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Abstract—Stereo vision has been and continues to be one of 

the most researched domains of computer vision, having many 

applications, among them, allowing the depth extraction of a 

scene. This paper provides a comparative study of stereo vision 

and matching algorithms, used to solve the correspondence 

problem. The study of matching algorithms was followed by 

experiments on the Middlebury benchmarks. The tests focused 

on a comparison of 6 stereovision methods. In order to assess the 

performance, RMS and some statistics related were computed. In 

order to emphasize the advantages of each stereo algorithm 

considered, two-frame methods have been employed, both local 

and global. The experiments conducted have shown that the best 

results are obtained by Graph Cuts. Unfortunately, this has a 

higher computational cost. If high quality is not an issue in 

applications, local methods provide reasonable results within a 

much lower time-frame and offer the possibility of parallel 

implementations. 

Keywords—Stereo vision; disparity; correspondence; 

comparative study; middlebury benchmark 

I. INTRODUCTION 

Stereovision is an area of computer vision focusing on the 
extraction of 3D information from digital images. The most 
researched aspect of this field is stereo matching: given two or 
more images as input, matching pixels have to be found across 
all images so that their 2D positions can be converted into 3D 
depths, producing as result a 3D estimation of the scene. As 
many other breakthrough ideas in computer science, 
stereovision is strongly related to a biological concept, namely 
stereopsis, which is the impression of depth that is perceived 
when a scene is viewed by someone with both eyes and normal 
binocular vision [1]. By aid of stereoscopic vision, we can 
perceive the surroundings in relation with our bodies and detect 
objects that are moving towards or away from us. While the 
entire process seems an easy task for us and other biological 
systems, the same does not apply to computer systems. Finding 
the correspondences across images is a challenging task. The 
earliest stereo matching algorithms were developed in the field 
of photogrammetry for automatically constructing topographic 
elevation maps from overlapping aerial images [2]. 

Stereo matching has been one of the most studied topics, 
starting with the work of D. Marr and T. Poggio [3] which 
focuses on human stereopsis. Lane and Thacker’s study on 
stereo matching [4] presents a dozen algorithms from 1973 up 
to 1992, but no comparison between them was made. Another 
important study is the one done by Scharstein and Szeliski [5], 
in which they have compared several algorithms and their 
performance based on different metrics. 

Stereo vision has a wide range of applications nowadays, 
especially domains in which realistic object models are needed. 
Depending on how important the processing time is, these 
applications can be classified into two categories: static scene 
description and dynamic scene description. For the first 
category, accuracy is of higher importance compared to the 
processing time. Usually, image pairs are acquired by means of 
a special device and reconstructed afterwards for cartography, 
crime scene reconstruction, car crashes scene reconstruction, 
3D models for architecture. In dynamic scene description real-
time processing of the data is critical. Of course, a certain level 
of accuracy must be fulfilled. Possible applications are obstacle 
(e.g. pedestrians) avoidance, autonomous navigation in which 
an internal map is continuously updated, height estimation, etc. 

This paper aims to review different stereo methods 
available and compare several stereo matching algorithms 
across sets of images. Section 2 describes the fundamental of 
stereo correspondence that makes possible the depth estimation, 
and discuss some of the stereo methods available nowadays, 
classifying them into local, global and semi-global algorithms, 
while Section 3 analyses in more detail some referenced 
algorithms considered for experiments. The results are 
discussed in Section 4. 

II. A CLASSIFICATION OF STEREOVISION ALGORITHMS 

This section reviews some of the stereo correspondence 
algorithms that have been proposed over the last decades. 
These can be classified depending on multiple criteria such as 
the method which assign disparities to pixels, occlusion 
handling, color usage, matching cost computation etc. 

A. Local Methods 

Local methods assign disparities depending on the 
information provided by the neighboring pixels, usually fast 
and yield good results. One broad category of local methods is 
represented by the block matching algorithms, which try to 
find a correspondence for a point in the reference image by 
comparing a small region surrounding it with small regions in 
the target image. This region is reduced to a single line, called 
the epipolar line. Block matching algorithms are used not only 
in stereo vision, but also in visual tracking and video 
compression. 

Among the first techniques which appeared is box filtering. 
This involves replacing each pixel of an image with the 
average in a box and it is an efficient general purpose tool for 
image processing. In [6] a procedure for mean calculation has 
been proposed. The advantage of box filtering is the speed, 
cumulating the sum of pixel values along rows and columns. 
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This way, the sum of a rectangle is computed in a linear time, 
independent of its size. 

Another algorithm that achieves high speed and reasonable 
quality is the one proposed by Mühlmann et al. [7]. It makes 
use of rectified images and can be used by other, more 
sophisticated, algorithms that need an initial guess at the 
disparity map. In order to eliminate false matches it makes use 
of the left-right consistency check and uniqueness validation. 

A new block matching algorithm has been proposed in [8] 
and even though the focus of this paper was on video 
compression, the algorithm can be applied also to stereo vision. 
This is based on a winner-update strategy which uses a lower 
bound list of the matching error to determine the temporary 
winner. 

Efficient usage of color information can improve results, 
therefore, some of the best stereo correspondence algorithms 
use color segmentation techniques. One of the most popular 
color segmentation algorithms has been proposed in [9], based 
on the mean-shift algorithm which dates back to 1975, but 
extended on computer vision only later on. The algorithm 
proposed in [10] is one of the top performing algorithms in the 
Middlebury classification [11] and it makes use of this 
segmentation technique. This is based on inter-regional 
cooperative optimization. The algorithm uses regions as 
matching primitives. More exactly, they use color statistics of 
the regions and constraints on smoothness and occlusion 
between adjacent regions. A similar algorithm, that is currently 
one place above the before mentioned [10], is the algorithm 
proposed by Klaus et al. in [12].  Firstly, homogenous regions 
are extracted from the reference image, also with the method 
[9]. Secondly, local windows-based matching is applied using 
a self-adapting dissimilarity measure that combines SAD and a 
gradient based measure. Using the reliable correspondences, a 
set of disparity planes are derived. 

Yoon K.J. and Kweon [13] have proposed a new window-
based method that uses varying support weights of the pixels. 
These are adjusted in a given support-window depending on 
the color similarity and geometric proximity to the reference 
pixel in order to reduce the image ambiguity (repetitive 
textures, image noise) and to obtain good results also in 
homogeneous regions. The algorithm in [14] is a local stereo 
correspondence algorithm which employs segmentation cue 
and which has two main steps: initial matching and disparity 
estimation. The initial matching is performed with the contrast 
context histogram descriptor and two-pass cost aggregation 
with segmentation-based adaptive support weight. The 
disparity estimation has two sub-steps: narrow occlusion 
handling and multi-directional weighted least-squares fitting 
for large occlusion areas. 

A novel similarity measure called DSM (Distinctive 
Similarity Measure) was introduced in [15] to resolve the point 
ambiguity problem, based on the idea that the distinctiveness is 
the appropriate criterion for feature selection under point 
ambiguity. DSM is based on the distinctiveness of image 
points and the dissimilarity between them, both of which are 
closely related to the local appearances of points. The first one 
is related to the probability of a mismatch and the second one 
to the probability of a good match. 

Another class of local algorithms is represented by the 
gradient-based methods, also known as optical flow. In this 
case, the matching costs are insensitive to bias and camera 
noise. These methods determine the disparities between two 
images by formulating a differential equation relating motion 
and image brightness. In order to do this, the assumption is 
made that the image brightness of a point in the scene is 
constant between the two views [16]. 

One of the earliest methods for optical flow estimation is 
the one developed by Kanade and Lucas [17]. This solves the 
flow equations for all the pixels in the neighborhood using the 
least squares criterion. However it cannot provide flow 
information inside regions that are uniform. This method can 
be used in many applications of image registration, including 
stereo vision. More similar information can be found in [18]. 

