

[20] Van Langendonck R, Kuti Lusala A, and Legat J.D. MPSoCDK: A
framework for prototyping and validating MPSoC projects on FPGAs.
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC),
7th International Workshop on IEEE, 2012.

[21] Geng L.F, Zhang D.L, and Gao M.L. Performance evaluation of cluster-
based homogeneous multiprocessor system-on-chip using fpga device.
Fourth International Conference on Embedded and Multimedia
Computing, IEEE, 2009.

[22] V.Tota S, R.Casu M, Ruo Roch M, Macchiarulo L, and Zamboni M. A
case study for NoC-based homogeneous MPSoC architectures. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2009, 17
(3), 384-388.

[23] Wächter E.W, Biazi A, and G. Moraes F. HeMPS-S: A homogeneous
NoC-based MPSoCs framework prototyped in FPGAs. Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 6th International
Workshop on IEEE, 2011.

[24] Samahi A, and Boukadoum M. Improved MPSoC co-design
methodology for stream oriented processing applications." Electronics,
Circuits, and Systems (ICECS), 17th IEEE International Conference on
IEEE, 2010.

[25] Synplicity Inc., “Synopsys FPGA Synthesis Synplify Pro for Microsemi
Edition”, User Guide, February 2013.

[26] Xilinx. XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer
CPLD Devices, UG627 (v 12.4), 14 Dec. 2010.

[27] Mentor Graphics Company, “Leonardo Spectrum for Altera User’s
Manual Software”, Version v2001.1 July 2001.

[28] Sasongko A, Baghdadi A, Rousseau F and Jerraya A.A. Prototyping of
Embedded Applications to Configurable Platform Driven by
Communication Constraints. Proceedings of the 14th IEEE International
Workshop on Rapid System Prototyping (RSP 2003), San Diego, USA,
2003.

[29] Jóźwiak L, Nedjah N, and Figueroa M. Modern development methods
and tools for embedded reconfigurable systems: A survey." Integration,
the VLSI Journal 43.1, 2010, 1-33.

[30] Zargaryan G.Y. Verification Environments for USB Controller. In
Mathematical Problems of Computer Science, 2013, 39, pp. 72–80.

[31] Nikolov H, Stefanov T, and Deprettere E, Efficient Automated
Synthesis, Programming, and Implementation of Multiprocessor
Platforms on FPGA Chips. Field Programmable Logic and Application,
2006, pp. 1-4.

[32] Xilinx. EDK Concepts, Tools, and Techniques, UG683 EDK 12.2.

[33] Xilinx. Xilinx ISE Software Manuals, 2005.

[34] Xilinx. Xilinx Platform Studio User guide, UG113, 15 Feb. 2005.

[35] Yang Z.J, Kumar A and Ha Y. An Area-efficient Dynamically
Reconfigurable Spatial Division Multiplexing Network-on-Chip with
Static Throughput Guarantee. In Proceedings of the International
Conference on Field-Programmable Technology, 2010, pp. 389 –392.

[36] Josephan Y.Z. Area-efficient dynamically reconfigurable Spatial
Division Multiplexing Network-on-Chip with static throughput
guarantee. Thesis of engineering at the National University of
Singapore, 2010.

[37] Xilinx. LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11c),
DS449, 2010.

[38] Rosinger H.P. Xilinx Connecting Customized IP to the MicroBlaze Soft
Processor Using the Fast Simplex Link (FSL) Channel XAPP529 (v1.1)
Dec. 19, 2003