A newer algorithm from the same class is the one proposed 
by Zhou and Boulanger [19]. This is based on relative 
gradients in order to eliminate the radiometric variance. Most 
stereo matching methods assume that the object surface is 
Lambertian, meaning that the color for every point in the scene 
will be constant in the views captured by two separate cameras. 
However, to most real-world objects this does not apply, 
reflecting light that is view dependent. The algorithm is able to 
deal with both view dependent and independent colors and 
both color and gray scale images. 

Block matching and gradient-based methods are sensitive 
to depth discontinuities, since the region of support near a 
discontinuity contains points from more than one depth. These 
methods are also sensitive to regions of uniform texture [16]. 
Another class of algorithms that aims to overcome these 
drawbacks is represented by the feature-matching algorithms, 
which limit the support region to reliable features in the image. 
Because they produce sparse output and the demand nowadays 
seeks dense output, this class of algorithms is not given as 
much attention as in the past. An early review of such 
algorithms can be found in [20], proving how popular these 
were. Feature-matching algorithms can be divided into two 
subclasses: hierarchical and segmentation-based. 

One example of a hierarchical feature-matching algorithm 
is the one in [21] which groups lines into complex structures. 
This method exploits four types of features: lines, vertices, 
edges and surfaces. As mentioned before, another approach is 
to first segment the images and only afterwards to match the 
segmented regions. Most of the existing algorithms assume that 
all the surfaces are parallel to the image plane, which is not 
actually the case. The algorithm proposed in [22] tries to solve 
the correspondence problem in the presence of slanted surfaces 
by alternating two steps: segmenting the image into non-
overlapping regions, each corresponding to a different surface, 
and finding the affine parameters of the displacement function 
of each region. 

B. Global Methods 

Local methods are sensitive due to occlusions and uniform 
texture. On the other hand, global methods exploit nonlocal 
constraints in order to achieve more accurate results. However, 
accuracy comes with a trade-off, an increased computational 
complexity. 
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One of the most common global correspondence methods is 
based on dynamic programming. This is a fair-trade-off 
between the quality of the matches and the complexity of 
computations, which is decreased by decomposing the 
optimization problems into smaller and simpler sub problems. 
The disadvantage of DP is the possibility that local errors may 
be propagated along a scan line, corrupting also good matches 
[16]. One of the earliest algorithms which make use of 
dynamic programming is the one proposed by Ohta and 
Kanade [23]. This needs a pair of rectified images, this way, 
finding corresponding points can be done within the same scan 
lines in the left and right image, also known as the intrascan 
line search. 

An alternative to the traditional search for global matching 
can be found in [24]. The authors propose a new representation 
of image scan lines, called intrinsic curves. An intrinsic curve 
is a path that a set of local image descriptors trace as an image 
scan line is traversed from left to right. These descriptors are 
defined by applying operators such as edge and/or corner 
operators. Another approach is to apply the DP technique to a 
tree structure instead of individual scan lines [25]. Because in 
the case of traditional DP algorithms the disparity estimates at 
a pixel depend only on the disparity estimates of pixels on the 
same scan line, but is completely independent of the disparity 
estimates on the other scan lines, these are not truly global 
optimization methods as the author states. The advantages of 
this approach are the following: firstly, since a tree structure is 
connected, the estimate of a disparity at one pixel depends on 
the disparity estimates at all the other pixels, making it a truly 
global algorithm and, secondly, a tree contains much more 
edges of the original grid than the collection of scan lines. 
Although the results obtained are in the middle range according 
to the classification in [11], the implementation is suitable for 
real-time applications. 

As mentioned before, traditional approaches that use DP do 
not implement both horizontal and vertical continuity 
constraints. Methods like the one in [25] try to improve this 
aspect while maintaining a more than reasonable computational 
cost. Still, these do not fully exploit the two constraints. A 
solution would be to use 2D global optimization techniques 
like graph cuts, simulated annealing, belief propagation and 
others. 

Graph-cut, also known as min-cut, is an algorithm that 
finds a globally optimal segmentation solution. Having a graph 
that can be partitioned into two disjoint sets by simply 
removing edges connecting the two sub-graphs we can 
compute the degree of dissimilarity between the two sub-
graphs as the total weight of the edges that have been removed. 
One of the most cited works is the one in [26]. The authors 
propose an expansion move and swap algorithms that can 
simultaneously modify labels of large pixel sets. 

The algorithm in [27] uses the graph cuts method in 
conjunction with color segmentation. The authors use the 
mean-shift algorithm to decompose the image into 
homogenous regions, based on the fact that large disparity 
discontinuities only occur on the boundaries of homogenous 
segments. Afterwards, the disparity plane estimation takes 
place. Finally, the graph-cut technique is applied to 

approximate the optimal solution of the energy function. The 
graph-nodes represent here the homogenous segments, and not 
the pixels as in most of the approaches. 

Another approach is to use belief propagation. Sun et al. 
[28] formulate the stereo matching problem as a Markov 
network and solve it using Bayesian BP (Belief Propagation). 
According to the authors, the Bayesian approach, which tries to 
solve the stereo correspondence problem by finding a best 
guess, has many advantages. It can encode several prior 
constraints such as spatial smoothness, uniqueness and the 
ordering constraint and it can handle the uncertainties. Also, 
Bayesian methods model discontinuities and occlusions. 
Bayesian methods can be classified into two categories, 
depending on the computational model: DP-based and MRF-
based (Markov Random Fields). In this paper, three MRF are 
used, modeling the spatial interaction with the aid of a smooth 
field for depth/disparity, a line process for depth discontinuity 
and a binary process for occlusion. Belief propagation is used 
to obtain the maximum a posteriori model in order to enhance 
the stereo results obtained. 

Nonlinear diffusion is another class of global methods. One 
of the main problems in the stereo correspondence problem is 
finding the optimal window sizes for comparing the image 
blocks. If the window is too small, a wrong match might be 
found. On the other hand, if the region is too big, it can no 
longer be matched entirely because of problems such as 
occlusion and foreshortening. The paper in [29] does not use 
fixed-sized windows, but introduces some novel algorithms 
which find the best support region based on iteratively 
diffusing support at different disparity hypotheses and which 
are an alternative to the adaptive windows. One of these 
algorithms is the membrane algorithm. This sums the 
neighboring matching costs iteratively and uses an additional 
term to prevent the support region from growing indefinitely. 
When a local stopping condition is used, the authors have seen 
that the algorithm behaves similar to the adaptive window 
algorithms. Another algorithm proposed is derived from the 
Bayesian model of stereo matching and results in a nonlinear 
diffusion process, having an increased performance compared 
to the standard diffusion. 

Beside the above mentioned global methods many other 
ideas exist [30]. For example, there is a class of methods that 
do not seek explicit correspondences, used mainly when 
reconstructing a 3D object from different views of the scene. 
These model the scene using different objective functions. 
Furthermore, some algorithms make use of wavelets. Based on 
the continuous wavelet transform, such a method extracts the 
redundant information and uses it for the matching process. 

C. Semi-Global Methods 

Local methods try to find optimal disparities for small 
image regions which can lead to discontinuities between 
different regions in the image. On the other hand, global 
methods try to optimize all the disparities at once, which can 
offer better results, but at higher computational costs. More 
recently, a third class of algorithms has been developed, 
namely the semi-global class, which tries to incorporate the 
advantage of both groups. 
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The first semi-global algorithm has been developed by 
Hirschmüller [31] and used since then in real-time stereo vision 
and intelligent vehicles applications. In this implementation, 
mutual information was used as matching cost, because it is 
insensitive to radiometric differences and models very well 
image noise. Radiometric differences occur because of the 
different camera characteristics (vignette effect, different 
exposure time etc.) and different scene properties (non-
lambertian reflection, changes in the light source etc.). Using 
mutual information, the global radiometric difference is 
modeled in a joint histogram of corresponding intensities. The 
matching is done pixel-wise based on the mutual information 
and approximation of a global smoothness constraint. Beside 
the good results delivered fast, this approach has the advantage 
of occlusion detection and sub-pixel accuracy in determining 
the disparities. Post-processing is possible afterwards in order 
to clean up the disparity image. 

Another algorithm that aims to preserve depth 
discontinuities and to give good results in low-textured regions 
is the one in [14]. The authors have proposed three solutions 
for improving the sub-pixel accuracy. Firstly, they show the 
benefits of evaluating the disparity space at fractional level. 
Secondly, they introduce a new constraint, called the 
gravitational constraint. This assumes that the disparity levels 
are sorted in the vertical direction and it helps global 
algorithms to reduce the false matches. Finally, they propose a 
new algorithm that enforces smoothness at a sub-pixel level. 

A more recent approach and an optimization to the original 
algorithm are proposed in [32]. The original algorithm favors 
regions of constant disparities because of the two penalties 
applied by the objective function. This way, a large amount of 
errors is caused. In order to obtain better results, the authors 
propose an extension to the algorithm’s parameterization, by 
using individual penalties, depending on the path orientations 
and on intensity gradients. Furthermore, because the results 
obtained from one path can be better than the ones obtained by 
another path with a different orientation, they have introduced 
weights for each path orientation. Last but not least, the authors 
extend the original adaptation of penalty depending on the 
intensity gradient to a more general approach. Due to the high 
number of parameters, they need to be automatically tuned in 
order to find the best configuration. 

III. THE ALGORITHMS CONSIDERED IN OUR STUDY 

This section describes in detail several stereo vision 
algorithms with the aid of which the correspondence problem 
is solved. The comparative results obtained by them on the 
Middlebury benchmark are discussed in the next section. 

A. The Problem of Finding Pixel Correspondence 

With regard to software implementations, there are two 
main categories of algorithms that solve the correspondence 
problem: those that produce sparse output, and the ones that 
produce dense output. The first category is also known as the 
feature-based algorithms and they find correspondences by 
matching sparse sets of image features like edges, corners, line 
or curve segments, all of which are robust against change of 
perspective. These methods are inspired from human vision 
studies and have been very popular at the beginnings of stereo 

vision, having the great advantage of being feasible for 
implementation on the hardware available at that time. 
Investigating only a small subset of pixels, such algorithms are 
very fast. Moreover, the accuracy is very good, limiting the 
results to matches with very high certainty. This happens for 
example in applications where the illumination can vary 
significantly and edges are the only stable features. The main 
disadvantage is the sparse output which cannot be always of 
use in applications. However, sparse 3D reconstructions can be 
later interpolated. 

Even if we gain computational time and accuracy, a lot of 
time is invested in finding a feature extractor that performs 
well. One of the most successful and applied methods is using 
the SIFT (Scale Invariant Feature Transform) detector 
proposed in [33]. This algorithm extracts interesting points of 
an object in order to provide a feature description of the object 
during a training phase and uses them afterwards when 
recognizing the object in a new image, by comparing each 
feature from the new image to the features stored in the 
database based on the Euclidian distance of their feature 
vectors. Location, scale and orientation are a few of the 
descriptors that are used for finding the best match. 

In order to overcome the disadvantage of the feature-based 
methods, dense correspondence algorithms have appeared, 
especially because nowadays computational resources are no 
longer a big issue. Many contemporary applications such as 
image-based rendering and modeling demand such a dense 
output and this approach is more challenging than the previous 
one, having to solve the correspondence problem in case of 
image sensor noise, perspective distortions, textureless regions, 
repetitive structures and textures, reflections, occlusions, 
photometric variations [34]. 

In [5], a taxonomy has been proposed for the dense stereo 
correspondence algorithms. According to the authors, a large 
set of existing algorithms can be easily constructed from a set 
of building blocks, steps that all these algorithms perform, as in 
Fig. 1. Matching cost computation is the first step in extracting 
the disparity map and it quantifies the similarity between pixels 
in the reference and target images. In general, the more similar 
the pixels are, the lower is the value of the matching cost. 

The simplest method relies on pixel color information, for 
example, SSD (Sum of Squared Differences) [35] and SAD 
(Sum of Absolute Differences) [36]. These techniques are used 
also when matching objects from consecutive frames in video 
processing, but under the names of MSE (Mean Squared Error) 
and MAD (Mean Absolute Difference). 

 
Fig. 1. Disparity map extraction flow. 
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In both cases, for every pixel in the reference image we 
search for a match on the epipolar line in the target image. 
Usually, only a maximum disparity is allowed so the search 
occurs in a defined window. For every possible pair, a cost is 
computed using (1) in case of SSD and (2) in case of SAD. 

  2)),(),((),,( dyxIyxIdyxf RL           (1) 

  ),(),(),,( dyxIyxIdyxf RL           (2) 

Some local algorithms combine matching cost computation 
and aggregation and use a matching cost that is based on a 
support region. NCC (Normalized Cross-Correlation) (equation 
3) is such an algorithm and behaves similar to SSD, but is more 
complex, involving more mathematic operations. Due to the 
fact that in many image-processing applications the brightness 
of the image can vary due to lightning and exposure, the image 
must be firstly normalized. 
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After computing the cost for each pixel, one way to choose 
the best corresponding pixel would be to choose the pixel for 
which the cost has the smallest value, approach also known as 
WTA (Winner Takes All). However, the resulting disparity 
map is very noisy. An alternative would be to compare small 
patches of pixels, instead of individual pixels. 

As mentioned before, in order to overcome the bad result 
produced by comparing single pixels, a matching window 
around the pixel of interest is used instead. Increasing the 
window size reduces the noise effect in the disparity map. 

However, this also results in increasing the computational 
time and choosing the correct window size is just another 
problem to address. Among the techniques used are SAD and 
SSD, which are applied also to single pixels, but the difference 
is that f(x, y, d) is computed now over an area and summed 
afterwards. Very similar is STAD (Sum of Truncated Absolute 
Differences), defined by (4), where T is the disparity threshold. 

   TdyxIyxIdyxf RL ,),(),(min),,(        (4) 

It can be seen from Fig. 2 that matching cost aggregation 
has produced better results, but they are still far from being 
optimal because there exist some problems with fixed windows. 
Firstly, such a method assumes that the depth is constant within 
the window. Usually this is not the case due to depth 
discontinuities and slanted/non-planar surfaces. Secondly, 
many images contain repetitive textures or uniform areas. In 
these cases, there are many “weak” minima of the matching 
cost. Last but not least, sometimes the window is larger than 
the structure. Even so, because its simplicity, fast execution 
time and low memory requirements, SAD followed by a WTA 
approach is often chosen in implementations. It can be run real-
time on standard processors (SIMD) and hardware 
implementations like FPGA, consuming a limited amount of 
power. 

 
a)                                                 b) 

 
c)                                                d) 

Fig. 2. Single pixel vs. matching window. a) left camera image; b) optimal 

result; c) single pixel comparison; d) matching window. 

The next step tries to find the best disparity assignment and 
we can distinguish two main classes of methods:  local and 
global ones. 

In local methods, the most important steps are matching 
cost computation and cost aggregation. Choosing the disparity 
is a trivial task, namely finding the one associated with the 
minimum cost. As mentioned before, this is WTA optimization 
applied to each pixel. The disadvantage of these methods is 
that a uniqueness match is not enforced both directions: the 
reference image has a single match in the target image, but 
pixels in the target image can correspond to multiple pixels in 
the reference image. 

On the other hand, in global methods the focus is put on 
this step. Sometimes, the cost aggregation step is skipped. In 
many methods, the aim is finding a disparity function that 
minimizes a global energy. Usually, the global energy function 
has two terms like in (5). 

)()()( dEdEdE smoothdata              (5) 

The first term measures how well the disparity function d 
agrees with the input image pair in terms of overall matching 
cost [5]. The cost functions used can be pixel-based or, more 
effective, support aggregation strategies. The second term 
encodes assumptions (of continuity) of the scene made by the 
algorithm. Large disparity variations are penalized and are 
allowed only at depth borders. Finding the best assignment that 
minimizes the energy function is an NP-hard problem. In order 
to make this computationally possible, often only differences 
between neighboring pixels’ disparities are computed. 

A different class of global optimization algorithms is based 
on dynamic programming, which can find the global minimum 
for independent scan lines in polynomial time [5]. Complex 
problems are solved by breaking them down into sub-problems, 
each of which is solved only once. This technique has the 
advantage of enforcing the ordering constraint (e.g. the pixels 
must be in same order both in reference and target image) and 
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being accurate at depth borders and uniform regions. DP 
algorithms find the optimal disparity solution for a scan line in 
two steps: forward pass and backward pass. The forward pass, 
the minimum sum of aggregation, matching cost and 
smoothness penalty for each disparity candidate pixel along the 
scan line is searched. At each iteration, the winner is then 
summed with the first term of (5), resulting in an aggregation 
cost. In the backward pass, the optimal disparity map scan line 
solution is obtained iteratively backwards. 

Cooperative algorithms are another class of optimization 
algorithms and are among the earliest methods proposed [37]. 
They perform local computations, but use nonlinear operations 
that result in an overall behavior similar to global optimization 
algorithms [5]. In some implementations it is possible to state 
the global function to be minimized. The authors have 
formulated two assumptions on which the algorithm is based: 
uniqueness, allowing only one match along each view direction, 
and continuity, meaning that neighboring matches should have 
similar disparity values. These constraints define a complicated 
error-measure which is minimized through cooperative 
network dynamics [6]. 

The last step from the stereo matching workflow is the 
disparity refinement, which is an optional one, used for 
improving the matching quality. In this pass, outliers produced 
by the previous steps, are identified and corrected. Also, 
because the disparity maps are usually computed at pixel level, 
more accurate disparity assignments (computed at sub-pixel 
level) would be desirable. 

B. Shiftable Window SSD 

Shiftable window SSD is a classic stereo vision algorithm 
which belongs to the area-based correlation category.  It 
follows four steps, in which each area-based algorithm is 
divided: matching cost computation, cost aggregation, disparity 
computation and the optional disparity refinement. 

The basic idea is matching the intensity values within 
windows between the stereo image pair. The algorithm needs 
as input a pair of rectified images. For every pixel in the 
reference image, a correspondent in the target image is 
computed by comparing a square window centered on this 
pixel against windows of the same size centered at points on 
the corresponding scan line (epipolar line) in the target image. 
The number of candidate points in the second image is given 
by the maximum disparity value, which typically lies between 
10 and 20. SSD is used as a measure of dissimilarity between 
the windows. The point for which the surrounding window has 
yielded the minimum sum of squared intensity values will be 
chosen as the best match and the offset between its location 
and the location of the reference point will be stored as the 
disparity at that location [38]. 

As mentioned in the previous sections, the main issue in 
window-based methods is choosing the optimal window size. If 
the value is too small, wrong matches are likely to occur due to 
noise and ambiguities. However, the object shape will be 
preserved. On the other hand, if the window is too large, it will 
reduce the number of wrong matches, but at the same time it 
will blur the object boundaries.  In Fig. 3, the results have been 
obtained by using various window sizes. 

 
a)   b)   c) 

Fig. 3. Disparity maps obtained by applying shiftable window SSD [39]. a) 

window size = 3;  b) window size = 11; c) window Size = 25. 

The shiftable window algorithm can be implemented with 
other matching costs, for example SAD or NCC instead of the 
presented SSD. The SSD method has a higher computational 
cost compared to SAD, involving numerous multiplication 
operations. 

C. Dynamic Programming 

Dynamic programming is a technique that is used not only 
in the stereo correspondence problem, but also in fields very 
different with regard to computer vision, such as mathematics, 
economics and bioinformatics. The basic idea is to decompose 
a problem into a set of sub problems, such that, given a 
solution to the sub problems, the solution to the original 
problem can be quickly computed and the sub problems can be 
solved recursively in terms of each other. Because the solution 
to a sub problem is used later on, multiple times, we need to 
store the solutions in order to avoid recomputing them. 

DP can be thought of as a method for filling in a table. At 
each position a value is found, corresponding to a sub problem 
we need to solve. DP algorithm iterates over the table entries 
and computes for each location a value that is based on the 
previously seen entries. The relationship between the current 
entry and the previous ones is usually given in a simple, 
recursive manner, but at times can be more complex. Generally, 
it provides better results than the area-based methods and it is 
even faster than these. 

In the stereo correspondence problem, DP helps to find a 
path through the image which provides the best match. For 
each pair of corresponding scan lines, a cost matrix of all pair 
wise matching costs is built. The goal is to find the minimizing 
path through this matrix. Fig. 4 depicts how such a matrix 
looks like. 

 
Fig. 4. Stereo matching using DP. 
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Let’s assume that we have two scan lines, with black, red 
and green pixels which need to be matched. Also, we have 1 
left occluded pixel and 1 right occluded pixel. Any path 
starting from the top left of the matrix and ending at the bottom 
right of the matrix represents a specific correspondence of 
pixels in the left scan line to pixels in the right scan line. In this 
example, the best possible path assumes that the first 2 pixels 
correspond and then there is a left occlusion. The next 3 pixels 
correspond again, followed by a right occlusion and another 
match of 2 pixels. 

We can observe that at each location there are 3 possible 
directions: 

- diagonal: match 

- right: left occlusion 

- down: right occlusion 
Usually, when searching for a match, only a limited range 

of disparities is considered which will lead to fewer paths. A 
path is constituted by a succession of values on the matrix. The 
value of an arbitrary point in the matrix represents the value of 
getting there. As seen in (6), for a point P(x, y), if we have a 
match, we will pay no penalty, but add a matching cost to the 
previous, precomputed value for the previous point, P(x–1, y-1), 
from which we arrived by following the diagonal direction. 
This is the case for the first 2 pixels in Fig. 4, for example. On 
the other hand, in case of no match, we will pay an additional 
cost, the occlusion cost, which will add up to the precomputed 
values for the previous points, depending on the type of 
occlusions: P(x–1, y) in case of left occlusion and P(x, y-1) in 
case of right occlusion. 
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In the end, we will obtain the correspondence cost. This is 
the first part of a DP algorithm. However, once found the best 
cost, we need to reconstruct the optimal path using 
backtracking, which is the second part of the algorithm. The 
disadvantage of DP is that local errors might be propagated. 

Optionally interpolation can be used. Such a method is 
Birchfield-Tomasi interpolation [22], which computes for 
every pixel the minimum and maximum values in the two half-
intervals before and after it. These values are further used when 
computing the matching cost (SAD, SSD etc.). 

D. Scan Line Optimization 

Scan line optimization (SO) is like DP, a global 
optimization technique which optimizes one scan line at a time. 
However, unlike DP, SO is an asymmetric method and does 
not make use of constraints such as ordering and visibility 
constraints. What is more, there is no penalty cost for 
occlusions. At each point, a disparity value is assigned so that 
the overall cost along the scan line is minimized. This way, a 
global minimum on each scan-line is obtained, but no inter-
scan line consistency, resulting in a horizontal streaking effect 
in the resulting disparity map. 

SO is very similar to another global technique, Graph Cuts, 
which is presented in the next section. The difference is that 
vertical smoothness is not taken into consideration. However, it 
does use the horizontal smoothness terms, without which the 
algorithm would be just WTA optimization. 

The first step of this algorithm is computing the DSI. This 
means that for every pixel in every scan line a cost is computed 
for a maximum number of disparities, ranging from 0 (the case 
in which the corresponding pixels have the same location) to 
disparity max (the maximum possible offset of two 
corresponding pixels). The cost is computed in this version of 
the algorithm using SAD, but any other matching cost could be 
used. The aggregation step is skipped. Afterwards, for each 
point, the best disparity is chosen using, in this case, the scan 
line optimization technique. 

E. Simulated Annealing 

Simulated annealing (SA) is a global method which 
performs standard moves, meaning that only one pixel changes 
at a time. This is why in many stereo vision implementations it 
is shown to be the slowest optimization techniques. Such a 
disadvantage is solved by the algorithm presented in the next 
section, which changes a whole group of pixels in one move. 
However, SA is still used occasionally, especially in highly 
connected and highly non-submodular graphs. 

SA is a random search function that effectively 
approximates the global optimum solution. This is inspired by 
the process in metallurgy in which a metal alloy is heated to a 
very high temperature. The atoms are left at this temperature 
long enough to reach thermal equilibrium. Afterwards, the 
metal is gradually cooled on a very specific and gradual 
schedule. As they cool, the atoms settle into an optimal 
crystalline structure. This process improves the cold-working 
properties of the metal. 

One main characteristic of this algorithm is the iterative 
improvement, which means that it goes through a several 
number cycles, each of them trying to improve the current 
solution. It uses local random search, instead of sampling 
through the entire sample space. Also, SA is an algorithm that 
explores the solution space, especially early in the search, but 
as the search progresses, coming closer to the global optimum; 
it becomes greedy, accepting only improvements of the 
solution. 

SA starts at a high temperature so that a large part of the 
state space is explored randomly, and cools gradually the 
temperature to find a suitable local minimum. There are several 
variants of this algorithm. For example, in the Metropolis 
variant, downhill steps are always taken, and uphill steps are 
only sometimes (randomly) taken in order to avoid being stuck 
in a local minima. Another variant is the Gibbs sampler. 
Instead of choosing the lowest energy for the variable being 
updated, it chooses among several possible states: either a new, 
random state (disparity), either one of the possible disparities at 
a given pixel is chosen. As mentioned above, the algorithm 
starts at a high temperature and then this is gradually decreased. 
The algorithm is terminated when a maximum number of 
iteration is reached. 
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F. Graph-Cut Optimization 

The graph-cut algorithm (GC) belongs to the global class 
and it is one of the best algorithms available. It produces very 
accurate results and, therefore, it is a very popular one. 
However, this happens at an increased computational cost. As 
in the case of other global techniques, we are interested in 
minimizing an energy function. In the case of GC, we have a 
label set, namely the disparities and a set of pixels. The goal of 
the algorithm is to find a labeling f which minimizes some 
energy. Min-cut/max-flow algorithms which come from 
combinatorial optimization have been proven to minimize such 
energy functions in computer vision. Stereo matching and 
image segmentation are such applications. 

 
Fig. 5. S-T graph cut [40]. 

A graph is a model that looks like a network and is built 
from a number of nodes and a number of edges that connects 
them. A graph is called a directed graph if the edges have a 
direction associated with them. Very often, each of these 
oriented edges are associated a cost so that choosing one path 
or the other results in different costs. Sometimes, a graph 
contains a number of additional special nodes, called terminals. 
For this algorithm, graphs with two terminals are considered, 
the source s and the sink t. With respect to the stereo vision 
application of graph theory, the terminal nodes correspond to 
the disparities that will be assigned to pixels. There are two 
types of edges in the graph: n-links and t-links. The first 
category is used to connect neighboring pixels, representing the 
neighborhood system in the image. The cost associated to these 
represents the penalty for the pixel discontinuity. The second 
category connects pixels with the terminals, labels (more 
exactly, disparities). In this case, the cost of such links 
corresponds to the penalty for assigning a certain label to a 
pixel. 

In a two terminal graph, a cut is a partitioning of the graph 
nodes into two disjoint subsets, S and T, such that the source s 
is in S and the sink t is in T [41]. This is also called s-t graph 
cut and can be 2D or 3D, as illustrated in Fig. 5. A cut has an 
associated cost, the sum of the edges that are eliminated when 
partitioning the graph into two sub-graphs. 

 
a)   b)  c) 

Fig. 6. SO vs. GC. a) original image; b) SO result; c) GC result [42]. 

One fundamental problem in combinational optimization is 
the minimum s/t cut, sometimes also called the maximum flow 
problem, because of their equivalence. We can think of it in the 
following way: maximum flow is the maximum “amount of 
water” that can be sent from the source to the sink by 
interpreting graph edges as directed “pipes” with capacities 
equal to edge weights [41]. The goal is to delete enough edges 
so that each pixel is connected to exactly one label node, while 
finding the global minimum of energy function. As mentioned 
above, the cost for a cut has two terms, the image consistency 
(horizontal edges) and the spatial consistency (vertical edges) 
like in (7). Because of these two costs, the streaking effect 
from SO is no longer visible, as shown in Fig. 6. 

   qppqp ddwdpIpIdE )()()(         (7) 

The authors of [42] have developed two new algorithms for 
energy optimization, which uses graph-cuts iteratively. These 
generate a labeling representing the global minimum of energy 
with respect to two types of moves: α-expansion and α-β-swap. 
Through such moves a large number of pixels change their 
labels to α or β simultaneously. The main purpose of these 
algorithms is to compute swaps or expansions until 
convergence. 

G. Bayesian Diffusion 

In the previous sections the main focus of the algorithms 
lied in the optimization step. However, in this section we will 
focus on the aggregation step. In [29] the authors have 
presented a Bayesian model with non-Gaussian statistics to 
handle gross errors and discontinuities in the surface. 

The Bayesian model presented consists of two parts. Firstly, 
there is a prior model which uses MRF to encode preferences 
for smooth surfaces. Such a model uses the Gibbs distribution 
in (8), where d is the vector of all disparities and Zp is a 
normalizing factor. 
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Secondly, is the measurement model, which is based on the 
intensity differences between the left and right images. 
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IV. EXPERIMENTAL RESULTS 

This section presents the data sets used for experiments, 
with the main characteristics, as well as the quality metrics 
used to assess the performance of the algorithms tested. 
Furthermore, a series of experiments are described, comparing 
different matching cost techniques, from both the quality and 
time-related performance point of view. Also, an overall 
comparison of the algorithms presented in the previous section 
is described. 

A. Data Set 

The experiments presented below are run on four image 
sets, also known as the 2001 stereo data sets [5]. Two of the 
data sets, Sawtooth and Venus, are directly acquired by the 
authors of the paper mentioned. They each consist of a 
sequence of 9 images, taken at equally-spaced intervals by a 
camera mounted on a horizontal translation stage, along with a 
ground truth disparity map. The original images are sampled 
down to a resolution which is four times less and cropped in 
order to normalize the motion of the background objects to 
only a few pixels by frame. The content is made up of 
piecewise planar objects such as posters or paintings, some 
with cut-out edges. The other two sets are Tsukuba, from the 
University of Tsukuba, and Map, whose ground-truth disparity 
map has been computed the same way as for the first two sets. 

   
a)     b) 

   
c)     d) 

Fig. 7. Sawtooth data set. a) image 2 and b) image 6; c) ground-truth 

disparity maps for image 2 and d) image 6. 

Finding a proper data set on which the correspondence 
algorithms can be tested is a difficult challenge. On one hand, 
there are the synthetic images which have been largely used, 
but because they often contain scenes that are not very 
complex, made up of simple geometric objects and textures, 
they do not produce very relevant results. On the other hand, 
images obtained from real cameras are difficult to convert into 
working sets because of issues such as aliasing, misalignment, 
lens aberrations, gain and bias, etc. but they model the real-

world better. However, such images contaminated with noise 
are too difficult to be solved. For each of the images, a border 
of 10 pixels is excluded to avoid the border effect. For the 
Tsukuba image data set, this border is 18 pixels because no 
ground-truth disparity values are provided. 

The Sawtooth data set contains both grayscale and color 
textures with sloping walls. It contains 9 images (numbered 
from 0 to 8) and 2 ground-truth disparity maps for images 2 
and 6, scaled by a factor of 8 (Fig. 7). This means that for a 
value of 80 in the ground-truth disparity map for image 2, the 
corresponding pixel in image 6 is 10 pixels to the left. The 
images for which no ground-truth disparity map is given are 
only used in case the prediction error is measured. Image size: 
height 380, width 434 and disparity: minimum 3.875, 
maximum 17.875. 

The Venus data set contains color textures. It is actually a 
superposition of several sloping planes: newspaper, painting, 
illustration. Just like the Sawtooth data set, it is made up of 9 
images and 2 ground-truth disparity maps, for images 2 and 6 
(Fig. 8). Image size: height 383, width 434 and disparity: 
minimum 3, maximum 19.75. 

   
a)     b) 

   
c)     d) 

Fig. 8. Venus data set; a) image 2 and b) image 6; c) ground-truth disparity 

maps for image 2 and d) image 6. 

The Map data set contains grayscale images, representing a 
map on top of other maps, with different textures (Fig. 9). It 
contains non-repetitive textures and very small occlusions, 
which means that all algorithms will perform well on this data 
set. Unlike the previous stereo sets, it contains only 2 images 
and 2 ground-truth disparity maps. Image size: height 216, 
width 284 and disparity: minimum 4.375, maximum 28.125. 
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a)     b) 

  
c)     d) 

Fig. 9. Map data set; a) image 0 and b) image 1; c) ground-truth disparity 

maps for image 0 and d) image 1. 

The Tsukuba data set contains images that represent a real 
scene (Fig. 10). It is made up of several distinct colored layers, 
one on top of the other. Almost all algorithms have problems in 
finding the lamps’ arms because they try to provide smooth 
disparities. It contains 5 images and 1 ground truth disparity 
map. Image size: height 288, width 384 and disparity: 
minimum 0, maximum 14. 

  
a)    b) 

 
c) 

Fig. 10. Tsukuba data set; a) image 4 and  b) image 5; c) ground-truth 

disparity map. 

B. Quality Metrics 

In order to assess the performance of the stereo 
correspondence algorithms we need some quality metrics. 
There exist two approaches in this direction. Firstly, some 
statistics can be computed based on the results obtained and the 
ground truth disparity map that already exists in the data set. 

The second approach is to assess the quality of the algorithm 
by using the entire image set and the resulted disparity map in 
order to predict the appearance of other views. This can be 
done by either forward wrapping the reference image by the 
computed disparity map to a different view, or by inverse 
wrapping a new view by the computed disparity map to 
generate a stabilized image and compare it against the 
reference image [5]. 

For a more clear and quantitative image of the algorithms 
the first approach will be used. These statistics can compute the 
RMS (root mean square) or several percentages of pixels that 
are labeled with bad disparities. The RMS is a statistical 
measure widely used for comparing obtained results against 
some ground data. In our case, it is measured in disparity units 
between the obtained disparity map and the ground-truth 
disparity map existing in the data set. This is computed with 
(10), were N represents the total number of pixels, dC(x, y) 
represents the computed disparity for the pixel at location (x, y) 
and dT(x, y) the ground-truth disparity. 
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In addition to RMS, the percentage of bad-matching pixels 
can be computed using (11), where T denotes a threshold, the 
acceptable disparity error for counting the bad-matching pixels. 
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Depending on the regions investigated we can segment the 
image in three regions. Firstly, there are the textureless regions, 
where the difference in intensity gradient is below a certain 
threshold. Secondly, occluded regions are the ones which exist 
only in the reference image. Depth discontinuity regions are 
the ones that contain pixels with a significant difference in the 
neighboring disparities. Computing such percentages of bad-
matching pixels gives us a more relevant image of the overall 
performance of an algorithm. For example, according to [5], a 
stereo correspondence algorithm is said to perform reasonably 
well if the percentage of non-occluded bad-matching pixels is 
less than 10%. Because of the 10% poorly matched image 
region, the RMS is contaminated by the large disparity errors, 
even if the 90% rest of the image can have no errors at all. 
RMS measure is to be used when the bad pixel percentage is 
very low. 

In order to assess the performance of the algorithms at least 
two stereo images and a corresponding ground-truth disparity 
map are needed by the program. The quality metrics to be 
computed have been described above, but in the following 
experiments only some of the regions will be considered: 
textureless, depth-discontinuity, non-occluded. Also, an overall 
performance was referred. Besides the percentage of bad pixels, 
the RMS was also displayed graphically. 

C. Results for Matching Costs 

This experiment aims to assess the performance of 
matching costs using a local algorithm which actually 
translates to the traditional SSD/SAD algorithm presented 
above, but with a fixed square window of 9 pixels. 
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Fig. 11. Experiment 1 workflow. 

Fig. 11 shows the blocks of a stereo-correspondence 
algorithm with regard to this experiment. The images are not 
preprocessed beforehand. The matching costs tested are SAD 
and SSD by themselves or in combination with the previously 
presented Birchfield-Tomasi interpolation. Also, for each of 
the matching costs truncation has been applied with values 1, 2, 
5, 10, 20 and 50. This plays a role in the step in which the 
matching costs are computed. The minimum between the 
computed difference and the truncation value is chosen to be 
stored the cost matrix. It is to be noted that if SSD is used, the 
truncation value is squared. 

Three specific categories of metrics have been taken in 
consideration for this experiment: the non-occluded pixels, the 

textureless pixels and the pixels that are near depth-
discontinuities. An overall percentage of bad pixels were also 
computed. The experiment has been run on all four data sets 
presented in the previous section and the results are presented 
in Fig. 12. Besides the percentage of bad pixels, also the RMS 
measure is graphically displayed for all regions in Fig. 13. 

As an overall conclusion we can state that there is very 
little difference between the performance of SSD and SAD 
matching costs. Generally, SAD tends to have better results for 
larger truncation values (e.g. 50, 20) and SSD for lower 
truncation values (e.g. 5, 10). Truncation values such as 1 and 
2 should not be taken into account here, because the errors are 
very large in these cases. Good results are obtained for values 
greater than 5 and less than 50, usually around the value of 20. 
The greatest impact of truncation is definitely on the regions 
with depth-discontinuities, which contain pixels that 
correspond to the background and pixels that correspond to the 
foreground. Truncating the matching cost helps to limit the 
influence of bad matches. 

 

 
Fig. 12. Bad-matching pixel percentage for experiment 1. 

 

 

Fig. 13. RMS results for experiment 1.
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Birchfield and Tomasi’s interpolation improves the results 
for small truncation values, but does not improve them in case 
of large truncation values. On the contrary, in the latter case it 
tends to raise the errors for truncation values such as 20 and 50. 
This happens across all stereo image pairs. It can be seen that 
the RMS obtained by the matching costs follows the same 
trend as in the case of bad-matching pixel percentages. 

  
Fig. 14. Ground-truth vs. obtained disparity map for Tsukuba data set. 

In Fig. 14, the ground-truth and the best disparity map for 
Tsukuba data set are displayed. These were obtained with SAD 
and Birchfield-Tomasi matching cost, with a truncation value 
of 10. 

D. Results for Shiftable Windows 

This experiment aims to assess the performance of shiftable 
windows and is very similar to experiment 1 (Fig. 15). In fact, 
it does the same operations as in experiment 1, but uses a 9x9 
min-filter, which is equivalent with the shiftable windows 
aggregation. SAD/SSD matching costs are combined with 
Birchfield-Tomasi interpolation and truncation values. 

 
Fig. 15. Experiment 2 workflow. 

This experiment has been run on all four data sets and the 
same statistics as the ones computed for experiment 1 are 
presented in Fig. 16 and 17. Trying all nxn shifted windows 
around a pixel is equivalent to applying a box-filter and a min-
filter of the same size and it is not expensive from the 
computational point of view [5]. 

Just like in experiment 1, there is little difference between 
the AD and SD matching costs. What is interesting to observe 
is that for all experiments, the larger the truncation value, the 
smaller the error. Using no truncation at all yields the best 
results. The most obvious decrease in the error along with 
increasing the truncation value can be seen for the pixels that 
are near depth-discontinuities. This is very helpful, because we 
have already seen that choosing the best truncation value is a 
difficult task, depending very much on the data set. Instead, 
shiftable windows (box filter and min-filter aggregation) can 
be used for very good results, avoiding outliers. Birchifeld-
Tomasi interpolation is helpful in reducing very large errors, 
which occur for low truncation values, but does not bring any 
significant improvement for reasonable errors, which are 
obtained for larger truncation values. 

Just like in experiment 1, there is little difference between 
the AD and SD matching costs. What is interesting to observe 
is that for all experiments, the larger the truncation value, the 
smaller the error. Using no truncation at all yields the best 
results. The most obvious decrease in the error along with 
increasing the truncation value can be seen for the pixels that 
are near depth-discontinuities. This is very helpful, because we 
have already seen that choosing the best truncation value is a 
difficult task, depending very much on the data set. Instead, 
shiftable windows (box filter and min-filter aggregation) can 
be used for very good results, avoiding outliers. Birchifeld-
Tomasi interpolation is helpful in reducing very large errors, 
which occur for low truncation values, but does not bring any 
significant improvement for reasonable errors, which are 
obtained for larger truncation values. 

 

 

Fig. 16. Bad-matching pixel percentage for experiment 2. 
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Fig. 17. RMS for experiment 2.

In Fig. 18, the best resulting Tsukuba disparity map was 
displayed, along with the ground-truth disparity map. The 
lowest percentage of bad-matching pixels on this data set was 
obtained for SAD with BT, with no truncation: 7.176 %. The 
best percentage on this data set in experiment 1 was 6.8003 %. 

  

Fig. 18. Experiment 1 vs. experiment 2 results on Tsukuba data set. 

E. Results for Aggregation Methods 

Unlike the previous experiments, experiment 3 focuses on 
the aggregation step (Fig. 19). Three methods are used: square 
windows, shiftable windows and diffusion. For the square 
windows, the algorithm is in fact SAD. Several window sizes 
are used, starting from 3 x 3 and ending with 29 x 29. The 
shiftable windows algorithm is reproduced by using a box filter 

followed by a    min-filter. Several window sizes are also used 
here, just like for the square windows. Last but not least, 
regular diffusion is tested. In this case, we no longer need a 
window size. The algorithm is controlled by the number of 
iterations, which ranges from 10 to 150, but which has the 
same meaning, controlling the extent of the aggregation. 

Regarding the other steps, AD is used for computing the 
matching costs. The aggregation is followed again by a WTA 
optimization and no disparity refinement is done. The images 
were not preprocessed. 

 

Fig. 19. Experiment 3 workflow. 

Regular diffusion is an alternative to using fixed windows, 
easier than the Bayesian model which is controlled by much 
more parameters. This technique aggregates support with only 
a weighted support function, for example a Gaussian. Four 
neighbors of the pixel are used when computing the energy and 
lambda, which controls the speed of the diffusion. In this 
experiment, lambda was chosen 0.15. According to [29], to 
ensure convergence, lambda needs to be < 0.25. 

 

 
Fig. 20. Bad-matching pixel percentage for experiment 3. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 11, 2017 

372 | P a g e  

www.ijacsa.thesai.org 

 

 

Fig. 21. RMS for experiment 3.

In Fig. 20 and 21, the results of this experiment were 
displayed. The most interesting observation is that the curves 
shows opposite trends for the textureless pixels and the ones 
located near depth-discontinuities. The larger the window sizes 
for aggregation, the smaller errors in the textureless areas. On 
the contrary, in the depth-discontinuities regions, the errors 
increase with the size of the aggregation extent. 

This is the fundamental drawback of local algorithms: 
choosing the window size proves to be a difficult task, 
depending on the image sets and the regions they contain. The 
local methods assume that all pixels in one window share the 
same characteristics, namely disparities. However, often, 
especially in highly textured images, such windows contain 
mixed pixels. Some belong to the background and some belong 
to the foreground. The aggregated cost of such a window can 
only take one direction and this is done depending on how 
much horizontal texture exists in the regions near a depth-
discontinuity. This problem is also known as fattening effect, 
which characterizes the local methods. This means that the 
center of a window inherits the disparity of the pixels with a 
stronger texture. In case of strong depth-discontinuities, this is 
called foreground fattening effect. The fattening effect, as 
stated by its name, makes the objects in the blocks look larger 
(fatter) than in reality. This is not very obvious in 2D, but 
becomes very noticeable in 3D depth reconstruction, creating 
unrealistic models. 

In Fig. 22, it can be observed the ground-truth disparity 
map and the obtained disparity map with the squared windows 
and shiftable windows methods, having window size 29. The 
squared windows technique makes the foreground object 
visibly larger than in reality, while the shiftable windows 
technique recovers the original proportions pretty well. 

   
a)      b)        c) 

Fig. 22. Fattening effect on Map data set. a) ground-truth; b) square windows; 

c) shiftable windows disparity maps. 

If we look at the graphics we can see that the shiftable 
windows algorithm yields the best results from all the three 
techniques, especially in the case of depth-discontinuity 
regions. Shiftable windows method is the simplest variation of 
the adaptive window techniques, which try to eliminate the 
fattening effect. This is followed by the diffusion model. 
Although it is the simplest method from the three, the square 
windows has the poorest results and choosing the right window 
size has even more impact than in the case of the shiftable 
windows. 

F. Optimization Methods 

Experiment 4 focuses on the next step of a stereo 
correspondence algorithm, the optimization (Fig. 23). Four 
methods are compared: dynamic programming, scanline 
optimization, graph cuts and simulated annealing. For the 
dynamic programming, three variants have been tested, 
depending on the occlusion cost: 20, 50 or 80. The experiment 
aims to assess the effect of the smoothness parameter on the 
four techniques above mentioned. Therefore, the smoothness 
parameter ranges from 5 to 1000. Also, for SA a number of 
500 iterations have been chosen. The images are not 
preprocessed beforehand. As matching cost, AD is used. No 
aggregation and no disparity refinement are used. 

 
Fig. 23. Experiment 4 workflow. 

The experiment has been run on all data sets and the 
findings are displayed graphically in Fig. 24 and 25. It can be 
seen that among the four techniques tested, GC clearly yields 
the best results in a consistent manner. Unfortunately, among 
these methods, GC and SA are much slower. The best results 
are seen especially in textureless and depth-discontinuities 
regions. The other three techniques do not display large 
differences in performance. Sometimes SO is slightly better, 
like in the case of Map and Tsukuba data sets, but, as it will be 
seen in the next experiment, will cause a streaking effect in the 
disparity maps obtained, because it ignores the vertical 
smoothness term. DP with an occlusion cost of 20 has the 
smallest errors. 
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Comparing the results of different smoothness parameters, 
it is interesting to see that errors are not monotonically growing 
or decreasing, especially in the case of SO and GC. For very 
small smoothness values, the errors are large and the same 
happens also for very large values. Therefore, choosing the 
right value has a great impact on the results. These are also 

influenced by the data set. For example, in the case of an image 
with very few objects, such as Map, the optimal value is quite 
high, around 500. On the other hand, in images with many 
objects located at different depths, the best results are obtained 
for small smoothness values, between 20 and 200. 

 

 
Fig. 24. Bad-matching pixel percentage for experiment 4. 

 

 

Fig. 25. RMS results for experiment 4.

G. Overall Comparison 

We have compared the performance of the 6 algorithms 
described above, among them one being a local algorithm and 
the other five, global algorithms. For each, the parameters used 
in the tests are listed in Table 1. 

Table 2 displays the results obtained by these algorithms 
with the parameters above applied to each image. Of course, 
these results would have been better if they would have been 
fine-tuned for each set of images, but a general configuration 
should be found. From all of the metrics discussed, the 
percentage and ranking of non-occluded bad-matching pixels is 
listed. 

From Table 2 and from the results of the above sub-
sections, it can be seen that the best overall performance is 
obtained by global optimization algorithms. In particular, the 
best method is definitely GC, on which there is large focus 
nowadays. SA solves the same optimization problem, but 
generally does not yield very good results. The execution time 
for SA is way higher than the one for GC, so the latter 
algorithm is preferred. 

The diffusion-based method, Bayesian diffusion, performs 
well, following GC. In the case of Map image data set, it even 
outperforms this method. This happens because these images 
contain more noise than the others, which leads to bad results 
in case of algorithms that depend very much on internal 
parameter settings. On the other hand, in case of Tsukuba, 
which is a more complex data set, with many objects at 
different depths, the Bayes diffusion algorithm has poor results. 

SSD, which is the only local algorithm in the experiment, 
yields reasonable results, especially if we are to think at the 
complexity of the algorithm and execution times, which make 
it a good choice if the results do not need to be of very high 
accuracy. As do all algorithms, it does not perform well in 
regions with depth-discontinuities. 

Lastly, but not least, the scanline algorithms DP and SO 
perform less well, having the poorest results of them all, with 
the exception of Tsukuba image set, were they recover the 
shape of the objects pretty well, and the lack of inter-scanline 
consistency raise the percentages of bad-matching pixels. 
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TABLE I.  PARAMETERS FOR THE 6 ALGORITHMS TESTED 

 SSD DP SO GC SA Bayes 

Matching cost SD AD AD AD AD AD 

Match function No No No No No No 

Truncation No Yes Yes Yes Yes No 

Birchfield-Tomasi       

Aggregation       

Window size 21 - - - - - 

Min filter window size 21 - - - - - 

No. of iteration steps 1 - - - - 1000 

mu parameter for 

Bayesian diffusion 
- - - - - 0.5 

sigma parameter for 

Bayesian diffusion 
- - - - - 0.4 

epsilon parameter for 

Bayesian diffusion 
- - - - - 0.01 

scale for Bayesian 
diffusion 

- - - - - 0.01 

Optimization       

Optimization function 
WT

A 
DP SO GC SA Bayes 

Smoothness - 20 50 20 20 - 

Occlusion cost - 20 - - - - 

Start temperature - - - - 50 - 

Maximum number of 

optimization iterations 
- - - - 

100

0 
- 

Threshold for intensity 
gradient 

- 8 8 8 - - 

Smoothness penalty if 

gradient is too small 
- 4 2 2 - - 

TABLE II.  RANKING AND PERCENTAGE OF BAD-MATCHING PIXELS FOR 

THE 6 ALGORITHMS TESTED 

 Sawtooth Venus Map Tsukuba 

SSD (3) 2.2051 (2) 3.7441 (4) 0.6638 (3) 5.3337 

DP (5) 4.3094 (5) 8.8257 (5) 0.7748 (2) 4.5472 

SO (6) 4.4275 (4) 7.7776 (6) 1.1016 (4) 6.0406 

GC (1) 1.4049 (1) 1.8324 (2) 0.3103 (1) 1.9184 

SA (4) 3.5237 (6) 9.1775 (3) 0.5878 (6) 7.6125 

Bayes (2) 1.4533 (3) 4.0044 (1) 0.1973 (5) 6.4924 

V. CONCLUSIONS 

In this paper, the domain of stereo vision, one of the most 
studied fields of computer vision of the last decades, has been 
explored. The hardest part of stereo vision is finding the right 
match for every point in the image, also known as the stereo 
correspondence problem and solved by the stereo matching 
algorithms. The building blocks of every such algorithm have 
been presented: matching cost computation, cost aggregation, 
disparity computation and optimization and disparity 
refinement. Additional preprocessing and postprocessing can 
also be done. The focus in this paper was put mainly on the 
first three building blocks, as disparity refinement is rather 
optional. The results obtained by the algorithms are more than 
often sufficient for applications such as tracking or robot 
navigation. 

During the years, many techniques have been proposed, 
some novel or refinements of existing ones. A literature 
overview has been presented for both local and global 
algorithms and also for the newly introduced semi-global 
category, presenting techniques from the most basic ones, such 
as SAD/SSD, up to the state-of the art in the domain, GC. 

As mentioned before, most of the existing algorithms can 
be split in several building blocks. In order to obtain the best 
performance, each of these components should be optimized. 
The first experiments have tried to display different techniques 
for each individual step, showing how choosing parameters 
influences the results. Unfortunately, sometimes there are so 
many parameters, that it is hard to find the optimal 
combination. Furthermore, the image data sets are comprised 
of different textures, occluded/non-occluded regions, different 
color information, all of which make a general optimal 
configuration very hard to find. Some algorithms perform 
better than the others depending on the input information. 

The literature probably contains a great number of 
algorithms variations, such as a full comparison of stereo 
matching algorithms would have been practically impossible. 
Instead, a few diverse algorithms have been presented, 
focusing on their core ideas. A number of experiments have 
been conducted, comparing them from the quality point of 
view (RMS and statistics on bad-matching pixels).  If we do 
not want a very accurate disparity map in our application, the 
local methods such as the SSD algorithm should be sufficient. 
If, on the other hand, quality is very important, GC is one of 
the best techniques nowadays. What more, it has been shown 
that SA, which solves almost the same optimization problem as 
GC, has the highest computational costs and the results are in 
many cases far from the best. Of course, its performance 
depends very much on the internal parameters such as the start 
temperature and number of iterations. However, increasing the 
number of iterations will also increase the computational time, 
so the focus should be moved rather to GC methods. 

The quality of matching could be studied not only by 
computing the RMS and statistics on bad-matching pixels, but 
also the prediction error. Another idea would be to find a 
solution to adapt parameters of algorithms to the content of the 
images automatically. As we have seen, a small smoothness 
value is needed when the image is complex, containing many 
objects, but a larger value can be used of the image is not so 
complex. Because GC has obtained good results, this method 
can be further studied for improvements, along with other state 
of the art techniques such as tree filtering, for example. Last 
but not least, besides the two-frame approach, the area of 
multi-view stereo can be investigated. Using multiple images 
will reduce the matching ambiguity, leading to quality 
improvements. 
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